Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations

Johns Hopkins University
Fall 2014

Complex Numbers - trig form

Recall from last week:

Definition (Trigonometric form of complex numbers)

Consider the complex number $z=a+i b$. Let $r=|a+i b|=\sqrt{a^{2}+b^{2}}$ and let α be the angle between $\langle a, b\rangle$ and the positive x-axis. Then the trigonometric form of the complex number z is

$$
z=r(\cos \alpha+i \sin \alpha)
$$

Complex Numbers - trig form

Example (Write the complex number in standard form)

Write the complex number $\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))$ in the form $a+i b$.

Complex Numbers - trig form

Theorem

Let $z_{1}=r_{1}\left(\cos \alpha_{1}+i \sin \alpha_{1}\right)$ and $z_{2}=r_{2}\left(\cos \alpha_{2}+i \sin \alpha_{2}\right)$, then

$$
\begin{aligned}
z_{1} z_{2} & =r_{1} r_{2}\left(\cos \left(\alpha_{1}+\alpha_{2}\right)+i \sin \left(\alpha_{1}+\alpha_{2}\right)\right) \\
\frac{z_{1}}{z_{2}} & =\frac{r_{1}}{r_{2}}\left(\cos \left(\alpha_{1}-\alpha_{2}\right)+i \sin \left(\alpha_{1}-\alpha_{2}\right)\right)
\end{aligned}
$$

Proof.

Just try to compute $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$.

Complex Numbers - trig form

Example (Product in trig form)

Use trigonometric form to find $z_{1} z_{2}$, if $z_{1}=-2+2 i \sqrt{3}$ and $z_{2}=\sqrt{3}+i$.

Polar coordinates

Definition
 Pole, Polar axis, Polar coordinate system (directed distance and angle)

Polar coordinates

Example

Plot the points with polar coordinates $(2,5 \pi / 6),(-3, \pi),(1,-\pi / 2)$.

Polar conversion

Theorem (Conversion rules from polar to rectangular)

To convert (r, θ) to rectangular coordinates (x, y), use

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

To convert (x, y) to polar coordinates (r, θ), use

$$
r=\sqrt{x^{2}+y^{2}}
$$

and any angle θ in standard position whose terminal side contains (x, y).

Remark

Note that we have already seen that for a vector $\vec{w}=\langle x, y\rangle$ with length r and direction angle θ, we have $\vec{w}=\langle \pm| w_{x}\left|, \pm\left|w_{y}\right|\right\rangle=\langle r \cos \theta, r \sin \theta\rangle$.

Polar conversion

Example

Convert $\left(6,210^{\circ}\right)$ to rectangular.

Polar conversion

Question

What is $(\sqrt{3} / 2,1 / 2)$ in polar coordinates?
(A) $(1, \pi / 6)$
(B) $(\sqrt{3} / 2, \pi / 3)$
(C) $(1 / 2, \pi / 6)$
(D) $(1, \pi / 3)$

Converting equations

Example

Write the polar equation as a rectangular equation.

$$
r=2 \cos \theta
$$

Graphing

Example

Sketch the graph of the equation,

$$
r=2 \cos \theta
$$

Hint: there are two ways - graph in the Cartesian plane or in the polar plane.

Converting equations

Example

Write the rectangular equation as a polar equation.

$$
y=3 x-2
$$

Parametric equations

Definition (Parametric equation)

An equation where x and y are both given in terms of a parameter t, that is, are functions of t.

Example (Line)

$x=3 t-2, y=t+1$, and t in the interval $[0,3]$.

Parametric equations - graphing

Strategy: give values to the parameter to obtain values for x and y, then plot the points (x, y).

Example (Line)

Graph the parametric equations for t in the interval $[0,3]$ and $x=3 t-2$, $y=t+1$.

Eliminating the parameter

We can (sometimes) eliminate the parameter and rewrite the parametric equations as one equation involving only x and y.

Example

Eliminate the parameter and then sketch the graph of the parametric equations. Determine the domain and the range.

$$
\begin{gathered}
x=3 t-2 \\
y=t+1
\end{gathered}
$$

and t in the interval $(-\infty, \infty)$.

Friday attendance

Friday is the last class meeting before the break, and we need to start a new (important) topic.

Question

Do you plan to be in class on Friday?
(A) yes, definitely
(B) I would like to be, unless I oversleep or something
(C) no, I am travelling early
(D) no, because I want to sleep late / don't want to be in class / something else
(E) don't know yet

