Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations

Johns Hopkins University

Fall 2014

Recall from last week:

Definition (Trigonometric form of complex numbers)

Consider the complex number z=a+ib. Let $r=|a+ib|=\sqrt{a^2+b^2}$ and let α be the angle between $\langle a,b\rangle$ and the positive x-axis. Then the trigonometric form of the complex number z is

$$z = r(\cos \alpha + i \sin \alpha).$$

Example (Write the complex number in standard form)

Write the complex number $\sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$ in the form a + ib.

Theorem

Let
$$z_1 = r_1(\cos \alpha_1 + i \sin \alpha_1)$$
 and $z_2 = r_2(\cos \alpha_2 + i \sin \alpha_2)$, then

$$z_1z_2=r_1r_2(\cos(\alpha_1+\alpha_2)+i\sin(\alpha_1+\alpha_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\alpha_1 - \alpha_2) + i\sin(\alpha_1 - \alpha_2))$$

Proof.

Just try to compute z_1z_2 and $\frac{z_1}{z_2}$.

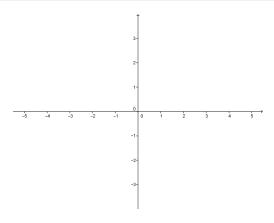
Example (Product in trig form)

Use trigonometric form to find z_1z_2 , if $z_1=-2+2i\sqrt{3}$ and $z_2=\sqrt{3}+i$.

Polar coordinates

Definition

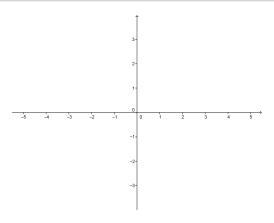
Pole, Polar axis, Polar coordinate system (directed distance and angle)



Polar coordinates

Example

Plot the points with polar coordinates $(2, 5\pi/6)$, $(-3, \pi)$, $(1, -\pi/2)$.



Polar conversion

Theorem (Conversion rules from polar to rectangular)

To convert (r, θ) to rectangular coordinates (x, y), use

$$x = r \cos \theta$$

$$y = r \sin \theta$$
.

To convert (x, y) to polar coordinates (r, θ) , use

$$r = \sqrt{x^2 + y^2}$$

and any angle θ in standard position whose terminal side contains (x, y).

Remark

Note that we have already seen that for a vector $\vec{w} = \langle x, y \rangle$ with length r and direction angle θ , we have $\vec{w} = \langle \pm |w_x|, \pm |w_y| \rangle = \langle r \cos \theta, r \sin \theta \rangle$.

Polar conversion

Example

Convert $(6,210^{\circ})$ to rectangular.

Polar conversion

Question

What is $(\sqrt{3}/2, 1/2)$ in polar coordinates?

- (A) $(1, \pi/6)$
- (B) $(\sqrt{3}/2, \pi/3)$
- (C) $(1/2, \pi/6)$
- (D) $(1, \pi/3)$

Converting equations

Example

Write the polar equation as a rectangular equation.

$$r = 2\cos\theta$$
.

Graphing

Example

Sketch the graph of the equation,

$$r=2\cos\theta$$
.

Hint: there are two ways - graph in the Cartesian plane or in the polar plane.

Converting equations

Example

Write the rectangular equation as a polar equation.

$$y = 3x - 2$$
.

Parametric equations

Definition (Parametric equation)

An equation where x and y are both given in terms of a parameter t, that is, are functions of t.

Example (Line)

x = 3t - 2, y = t + 1, and t in the interval [0, 3].

Parametric equations - graphing

Strategy: give values to the parameter to obtain values for x and y, then plot the points (x, y).

Example (Line)

Graph the parametric equations for t in the interval [0,3] and x=3t-2, y=t+1.

Eliminating the parameter

We can (sometimes) eliminate the parameter and rewrite the parametric equations as one equation involving only x and y.

Example

Eliminate the parameter and then sketch the graph of the parametric equations. Determine the domain and the range.

$$x = 3t - 2$$

$$y = t + 1$$

and t in the interval $(-\infty, \infty)$.

Friday attendance

Friday is the last class meeting before the break, and we need to start a new (important) topic.

Question

Do you plan to be in class on Friday?

- (A) yes, definitely
- (B) I would like to be, unless I oversleep or something
- (C) no, I am travelling early
- (D) no, because I want to sleep late / don't want to be in class / something else
- (E) don't know yet