Ch. 8.1: Systems of linear equations in two variables

Johns Hopkins University

Fall 2014

Linear equations

Definition (Linear equation in two variables)

A linear equation in two variables is an equation of the form $A x+B y=C$, where A and B are both non-zero.

Question

What is(are) the solution(s) of such an equation?
(A) infinitely many points
(B) no solution
(C) has a solution only if A or B is 0 .
(D) we can't say if we don't know A, B and C.

System of linear equations

Definition (System of linear equations)

A system of linear equations is a collection of tow or more linear equations.

Example

$$
\begin{gathered}
x+2 y=6 \\
2 x-y=-8
\end{gathered}
$$

Definition (Solution set of system of linear equations)

Solution set of a system of linear equations is is the set of ordered pairs (x, y) that satisfy all equations in the system.

Solving a system of linear equations - geometrically (1)

Example

Find the solutions of the system

$$
x+2 y=6
$$

Solving a system of linear equations - geometrically (2)

Example

Find the solutions of the system

$$
\begin{gathered}
x+2 y=6 \\
2 x-y=-8
\end{gathered}
$$

Solving a system of linear equations - geometrically (3)

Example

Find the solutions of the system

$$
\begin{gathered}
3 x-y=2 \\
2 y-6 x=-4
\end{gathered}
$$

Solving a system of linear equations - geometrically (4)

Example

Find the solutions of the system

$$
\begin{aligned}
& y=\frac{1}{2} x+2 \\
& x-2 y=4
\end{aligned}
$$

Types of systems

Definition

- Consistent system - has at least one solution
- Inconsistent system - doesn't have solutions
- Independent system - a consistent system with one solution
- Dependent system - a consistent system with infinitely many solutions

Can we tell these from the graphs?

Solving systems

There are two ways to solve systems of equations
(1) substitution - expressing one of the variables in terms of the other and plugging in the second equation (very much like eliminating the parameter).
(2) addition - add a multiple of one equation to the other to eliminate a variable.

Solving systems - Examples - Solve by substitution

Example

$$
\begin{gathered}
3 x-y=6 \\
6 x+5 y=-23
\end{gathered}
$$

Example

$$
\begin{gathered}
3 x-y=9 \\
2 y-6 x=7
\end{gathered}
$$

Example

$$
\begin{gathered}
\frac{1}{2} x-\frac{2}{3} y=-2 \\
4 y=3 x+12
\end{gathered}
$$

Solving systems - Examples - Solve by addition

Example

$$
\begin{aligned}
& 3 x-y=9 \\
& 2 x+y=1
\end{aligned}
$$

Example

$$
\begin{gathered}
0.2 x-0.4 y=0.5 \\
x-2 y=1.3
\end{gathered}
$$

Example

$$
\begin{gathered}
\frac{1}{2} x-\frac{2}{3} y=-2 \\
4 y=3 x+12
\end{gathered}
$$

Opinion poll

Question

What do you need most review on - from the first part of the class?
(A) prerequisite chapter - working with expressions with exponents
(B) sketching polynomials
(C) inverse functions
(D) polynomials equations
(E) polynomial inequalities

Opinion poll

Question

What do you need most review on - from the second part of the class?
(A) logarithms
(B) trigonometry
(C) vectors and complex numbers
(D) polar and parametric equations
(E) systems of linear equations

Opinion poll

Question

What do you need most review on - trigonometry?
(A) showing something is a trig identity
(B) solving trig equations
(C) sketching trig functions
(D) solving triangles

Remark

Let me know if I missed anything!!

