Question 3.6.12

We need to prove that $\lim _{x \rightarrow 1} 1 / x=1$. Let $f(x)=1 / x$, then we need to show that for every $\epsilon>0$ there exists a δ such that $|f(x)-1|<\epsilon$ whenever $|x-1|<\delta$.

Now we have

$$
|f(x)-1|<\epsilon \Longleftrightarrow|1 / x-1|<\epsilon \Longleftrightarrow\left|\frac{x-1}{x}\right|<\epsilon \Longleftrightarrow|x-1| \frac{1}{|x|}<\epsilon .
$$

On the other hand we have $|x-1|<\delta$. I can assume $\delta \leq 1 / 2$. This is a valid assumption to make since, in general, once we find a δ that works, all smaller values of δ also work.

Now we obtain that

$$
|x-1|<1 / 2 \Longleftrightarrow-1 / 2<x-1<1 / 2 \Longleftrightarrow 1 / 2<x<3 / 2 .
$$

hence for the reciprocals we have $2>1 / x>2 / 3$, and in particular $2>1 / x$ and $2>|1 / x|$. So now we can use this to get:

$$
|x-1| \frac{1}{|x|}<2|x-1|<\epsilon
$$

and so $|x-1|<\epsilon / 2$ so we can take $\delta=\epsilon / 2$.

