Question 6.1.78

Question 1 Without computing the integral show that

$$
\frac{1}{2} \leq \int_{0}^{1} \sqrt{1-x^{2}} d x \leq 1
$$

We know that if $m \leq f(x) \leq M$, for some constants m and M, then

$$
m(a-b) \leq \int_{a}^{b} f(x) d x \leq M(a-b)
$$

Note that on the interval $[0,1], 0 \leq \sqrt{1-x^{2}} \leq 1$, hence

$$
0 \leq \int_{0}^{1} \sqrt{1-x^{2}} d x \leq 1
$$

We have the upper bound that we want but not the lower bound. To get a better lower bound, we will think think of the integral as area, that is $\int_{0}^{1} \sqrt{1-x^{2}} d x$ is the area A under the graph of $\sqrt{1-x^{2}}$ on the interval $[0,1]$. Note that we can write this area in the following way:

$$
A=\int_{0}^{1 / \sqrt{2}} \sqrt{1-x^{2}} d x+\int_{1 / \sqrt{2}}^{1} \sqrt{1-x^{2}} d x
$$

These new integrals are both positive. To see this, make a sketch to see what area they correspond to (pieces of the area of the quarter circle in the first quadrant).

Denote by $A_{1}=\int_{0}^{1 / \sqrt{2}} \sqrt{1-x^{2}} d x$ and $A_{2}=\int_{1 / \sqrt{2}}^{1} \sqrt{1-x^{2}} d x$. Then $A=$ $A_{1}+A_{2}$. Recall that we want to show that $\frac{1}{2} \leq A$, which is the same as showing that $\frac{1}{2} \leq A_{1}+A_{2}$. Note that since both A_{1} and A_{2} are positive numbers then if we show that $\frac{1}{2} \leq A_{1}$ this will imply that $\frac{1}{2} \leq A_{1}+A_{2}$.

We will use the same procedure as before. On the interval $[0,1 / \sqrt{2}]$ we have that $m=1 / \sqrt{2} \leq \sqrt{1-x^{2}} \leq 1$, hence

$$
\frac{1}{2} \leq \int_{0}^{1 / \sqrt{2}} \sqrt{1-x^{2}} d x
$$

