A problem from section

Kalina

February 5, 2015

Question 1 Let A be a 4×3 non-zero matrix. And let \vec{v} and \vec{w} be vectors in \mathbb{R}^{3} such that $A \vec{v}=A \vec{w}$. Does this imply that $\vec{v}=\vec{w}$?

Answer: No. Here is an example of such a matrix with rank 2.
Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and take $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}1 \\ 2 \\ 7\end{array}\right]$.
Then $A \vec{v}=A \vec{w}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right]$.
Note however that this cannot be done if A has rank 3. Think why :)

