

PRIME CONGRUENCES OF IDEMPOTENT SEMIRINGS AND A NULLSTELLENSATZ FOR TROPICAL POLYNOMIALS

SUMMARY

- We give a new definition of prime congruences in additively idempotent semirings. These congruences have analogous properties to the prime ideals of commutative rings.
- A complete description of prime congruences is given in the polynomial and Laurent polynomial semirings over the tropical semifield \mathbb{R}_{max} and the semifields \mathbb{Z}_{max} and \mathbb{B} .
- The **minimal primes** of these semirings correspond to monomial orderings, and their intersection is the congruence that identifies polynomials that have the same Newton polytope.
- The Krull dimension of the (Laurent) polynomial semiring in n variables over K (where K one the three studied semifields above) is equal to dim(K) + n.
- The radical of every finitely generated congruence in the studied cases is the intersection of prime congruences with quotients of dimension 1.
- An improvement of a result by A. Bertram and R. Easton is proven which can be regarded as a Nullstellensatz for tropical polynomials.

CONGRUENCES OF IDEMPOTENT SEMIRINGS

Motivation: For the traditional tropical geometry (e.g. Sturmfels, MacLagan, Mikhalkin) a tropical variety (over \mathbb{R}_{max}) is a balanced polyhedral complex. But recently there has been a lot of work aiming at finding the appropriate definition of a tropical scheme.

Ideals of semirings do not fulfill the same role as in ring theory since they are no longer in bijection with the congruences of the base structure.

Definition: A semiring is a nonempty set R with two binary operations $(+,\cdot)$ such that R is a commutative monoid with respect to both (usual distributivity and unit axioms hold). A semifield is a semiring in which all nonzero elements have multiplicative inverse. Examples are:

- \mathbb{B} the semifield with two elements $\{1,0\}, 1+1=1$.
- The tropical semifield \mathbb{R}_{max} with underlying set $\{-\infty\} \cup \mathbb{R}$, addition being the usual maximum and multiplication the usual addition, with $-\infty$ playing the role of the 0 element.
- The semifield \mathbb{Z}_{max} is just the subsemifield of integers in \mathbb{R}_{max} .

All of these are \mathbb{B} -algebras i.e. additively idempotent semirings with multiplicative unit (*R* is **idempotent** if a + a = a, $\forall a \in R$).

Definition: The twisted product of two ordered pairs (a, b) and (c, d)is the ordered pair (ac + bd, ad + bc).

Motivation: Congruences whose quotients are cancellative i.e. ab = acimplies a = 0 or b = c generally fail to be intersection indecomposable.

Definition: A congruence P of a \mathbb{B} -algebra A prime if it is proper and for every $\alpha, \beta \in A \times A$ such that $\alpha \beta \in P$ either $\alpha \in P$ or $\beta \in P$.

THEOREM

A congruence I is prime if and only if it has cancellative quotient and is intersection indecomposable.

Definition: The **radical** of a congruence *I* is the intersection of all prime congruences containing I. It is denoted by Rad(I). A congruence I is called a radical congruence if Rad(I) = I.

Definition

- We denote **trivial congruence** of a semiring by Δ .
- For a pair $\alpha = (\alpha_1, \alpha_2)$ from the \mathbb{B} -algebra A, the **generalized powers** of α are the pairs of the form $(((\alpha_1 + \alpha_2)^k, 0) + (c, 0))\alpha^l$ where k, l are non-negative integers, and $c \in A$ an arbitrary element.
- The set of generalized powers of α is denoted by $GP(\alpha)$. A pair α is called **nilpotent** if some generalized power of α is in Δ .

THEOREM

For a congruence I of a \mathbb{B} -algebra A, Rad(I) = { $\alpha \mid GP(\alpha) \cap I \neq \emptyset$ }. In particular the intersection of every prime congruence of A is precisely the set of nilpotent elements.

PRIME CONGRUENCES OF IDEMPOTENT SEMIRINGS

- Quotients by a prime are totally ordered with respect to the ordering coming from the idempotent addition.
- For a prime P of $\mathbb{B}(\mathbf{x})$ (resp. $\mathbb{B}[\mathbf{x}]$) the multiplicative monoid of $\mathbb{B}(\mathbf{x})/P$ (resp. $\mathbb{B}[\mathbf{x}]/P$) is isomorphic to a quotient of the additive group $(\mathbb{Z}^n, +)$ (resp. to the restriction of a quotient $(\mathbb{Z}^{n'}, +)$ to $(\mathbb{N}^{n'}, +)$, where $n - n' = |\{x_1, \dots, x_n\} \cap Ker(P)|\}$.
- To understand the prime quotients of $\mathbb{B}(\mathbf{x})$ and $\mathbb{B}[\mathbf{x}]$ we need to describe the group orderings on the quotients of $(\mathbb{Z}^n, +)$.

Criteria: These orderings can be given by a defining matrix U, so that $n_1 > n_2$ if only if $Un_1 > Un_2$ with respect to lex order. We denote by P(U) the prime in $\mathbb{B}(\mathbf{x})$ corresponding to the ordering given by U.

Definition: The **dimension** of a \mathbb{B} -algebra A is the length of the longest chain (with respect to inclusion) of prime congruences in $A \times A$.

THEOREM

- Let $\mathbb{B}(\mathbf{x})$ be the n-variable Laurent polynomial semialgebra, then:
- The set of prime congruences of $\mathbb{B}(\mathbf{x})$ is of the form P(U), where U has n columns (and non-redundant rows).

- with empty kernels in less variables.
- particular $dim(\mathbb{B}[\mathbf{x}]) = dim(\mathbb{B}(\mathbf{x})) = n$.

THEOREM

- the Newton polytopes of f and g are the same.

Analogous results hold over the (Laurent) polynomial semialgebras over \mathbb{Z}_{max} and \mathbb{R}_{max} but instead the of Newton polytope newt(f) consider,

$$\overline{newt(f)} = \{(y_0, \ldots, y_k) \in new\}$$

Those semialgebras have dimensions n + 1, where n is the number of variables.

TROPICAL NULLSTELLENSATZ

of a finitely generated ideal in ring theory.

DEFINITIONS

- precisely the congruences whose quotient is \mathbb{R}_{max} .
- For $E \in \mathbb{R}_{max}$ and $\epsilon \notin \{0,1\}$ define the set,

THEOREM

- E_+ is a congruence and $V(E) = V(E_+)$.

Johns Hopkins University, Baltimore, MD, mincheva@math.jhu.edu

Every prime congruence P of $\mathbb{B}[\mathbf{x}]$ with trivial kernel is of the form $P(U)_{|\mathbb{B}[\mathbf{x}]}$. The primes with nonempty kernels correspond to primes

 $dim(\mathbb{B}(\mathbf{x})/P(U)) = rank \ U$ and $dim(\mathbb{B}[\mathbf{x}]/P(U)_{\mathbb{B}[\mathbf{x}]}) = rank \ U$, in

• The pair (f,g) lies in the radical of Δ of $\mathbb{B}(\mathbf{x})$ or $\mathbb{B}[\mathbf{x}]$ if and only if

• The \mathbb{B} -algebra $\mathbb{B}(\mathbf{x})/Rad(\Delta)$ is isomorphic to the \mathbb{B} -algebra with elements the lattice polytopes and addition being defined as the convex hull of the union, and multiplication as the Minkowski sum.

 $wt(f) \mid \forall z > y_0 : (z, y_1, \dots, y_k) \notin newt(f) \}$

Motivation: We are interested in subsets of of \mathbb{R}^n_{max} where some finite collection (f_i, g_i) of pairs of tropical polynomials agree, i.e. $\{a \in \mathbb{R}^n_{max} | f_i(a) = g_i(a)\}$. This is equivalent to looking at the zero locus

• V(E) is the set of points in \mathbb{R}_{max}^k on which every pair in E agrees. • $\boldsymbol{E}(H)$ is the congruence of pairs which agree on the set $H \subseteq \mathbb{R}_{max}^{k}$ • The primes $E(\{a\})$ we call geometric congruences, these are

 $E_{+} = \{ (f,g) \mid (1,\epsilon) GP(f,g) \cap E \neq \emptyset \} = \{ (f,g) \mid (f,g)(1,\epsilon) \in Rad(E) \}.$

• When E is finitely generated $E_{+} = E(V(E))$, hence E_{+} is the intersection of all geometric congruences containing E, in particular If E is finitely generated then the set V(E) is empty if and only if $E_{+} = \mathbb{R}_{max}[\mathbf{x}] \times \mathbb{R}_{max}[\mathbf{x}]$ (also proven by A.Bertram and R.Easton). For a finitely generated congruence E in the (Laurent) polynomial semiring over \mathbb{B} , \mathbb{Z}_{max} or \mathbb{R}_{max} Rad(E) is the intersection of the

primes that contain E and have a quotient with dimension 1.