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Abstract

One of the main motivations and inspirations for this thesis is the still open question of the definition

of geometry in characteristic one. This is geometry over a structure, called an idempotent semiring,

in which 1 + 1 = 1. While mathematicians have studied semirings for many years, these structures

have only recently ignited interest in algebraic geometry, more precisely tropical geometry. This is

geometry over a particular idempotent semiring - the tropical semifield. Furthermore, semirings have

important number theoretic applications which appear in the work of A. Connes and C. Consani

which is focused on finding a new approach to the Riemann hypothesis.

We define the prime spectrum of a commutative semiring. Since ideals do not retain their

distinguished role in the theory of semirings, the points of this spectrum correspond to certain

congruence relations, which we call prime congruences. Motivated by tropical geometry, the key

theme of our work is to study the prime spectrum of tropical polynomial semirings, but many of the

results presented here apply to any additively idempotent semiring as well.

The class of prime congruences which we introduce turns out to exhibit some analogous properties

to the prime ideals of commutative rings. In order to establish a good notion of radical congruences,

we show that the intersection of all primes of a semiring can be characterized by certain twisted

power formulas. We give a complete description of prime congruences in the polynomial and Laurent

polynomial semirings over the tropical semifield Rmax, the semifield Zmax and the Boolean semifield

B. The minimal primes of these semirings correspond to monomial orderings, and their intersection

is the congruence that identifies polynomials that have the same Newton polytope. We show that

the radical of every finitely generated congruence in each of these cases is an intersection of prime

congruences with quotients of Krull dimension 1. Using this setup we prove one of the main results

of this thesis - we improve on a result of A. Bertram and R. Easton which can be regarded as a

Nullstellensatz for tropical polynomials.

The remaining results are centered about the concept of Krull dimension. We prove that for

any idempotent semiring A we have that dimA[x] = dimA+ 1. In the case when we work over the
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tropical semifield, we relate the dimension of a tropical variety (which is just a polyhedral complex)

to our Krull dimension. This shows the relevance of our notion in the context of the standard

framework of tropical geometry.

Readers: Professor Dr. Caterina Consani (advisor), Dr. Jack Morava
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1

Introduction

1.1 History and Motivation

In this thesis we investigate the geometry over idempotent semirings from a new perspective. A

semiring satisfies the same axioms that a ring does except invertibility of addition. A semifield is

a semiring in which all nonzero elements have multiplicative inverse. One of the motivations for

this study was understanding the geometry in characteristic one which is still an open question and

has important arithmetic implications. Geometry over semirings is also interesting from the point

of view of tropical geometry, which is geometry over the tropical semiring usually denoted by T or

Rmax. As a set this semifield is R∪{−∞} with two operations maximum, playing the role of addition

and usual addition playing the role of multiplication.

Tropical geometry is an area that recently has received a lot of interest and attention and has

applications not just to algebraic geometry, but also to moduli spaces and compactifications ([Tev07],

[RSS13]), mirror symmetry ([Gro10],[Gro11]) and mathematical biology ([PS04], [Man11]). Tropical

methods are often used to approach hard classical algebraic geometry problems (cf. [Mik05], [JP15],

[CDPR12]) but the tropical varieties are interesting on their own.

Classically ([MS], [Mik06]) a tropical variety is the tropicalization of a subvariety X of the n-

dimensional torus over a field endowed with a non-Archimedian valuation. It is a degeneration of

the original variety and can be thought of as its “combinatorial shadow”. There are different ways

to obtain the tropicalization of a variety. One approach is to apply the field valuation to each point

of the original variety. Alternatively, one can obtain the tropicalization by considering coefficient-

wise valuations of the defining polynomials of the original variety. Tropical varieties can also be
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understood through the theory of Berkovich spaces.

A priori a tropical variety is a balanced, wighted polyhedral complex and has no scheme structure.

Recently there has been a lot of work aiming at finding the appropriate definition of a tropical

scheme. The authors in [GG13] and [MR14] endow varieties defined over an idempotent semiring

with a tropical scheme structure given by a particular congruence. The T-points of these semiring

schemes correspond to set-theoretic tropical varieties.

These results suggest why we should study congruences to understand the geometry over semi-

fields. Furthermore, we explore the link to both tropical varieties and tropical schemes (as an

example of semiring schemes) and develop the semiring algebra tools necessary to work with these

objects.

The use of congruences in the study of tropical and semiring geometry has been taken up previ-

ously in the literature cf. [BE13], [Lor12]. The congruence approach was even proposed by Berkovich

in [Ber11] in view of exploration of F1-geometry. While this is a more degenerate setting, for one

considers multiplicative monoids instead of semirings, the geometry over the field of one element

is historically an important step in the development of characteristic one geometry. In particular,

the F1-theory developed by A. Deitmar in [Dei05] and [Dei08] provides a convenient language for

working with monoids and semirings at the same time since there exists a base change functor from

this F1-theory to every (semi)ring.

Apart from the tropical semifield, two other idempotent semifields are central to this thesis.

The first one is denoted by B and is the smallest additively idempotent semifield. Its underlying

set is {1, 0}, where 1 is the multiplicative identity, 0 is the additive identity and 1 + 1 = 1. The

second semifield denoted by Zmax is the subsemifield of integers of the tropical semifield. These two

semifields are key to the semiring approach to characteristic one geometry. More precisely, Zmax is

central to the work of A. Connes and C. Consani in [CC13] aiming at developing a correct framework

for characteristic one geometry that is in congruence with the original idea of J. Tits [Tit56]. Their

theory is furthermore used in the construction of the arithmetic site [CC14] and the scaling site

[CC15]. In analogy with Weil’s proof of the Riemann hypothesis for function fields the authors

relate the Riemann zeta function to the problem of counting fixed points of a Frobenius action on

the arithmetic site and show a Frobenius correspondences on the square of the arithmetic site.
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1.2 Results

The objective of this thesis is to study the geometry over additively idempotent semirings and more

precisely to understand sets defined by polynomial equations over these semirings. To accomplish

this goal we study prime congruences in this setting. In the case of semirings congruences are a

more natural object to consider than ideals. Unlike classical algebraic geometry ideals of semirings

are no longer in bijection with the congruences of the base structure and do not play the same role

as ideals in ring theory do.

The approach to understand geometry in the semiring setting using congruences has been pre-

viously considered by [BE13], [Les12] and [Lor12]. However, the structures that the authors obtain

do not exhibit nice properties or do not capture a lot of geometric information. A possibility, which

was investigated in [Les12], is to require that in the quotient by a prime congruence there are no

zero divisors. The main drawback of this approach is that the prime property of a congruence solely

depends on the equivalence class of the 0 element (i.e. the kernel of the congruence), which in gen-

eral contains little information about the congruence itself. For example in a Laurent polynomial

semiring over a semifield the kernel of every congruence is just {0}. A stricter way to define primes,

as in [BE13] and [Lor12] is to require that their quotients are cancellative semirings, i.e. ab = ac

implies a = 0 or b = c. While this certainly is a narrower class, congruences with this property fail

to be irreducible (under intersection) in general, making it difficult to treat them analogously to the

primes of ring theory. Moreover most structures that are of interest to us will contain infinitely long

chains of congruences with cancellative quotients, hence they do not provide a good notion of Krull

dimension.

We propose a new definition of prime congruences. To develop the theory we use a product

on elements of a congruence (ordered pairs), which is referred to as twisted product. The twisted

product of two ordered pairs α = (a1, a2) and β = (b1, b2) is the ordered pair (a1b1+a2b2, a1b2+a2b1).

Now we define a congruence P to be prime if it has the property that the twisted product of two

ordered pairs lies in P if and only if one of them lies in P .

Using this definition we prove that our primes exhibit properties analogous to the primes in ring

theory.

Theorem A. For an additively idempotent semiring A a congruence P ⊂ A × A is prime if and

only if it is irreducible (it can not be obtained as the intersection of two strictly larger congruences)

and the quotient A/P is a cancellative semiring.

We provide a complete description of prime congruences over the polynomial semirings with
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coefficients in one of the three semifields that are fundamental for the development of the theory of

geometry over characteristic 1. These are the Boolean semifield B, the semifield of tropical numbers

T and its sub-semifield of integers Zmax. It is easy to see that the quotient by a prime congruence

is an ordered semifield. In the case of polynomial semirings with coefficients in B we can apply a

result of Robbiano [Rob85] that a monomial ordering can be described by a matrix to obtain the

following result.

Theorem B. All prime congruences of the polynomial and Laurent polynomial semirings with coef-

ficients in B are fully determined by a defining matrix, which is an admissible matrix with columns

equal to the number of variables.

We provide an analogous description of the prime congruences of the polynomial and Laurent

polynomial semirings with coefficients in Zmax and T. Furthermore, we also describe the minimal

prime congruences in these cases in therms of their defining matrices.

The definition for prime congruences proposed in this thesis can be used to define Krull dimension

for semirings. Just like in commutative algebra one can use the notion of prime ideals to compute

Krull dimension, however it has been shown in a paper by [AA94] that even in the simplest case

of a one variable polynomial semiring over the Boolean semifield the so defined Krull dimension is

infinite. If instead one uses the existing notions in the literature of a prime congruence, that is a

congruence whose quotient is a cancellative semifield, then one again obtains infinitely long chains

of prime congruences.

The main result of this investigation is the following theorem, which concerns the polynomial

semiring A[x] and the Laurent polynomial semiring A(x) over an arbitrary additively idempotent

commutative semiring A (that is a B-algebra).

Theorem C. Let A be a B-algebra with dimA < ∞. Then we have that dimA[x±1] = dimA[x] =

dimA+ 1.

This result meets our intuitive expectations, since the semifield B is of dimension 0 and the

semifields Zmax and T are of dimension 1. In the case when A is B, Zmax and T this statement is

shown directly in this thesis by investigating the chains of prime congruences.

One should note that an analogous result holds in classical ring theory - for any Noetherian ring

R dimR[x] = dimR + 1. When the Noetherian condition is dropped then dimR[x] can be any

integer between dimR+ 1 and 2 dimR+ 1. Note that here the only condition on the semiring A is

that it is additively idempotent.
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The next natural step in understanding of the geometry over idempotent semirings is studying

their radical congruences. We first provide a suitable notion of radical which is defined as the

intersection of all prime congruences of a semiring. Similarly to commutative ring theory, the radical

can be expressed using certain power formulas. However, in the semiring setting the twisted powers

of pairs are not the correct equivalent to powers of elements in a ring. To alleviate the problem we

define the set generalized powers GP (α) of an element of a congruence α = (α1, α2) ∈ A× A to be

the set of pairs ((α1 + α2)
i + h, 0)αj , for any h ∈ A and i, j positive integers.

Theorem D. For any congruence I of a B-algebra A, we have that

Rad(I) = {α ∈ A×A | GP (α) ∩ I ̸= ∅},

In particular, the intersection of all prime congruences of A is precisely the set of nilpotent pairs,

that is the set of elements which have a twisted power in the diagonal.

The next part of this thesis provides an answer to a question raised in a paper by A. Bertram and

R. Easton from 2013 about finding an analogue of Hilbert’s Nullstellensatz for tropical polynomials.

Given a congruence C of the n-variable polynomial semiring T[xxx] we consider the following set

V(C) = {v ∈ Tk | f(v) = g(v), ∀(f, g) ∈ C}.

Note that in classical algebraic geometry the set V(C) is just the vanishing locus of the ideal generated

by ⟨f − g⟩, but for the lack of subtraction in a semifield we have to work with the original locus,

namely the pairs (f, g). For a subset H ⊆ Tk we define the congruence

E(H) = {(f, g) ∈ T[xxx]× T[xxx] | f(v) = g(v),∀v ∈ H}.

The aim of a “Tropical Nullstellensatz” is to describe the set E(V(C)) by implementing some

suitable power formulas, when C is finitely generated. Recall that the classical Nullstellensatz states

that III(V (J)) =
√
J , where J is an ideal of a polynomial ring over an algebraically closed field and

√
J is the radical of J , which is the intersection of all prime ideals lying above J .

A key component of the classical Nullstellensatz is that in a polynomial ring over a field every

radical ideal is the intersection of maximal ideals. This statement does not hold for congruences

of polynomial semirings, since there are very few maximal congruences. However, we obtained an

analogous result if the maximal congruences are replaced with prime congruences with at most
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1-dimensional quotient. A subset of these congruences, which have quotient T we call geometric

congruences. The statement of the “tropical Nullstellensatz” can be summarized as the following

theorem.

Theorem E. For a finitely generated congruence C of T[xxx±1] or T[xxx] we have that E(V(C)) is equal

to the intersection of all geometric congruences containing C. Equivalently, E(V(C)) consists of all

pairs of polynomials (f, g) for which one can find an ϵ ∈ T \ {1}, a non-negative integer i and a

polynomial h such that (1, ϵ)((f + g, 0)i + h)(f, g) ∈ C.

The weak tropical Nullstellensatz was proven in Theorem 2 of [BE13]. However, the statement

easily follows from our theory. The tropical weak Nullstellensatz states that for a finitely generated

congruence C of T[xxx], the set E(V(C)) is empty if and only if there exists a polynomial h ∈ T[xxx] with

nonzero constant term such that (h, ϵh) ∈ C for some ϵ ∈ T.

A different approach to the Nullstellensatz problem was taken in [IR14], where so-called su-

pertropical structures were studied in order to establish the Zariski correspondence between congru-

ences of tropical polynomials and algebraic sets.

The last part of this thesis explores the link between the sets V(C) and the tropical varieties

defined in [MS] and the tropical schemes as defined if [GG13]. We apply the theory developed in

the current work to tropical varieties regarding them as V(C), where C is the defining congruence

of a the tropical scheme. For a classical affine variety X over a valued field defined by an ideal I,

we have that

trop(X) = trop(V (I)) = Hom(T[xxx±1]/Bend(I),T) = V(Bend(I)),

where Bend(I) a congruence on the T-linear span of coefficient-wise valuations of elements of I,

called the bend congruence. Moreover, we prove a connection between the dimension of the original

variety and the Krull dimension of the congruence Bend(I):

dimX = dimT[xxx]/Bend(I)− 1.

In the last part of the thesis we investigate the group Hom(T[xxx±1]/Bend(I),Tn), for all n, where

Tn as a set is Rn
lex ∪ {−∞} with operations lexicographical order and vector addition.

6



2

Preliminaries

In this section we provide some background on tropical geometry and characteristic one geometry

and give context for the subsequent results. We first introduce set theoretic tropicalization and then

we discuss the construction of tropical schemes.

2.1 Tropical Geometry and Set Theoretic Tropicalization

We begin by introducing the tropical semifield which we will denote by T. There are two ways to

define T. For this thesis the underlying set of T is R ∪ {−∞} and it has two binary operations -

tropical sum being the maximum of two real numbers and tropical product being usual addition.

This object is also denoted by Rmax in the literature. Note that T satisfies all axioms for a field

except invertibility of addition. Alternatively one can define the tropical semifield to be R ∪ {∞}

with operations minimum and addition, we denote this object by Rmin. This semiring is additively

idempotent, that is a+ a = a, ∀a ∈ T.

Let K be a field with a non-Archimedian valuation ν, that is a map ν : K → R ∪ {−∞} = T

which satisfies the following conditions:

• ν(a) = −∞ ⇐⇒ a = 0

• ν(ab) = ν(a) + ν(b)

• ν(a+ b) ≤ max{ν(a), ν(b)} for all a, b ∈ K∗.

We will denote by RK the set of all field elements with non-negative valuation RK = {a ∈ K :

ν(a) ≥ 0}. The set RK is a local ring with maximal ideal mK = {a ∈ K : ν(a) > 0}. The residue

field we denote by k = RK/mK .
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We denote by Γν the image of the valuation map. The field K is not required to be algebraically

closed, but we will assume that the valuation ν is nontrivial and that the value group Γν is dense

in R. Furthermore, we would assume that there is a splitting ϕ : Γν → K∗, ω →→ tω. If ν(a) ≥ 0,

we denote by a the image of a in the residue field k. For a polynomial f with coefficients in R, f

denotes the polynomial obtained by replacing every coefficient a by a.

Let K[xxx±1] denote the ring of Laurent polynomials over K and let f =


u∈Zn cuuux
uuu be a Laurent

polynomial. The tropicalization of f denoted by trop(f) is a piecewise linear function defined by

trop(f)(www) = max{ν(cuuu) +
n

i=1

uiwi} = max{ν(cuuu) + uuu ·www : cuuu ̸= 0}.

Now we are ready to define tropical hyper surface. Recall that if f ∈ K[x±1
1 , . . . x±1

n ], where K is

algebraically closed, then the zero locus of f is a hypersurface in the n-dimensional algebraic torus.

Definition 2.1.1 ([MS] Definition 3.1.1). The tropical hypersurface trop(V (f)) is the set of all

www ∈ Rn for which the maximum in trop(f) is achieved at least twice.

Example 2.1.2. Let K be a field with trivial valuation and f = x+y+1 ∈ K[x, y], and X := V (f).

We have that trop(f) = max{x, y, 0}. The tropical hypersurface in this case is:

trop(V (f)) = {(a, b) ∈ R2| a = b ≥ 0} ∪ {(a, b) ∈ R2| a = 0 ≥ b} ∪ {(a, b) ∈ R2| b = 0 ≥ a}.

The set of points of the tropical line is the union of the three colored half lines below.

{(a, b) ∈ R2 | 0 ≤ a = b}

{(a, b) ∈ R2 | a ≤ b = 0}

{(a, b) ∈ R2 | b ≤ a = 0}

Figure 1. Tropical Line in R2

When F is a tropical polynomial we write V (F ) for the set of points w ∈ Rn where the minimum

in F is achieved at least twice. Thus we have trop(V (f)) = V (trop(f)).

We can also define tropical hypersurfaces in terms of initial forms.

8



The initial form for f is

inwww(f) =


u:ν(cuuu)+uuu·www
=trop(f)(www)

t−ν(cu)cuuux
uuu.

Now we can introduce the following theorem.

Theorem 2.1.3 ([MS] Theorem 3.1.3 (Kapranov’s theorem)). Let f =


u∈Zn cuuux
uuu be a Laurent

polynomial in K[x±1
1 , . . . x±1

n ]. Then the following sets coincide:

a) the tropical hypersurface trop(V (f)) ∈ Rn

b) the closure in Rn of the set of www ∈ Γn
ν for which inwww(f) is not a monomial.

c) the closure in Rn of {(ν(y1), . . . , ν(yn)) : (y1, . . . , yn) ∈ V (f)}.

Now we are ready to move from tropical hypersurfaces to tropical varieties.

Definition 2.1.4 ([MS] Definition 3.2.1). Let I be an ideal in the Laurent polynomial ring and

K[x±1
1 , . . . x±1

n ] let X = V (I) be the variety defined by this ideal in the algebraic n-torus. The

tropicalization trop(X) of the variety X is the intersection of all tropical hypersurfaces defined by

Laurent polynomials in the ideal I. That is,

trop(X) =

f∈I

trop(V (f)) ⊆ Rn.

In fact, it is enough if we take the intersection of a finite number of hypersurfaces. For this

we need to define tropical basis. The tropical basis is an analogue to universal Gröbner basis for

K[x±1
1 , . . . x±1

n ].

Definition 2.1.5 ([MS] Definition 2.6.4). Let I be an ideal in the Laurent polynomial ring K[x±1
1 , . . . x±1

n ]

over a valued field K. A finite generating set T of I is said to be a tropical basis for I if for all weight

vectors www ∈ Γn
val, the initial ideal inwww(I) contains a unit if and only if inwww(T ) = {inwww(f) : f ∈ T }

contains a unit.

Example 2.1.6. Consider the ideal I = ⟨x+ y+1, x+2y⟩ in K[x±1, y±1], where K = C{{t}} - the

field of Puiseux series with the usual valuation on it. Then the following set is a tropical basis for I:

T = {x+ y + 1, x+ 2y, y − 1}.

Theorem 2.1.7 ([MS] Theorem 2.6.5). Every ideal I in the Laurent polynomial ring K[x±1
1 , . . . x±1

n ]

has a finite tropical basis T .

9



Corollary 2.1.8 ([MS]Corollary 3.2.3). Let T be a tropical basis of the ideal I then

trop(X) =

f∈T

trop(V (f)).

Now we can introduce a generalization of Kapranov’s theorem to arbitrary tropical varieties.

Theorem 2.1.9 ([MS] Theorem 3.2.5 (Fundamental Theorem of Tropical Algebraic Geometry)).

Let I is an ideal in the Laurent polynomial ring K[x±1
1 , . . . x±1

n ] and X = V (I) is a subvariety of the

algebraic n-torus (K∗)n. Then the following sets coincide:

a) the tropical variety trop(X)) ∈ Rn

b) the closure in Rn of the set of www ∈ Γn
ν for which 1 ̸∈ inwww(I)

c) the closure in Rn of {(ν(y1), . . . , ν(yn)) : (y1, . . . , yn) ∈ X}.

Next we introduce the Structure Theorem for tropical varieties. We would first need to define

the following two concepts. Let Σ ∈ Rn be a one-dimensional rational fan with s rays and uuui be the

first lattice point on the i-th ray of Σ. Then we can assign a positive integer weight mi ∈ N to the

i-th ray of Σ, turning Σ into a weighted fan. We say that the fan Σ is balanced if

miuuui = 0.

Theorem 2.1.10 ([MS] Theorem 3.3.6 (Structure Theorem for Tropical Varieties)). Let X be an

irreducible subvariety of the n-torus Tn of dimension d. Then trop(X) is the support of a balanced

weighted Γν-rational polyhedral complex pure of dimension d. Moreover, that polyhedral complex is

connected through codimension one.

Thus every topical variety comes with a set of multiplicities. Note that if f = x + y + 1 and

g = x3 + y3 + 1, then points of the tropicalizations of V (f) and V (g) are the same but these two

tropical hypersurfaces have different multiplicities.

Definition 2.1.11 ([MS] Definition 3.4.3.). Let I be an ideal in K[x±1
1 , . . . x±1

n ]. Let Σ be a polyhedral

complex with support trop(V (I)) such that inwww(I) is constant for www ∈ relint(σ) for all σ ∈ Σ. For

a polyhedron σ ∈ Σ maximal with respect to inclusion, the multiplicity mult(www) is defined by

mult(σ) =

P

mult(P, inwww(I)),

where the sum runs over the minimal associate primes of inwww(I) and mult(P, inwww(I)) is the multi-

plicity of the associated primary component.
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Finally we recall a result about tropical hypersurfaces in the case when the valuation of the

coefficients of the defining Laurent polynomial f are all 0.

Proposition 2.1.12 ([MS] Proposition 3.1.10). Let f ∈ K[x±1
1 , . . . x±1

n ] be a Laurent polynomial

whose coefficients all have valuation zero. Then the tropical hypersurface trop(V (f)) is the support

of an (n − 1)-dimensional polyhedral fan in Rn. That fan is the (n − 1)-skeleton of the normal fan

to the Newton polytope of f .

2.2 Scheme Theoretic Tropicalization

We proceed with the construction of semiring schemes and in particular tropical schemes, as intro-

duced in [GG13]. We recall that a semiring is a set with two binary operations, which satisfy the

ring axioms except invertibility of addition.

For a semiring A we can define the prime (ideal) spectrum of A in the usual way. Ideals and

modules of semirings are defined analogously to those of rings. An ideal of A is prime if it is proper

and if its complement is closed under multiplication. We can define localization by (the complement

of) a prime ideal p, which is denoted as usual by Ap. The set of prime ideals SpecA is equipped

with the Zariski topology. Analogously to the classical situation, closed sets are the collections

of primes containing a certain ideal. We have the usual base for the topology of affine open sets

D(f) = {p| f ̸∈ p}, for p ∈ SpecA. The structure sheaf OSpecA is defined analogously to classical

affine schemes.

An affine scheme over a semiring algebra Q is a pair (X,O) where X is topological space and O

is a sheaf of Q-algebras where the pair (X,O) is isomorphic to a pair of the form (SpecA,OSpec(A)).

A general Q-scheme is a pair that is locally affine. If Q is a ring, this definition gives back the usual

definition for schemes.

Defining closed subschemes in the case of semiring schemes is different from the classical case.

If R is a ring and the corresponding affine scheme SpecR, then Spec(R/I) is a closed subscheme

for some ideal I ⊂ R. However as previously noted, in the case when A is a semiring, there is no

bijection between ideals and congruences. To obtain a semiring subscheme of SpecA one needs to

consider the quotient A/C, where C is a congruence on A.

A priori tropical varieties do not have scheme structure. A tropical schemes associated to a

classical variety X is denoted by T rop(X).To talk about scheme theoretic tropicalization we need

the following definition.

11



Definition 2.2.1 (adapted from [GG13] Definition 5.1.1). Let S be an idempotent semiring and

f ∈ S[xxx]. For a in the support of f denoted by supp(f), we write fâ for the result of deleting the a

term from f . Then the bend relations of f are

{f ∼ fâ}a∈supp(f).

The S-module congruence on S[xxx] generated by the bend relations of f is denoted by B(f) and

the S-module congruence generated by the bend relations for every f ∈ J for an ideal J ∈ S[xxx] is

denoted by B(J).

Let J be an ideal of K[xxx], where K is a valued field with valuation ν : K → T. We will denote

by ν(f) the coefficient-wise valuation of a polynomial f , making ν(f) a polynomial in T. We would

not denote it by trop(f) to emphasize that we are interested in the resulting polynomial not the

function.

Let I be an ideal of K[x±1], where K a valued field with valuation ν : K → T. We will denote

by Bend(I) the congruence generated by the bend relations of the coefficient-wise valuations of all

elements of I, that is the congruence generated by bend relations of ν(f), for every f ∈ I. For

f ∈ K[x±1] we will denote by Bend(f) the congruence generated by the bend relations of ν(f).

Remark 2.2.2. Let J be an ideal of K[xxx], where K is a valued field with valuation ν : K → T.

It is important to note that if J is generated by the finite set of polynomials {f1, . . . , fn} then the

bend relations of ν(fi), 1 ≤ i ≤ n do not generate Bend(J) even in the case when J is a principal

ideal. This is best illustrated by the following example.

Example 2.2.3 (adapted from [GG13] Example 8.1.1.). Let f = x2+xy+y2 ∈ k[x, y], where k is a

valued field with valuation ν : k → T. Denote by J the ideal generated by f . The bend congruence

Bend(J) is strictly larger than the congruence generated by the bend relations of ν(f), namely

Bend(f), where ν(f) is the tropical polynomial max{ν(cuuu) + uuu · xxx}. The congruence Bend(f) is

generated by the degree 2 relations

x2 + y2 ∼ x2 + xy ∼ xy + y2.

The degree 3 part is generated by the bend relations of the polynomials x3 + x2y + xy2 and x2y +

xy2 + y3. Any nontrivial degree 3 relation in Bend(f). involves only polynomials with at least 2

terms. However, (x− y)f ∈ J and (x− y)f = x3− y3, and this gives the degree 3 monomial relation

in Bend(J), namely x3 ∼ y3, which is clearly not in Bend(f).
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Now we are ready to define scheme-theoretic tropicalization and tropical schemes. Let X be

a closed affine scheme defined by an ideal I over a valued field k and let ν : k → T be a non-

Archimedian valuation. Then the scheme theoretic tropicalization of X is defined to be T rop(X) =

Spec T[xxx]/Bend(I). This construction can be globalized. The tropicalization construction commutes

with monomial localizations (cf. [GG13] Lemma 6.1.5.) and affine pieces can be patched together.

Now, for a scheme X over a valued field k we have that T rop(X)(T) = trop(X).

One can determine the multiplicities from the tropical scheme.

Theorem 2.2.4 ([MR14] (part of) Theorem 1.2). Let K be a valued field with a valuation ν : K → T

and Y a subscheme of the n-torus (K∗)
n
defined by an ideal I ⊂ K[x±1

1 , . . . x±1
n ], then any of the

following sets determines the others:

a) The congruence Bend(I), generated by the bend relations of coefficient-wise valuations of all

polynomials of I.

b) The ideal trop(I) ⊂ T[x±1
1 , . . . x±1

n ], where trop(I) = ⟨ν(f) = max{ν(cuuu) + uuu · xxx} : f ∈ I⟩.

Roughly speaking, we can recover the multiplicities of the tropical variety from the tropical

scheme because tropicalization commutes with initial forms. (cf. [MR14] Lemma 3.3, 3.4)
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3

Congruences

In this chapter we discuss the main building blocks for our framework - congruences. In the case of

idempotent semirings congruences are a more natural object to consider than ideals.

Thus it is only natural to seek a suitable notion of a prime congruence. To define primes we

use a so called twisted product on pairs elements of a congruence. The twisted product of two

ordered pairs (a, b) and (c, d) is the ordered pair (ac + bd, ad + bc). Following this characterization

we define primes to be the congruences that do not contain twisted product of pairs that lie outside

the congruence. We prove that a congruence is prime if and only if it cannot be written as a finite

intersection of primes that strictly contain it and the quotient by it is a cancellative semirings. Thus

the prime congruences exhibit analogous properties as the prime ideals in ring theory and are the

natural choice for defining Krull dimension which is discussed in detail in the next chapter.

In the second part of this chapter we study radical congruences as a natural component in

understanding geometry over semifields. The set Rad(I) is defined as the intersection of all primes

that contain the congruence I. We introduce certain twisted power formulas called generalized

powers for ordered pairs, and show in Theorem 3.2.10 that the elements of a pair are congruent in

Rad(I) precisely when some generalized power of that pair lies in I.

3.1 Prime congruences of semirings

In this paper by a semiring we mean a commutative semiring with multiplicative unit, that is a

nonempty set R with two binary operations (+, ·) satisfying:

(i) (R,+) is a commutative monoid with identity element 0
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(ii) (R, ·) is a commutative monoid with identity element 1

(iii) For any a, b, c ∈ R: a(b+ c) = ab+ ac

(iv) 1 ̸= 0 and a · 0 = 0 for all a ∈ R

A semifield is a semiring in which all nonzero elements have multiplicative inverse. We will denote

by B the semifield with two elements {1, 0}, where 1 is the multiplicative identity, 0 is the additive

identity and 1 + 1 = 1. The tropical semifield T - sometimes also denoted by Rmax - is defined on

the set {−∞} ∪ R, by setting the + operation to be the usual maximum and the · operation to

be the usual addition, with −∞ playing the role of the 0 element. In this paper we will use the

exponential notation tc, c ∈ R for the elements of T, allowing us to write 1 = t0 for the multiplicative

identity element and 0 for the additive identity element. The semifield Zmax is just the subsemifield

of integers in T.

A polynomial (resp. Laurent polynomial) ring with variables xxx = (x1, . . . , xk) over a semifield F

is the semiring, denoted by F [xxx] (resp. F (xxx)), whose elements are formal linear combinations of the

monomials {xn1
1 ...xnk

k | ni ∈ N} (resp. {xn1
1 ...xnk

k | ni ∈ Z}) with coefficients in F , with addition

and multiplication being defined in the usual way. For an integer vector nnn = (n1, . . . , nk) we will

use the notation xxxnnn = xn1
1 ...xnk

k .

As usual, an ideal in the semiring R is just a subsemiring that is closed under multiplication by

any element of R. Congruences of semirings are just operation preserving equivalence relations.

Definition 3.1.1. A congruence I of the semiring R is a subset of R×R satisfying

(C1) For a ∈ R, (a, a) ∈ I

(C2) (a, b) ∈ I if and only if (b, a) ∈ I

(C3) If (a, b) ∈ I and (b, c) ∈ I then (a, c) ∈ I

(C4) If (a, b) ∈ I and (c, d) ∈ I then (a+ c, b+ d) ∈ I

(C5) If (a, b) ∈ I and (c, d) ∈ I then (ac, bd) ∈ I

The unique smallest congruence is the diagonal of R × R which is denoted by ∆, also called

the trivial congruence. In commutative algebra it corresponds to the zero ideal. R × R itself is the

improper congruence the rest of the congruences are called proper.

If I is an ideal and we denote by CI the congruence generated by the pairs (a, 0), for every

a ∈ I. Quotients by congruences can be considered in the usual sense, the quotient semiring of R
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by the congruence I is denoted by R/I. Recall that in commutative algebra for an ideal I then

R/I := R/CI .

The kernel of a congruence is just the equivalence class of the 0 element. For a congruence

C ⊆ R×R

Ker(C) = {a ∈ R|(a, 0) ∈ C}.

The kernel of a congruence is always an ideal, and when we say that the kernel of a congruence is

generated by some elements, we will mean it is generated as an ideal by those elements. We will say

that the kernel of a congruence is trivial if it equals {0}.

In an idempotent semiring we have

(a+ b, 0) ∈ C ⇒ (a, 0) ∈ C.

So whenever (a+b) ∈ Ker(C) we also have a ∈ Ker(C) and b ∈ Ker(C). Ideals with these property

are called saturated. Note that every saturated ideal is the kernel of a congruence. In general the

congruence CI is bigger than the set {(a, 0),∀a ∈ I}. The smallest saturated ideal Is that contains

I for which CI = CIs = {(a, 0),∀a ∈ Is} is the saturated closure of I. The following is an example

of I ⊊ Is,

Example 3.1.2. Consider the ideal I = ⟨x+1⟩ ∈ B[x] is clearly a proper ideal, but CI is improper

and Is = B[x].

In general Ker(C) contains little information about the congruence C. Note that kernels do not

determine the congruences, for instance non-trivial congruences can have {0} as their kernel as in

the following example.

Example 3.1.3. Let R = T[x, y] and C = ⟨(x, y)⟩. Ker(C) = {0} but C is a non-trivial congruence

and T[x, y]/C ∼= T[x].

Thus there is no bijection between ideals and congruences as in ring theory.

As usual, if φ : R1 → R2 is a morphism of semirings, and I is a congruence of R2, the preimage

of I is the congruence φ−1(I) = {(α1, α2) ∈ R1 × R1 | (φ(a1), φ(a2)) ∈ I}. By the kernel of a

morphism φ we mean the preimage of the trivial congruence φ−1(∆), it will be denoted by Ker(φ).

If R1 is a subsemiring of R2 then the restriction of a congruence I of R2 to R1 is I|R1 = I ∩R1×R1.

By a B-algebra we simply mean a commutative semiring with idempotent addition (that is

a+a = a,∀a). Throughout this section A denotes an arbitrary B-algebra. Note that the idempotent
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addition defines an ordering via

a ≥ b ⇐⇒ a+ b = b.

Elements of A × A are called pairs. We denote pairs by Greek letters, and denote the coordinates

of the pair α by α1, α2. The twisted product of the pairs α = (α1, α2) and β = (β1, β2) is

αβ = (α1β1 + α2β2, α1β2 + α2β1).

Note that the twisted product is associative and the pairs form a monoid under under this operation,

with the pair (1, 0) being the identity element. For the rest of the paper in any formula containing

pairs the product is always the twisted product, so the twisted product of α and β is simply denoted

by αβ . Similarly αn denotes the twisted n-th power of the pair α, and we use the convention

α0 = (1, 0). The product of two congruences I and J is defined as the congruence generated by the set

{αβ | α ∈ I β ∈ J}. For an element a and a pair α we define their product as a(α1, α2) = (aα1, aα2)

which is the same as the twisted product (a, 0)α.

The following elementary properties of congruences play an important role,

Proposition 3.1.4. Let I be a congruence of A,

(i) For α ∈ I and an arbitrary pair β we have αβ ∈ I.

(ii) For any two congruences I and J we have IJ ⊆ I ∩ J .

(iii) If (a, b) ∈ I and a ≤ c ≤ b then (a, c) ∈ I and (b, c) ∈ I. In particular if (a, 0) ∈ I then for

every a ≥ c we have (c, 0) ∈ I.

Proof. (i) follows immediately from the definition of a congruence and (ii) follows from (i). For (iii)

consider that in A/I we have that

a = b⇒ c = a+ c = b+ c = b = a.

Proposition 3.1.4 has the following important consequence:

Proposition 3.1.5. If F is an additively idempotent semifield then every proper congruence in the

semiring of Laurent polynomials F (x1, . . . , xn) has a trivial kernel.
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Proof. If f ∈ F (x1, . . . , xn) is in the kernel of a proper congruence I then by (ii) of Proposition 3.1.4

we also have that every monomial that appears in f is in the kernel of I. On the other hand every

monomial in a Laurent semiring over a semifield has multiplicative inverse. Hence if a monomial is

in the kernel of a congruence I then so is the multiplicative identity of F (x1, . . . , xn), which implies

that I is improper.

One can readily show that for usual commutative rings, an ideal is prime if and only if the

corresponding congruence does not contain twisted products of pairs lying outside. In particular, if

P is an ideal of a commutative ring and CP is the congruence with kernel P , then P is prime if and

only if whenever αβ ∈ CP either α ∈ CP or β ∈ CP . This can be verified by checking that

αβ ∈ CP ⇔ ((α1 − α2)(β1 − β2), 0) ∈ CP ⇔ (α1 − α2)(β1 − β2) ∈ P.

This observation motivates the following definition.

Definition 3.1.6. We call a congruence P of a B-algebra A prime if it is proper and for every

α, β ∈ A × A such that αβ ∈ P either α ∈ P or β ∈ P . We call a B-algebra a domain if its trivial

congruence is prime.

We define dimension similarly to the Krull-dimension in ring theory:

Definition 3.1.7. By dimension of a B-algebra A we will mean the length of the longest chain

of prime congruences in A × A (where by length we mean the number of strict inclusions). The

dimension of A will be denoted by dim(A).

Remark 3.1.8. For the above definition to make sense one needs to verify that every B-algebra A

has at least one prime congruence. Indeed it is a known fact that B is the only simple B-algebra

(i.e. the only proper congruence is the trivial one). Hence by the usual Zorn’s lemma argument we

see that every B-algebra has a proper congruence with quotient B, and it follows from the definition

that such a congruence is prime.

For the sake of completeness we provide a short proof of the above fact:

Proposition 3.1.9. The only simple B-algebra is B.

Proof. First assume that A is a B-algebra without zero-divisors. Then the map φ : A → B defined

as φ(x) = 1 for x ̸= 0 and φ(0) = 0 is a homomorphism of B-algebras. Hence Ker(φ) is a proper

congruence of A, which can only be trivial when A ≃ B. Now assume that there are - not necessarily
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distinct - non-zero elements x, y ∈ A such that xy = 0. Let I be the congruence generated by the

pair (x, 0). It follows from Lemma 3.2.8 that (α1, α2) ∈ I if and only if there is an r ∈ A, such that

α1 + rx = α2 + rx. Now we claim that (1, 0) /∈ I. Indeed otherwise there would be an r ∈ A such

that 1 + rx = rx and multiplying both sides by y we would get y = 0, a contradiction. Hence I is a

non-trivial proper congruence of A.

The above Proposition can be reformulated in the following way.

Proposition 3.1.10. (i) Every B-algebra maps surjectively onto B.

(ii) The only B-algebra that is a domain and has dimension 0 is B.

A congruence is called irreducible if it can not be obtained as the intersection of two strictly

larger congruences.

Proposition 3.1.11. If a congruence is prime then it is irreducible.

Proof. Indeed if P is the intersection of the strictly larger congruences I and J , then take α ∈ I \P

and β ∈ J \ P . Now by part (i) of Proposition 3.1.4 we have that αβ ∈ I ∩ J = P so P can not be

prime.

A B-algebra A is called cancellative if whenever ab = ac for some a, b, c ∈ A then either a = 0 or

b = c. The annihilator of a pair α is defined as AnnA(α) = {β ∈ A×A | αβ ∈ ∆}. AnnA(α) satisfies

the axioms (C1)-(C2) and (C4)-(C5) of a congruence but in general it is not transitive, consider the

following example:

Example 3.1.12. Let A be the algebra B[x, y]/⟨(y, y2)⟩. Then it is easy to check that (y, x +

1), (y, 1) ∈ AnnA((x, x+ y)) but (1, x+ 1) /∈ AnnA((x, x+ y)).

The annihilator of an element a ∈ A is defined as the annihilator of the pair (a, 0) and is also

denoted by AnnA(a). It is easy to verify the following properties:

Proposition 3.1.13. (i) For any a ∈ A, AnnA(a) = {β ∈ A × A | aβ1 = aβ2}, moreover

AnnA(a) is a congruence.

(ii) A is cancellative if and only if for every element a ̸= 0 we have AnnA(a) = ∆, and a domain

if and only if for every pair α /∈ ∆ we have AnnA(α) = ∆.

(iii) For a congruence I the quotient A/I is cancellative if and only if for every element a and pair

α such that (a, 0)α ∈ I either (a, 0) ∈ I or α ∈ I.
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(iv) If P is a prime congruence, then A/P is cancellative.

(v) If P is a prime congruence of A1, φ : A2 → A1 is a morphism of B-algebras and A3 is a

subalgebra of A1, then φ
−1(P ) and P |A3

are prime congruences.

We will call a B algebra totally ordered if its addition induces a total ordering. The next propo-

sition shows that B algebras which are domains are always totally ordered.

Proposition 3.1.14. (i) An B-algebra that is a domain is totally ordered.

(ii) If a B-algebra A is totally ordered then the trivial congruence of A is prime if and only if A is

cancellative.

Proof. For (i) let A be a B-algebra which is a domain and x, y ∈ A two arbitrary elements. We have

that

(x+ y, x)(x+ y, y) = (x2 + y2 + xy, x2 + y2 + xy) ∈ ∆.

Since the trivial congruence is prime either (x + y, x) ∈ ∆ or (x + y, y) ∈ ∆, so indeed at least

one of x ≥ y or y ≥ x hold. For (ii) one direction is clear by (iv) of Proposition 3.1.13. For the

other direction assume that A is a totally ordered and cancellative. Let α, β be two pairs satisfying

αβ ∈ ∆. We can assume that α1 ≥ α2, β1 ≥ β2 and α1β2 ≥ α2β1. Now we have that

αβ = (α1β1 + α2β2, α1β2 + α2β1) = (α1β1, α1β2) ∈ ∆.

Then since A is cancellative either β ∈ ∆ or (α1, 0) ∈ ∆ which, by α1 ≥ α2 implies α1 = α2 = 0 so

α ∈ ∆.

A congruence I for which A/I is cancellative will be called quotient cancellative or QC for

short. The main result of this section shows that QC congruences are prime if and only if they are

irreducible.

Lemma 3.1.15. Let A be a cancellative B-algebra, and α ∈ A×A a pair. If for some integer n > 0

we have αn ∈ ∆ then α ∈ ∆.

Proof. First let us assume α2 ∈ ∆. It follows that α2
1 + α2

2 = α1α2, and then

α2
1α2 = α3

1 + α1α
2
2 ≥ α1α

2
2

and similarly α1α
2
2 ≥ α2

1α2 so we have that α2
1α2 = α1α

2
2. Now by cancellativity either α1 or α2 is 0

but then since α2 = 0 both are 0, or neither is 0 and then after dividing by α1α2 we obtain α1 = α2.
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Now in the general case if αn ∈ ∆ then every power of α greater than n is in ∆, in particular for

some k we have α2k ∈ ∆ and we are done by applying the first half of the argument.

Lemma 3.1.16. Let A be a cancellative B-algebra, then for any pair α ∈ A×A the set AnnA(α) is

a congruence.

Proof. If α ∈ ∆ then AnnA(α) = A × A, which is a congruence. Assume now that α /∈ ∆. The

axioms (C1),(C2),(C4) and (C5) are easy to verify. For transitivity consider some pairs (x, y) and

(y, z) for which we have (x, y)α ∈ ∆ and (y, z)α ∈ ∆. Since α /∈ ∆ and A is cancellative we can

assume that none of x, y, z is 0. We will show that

β := (y + z, 0)(x, z)α = ((y + z)x, (y + z)z)α ∈ ∆

and since y + z non zero this will imply (x, z)α ∈ ∆. Expanding the above we obtain:

(β1, β2) = ((y + z)x, (y + z)z)(α1, α2) = (yxα1 + yzα2 + zxα1 + z2α2, yxα2 + yzα1 + zxα2 + z2α1)

By symmetry it suffices to show that β1 ≥ β2 (with respect to the ordering that comes from the

idempotent addition). We have that β1 ≥ z(yα2 + xα1) and since (x, y)α ∈ ∆ we obtain

β1 = yxα1 + yzα2 + zxα1 + z2α2 + zxα2 + zyα1

Now we have z(zα2 + yα1) amongst the terms, using (y, z)α ∈ ∆ we get:

β1 = yxα1 + yzα2 + zxα1 + z2α2 + zxα2 + zyα1 + z2α1 + zyα2

We obtained β1 ≥ x(yα1 + zα2), using (y, z)α ∈ ∆ again we get:

β1 = yxα1 + yzα2 + zxα1 + z2α2 + zxα2 + zyα1 + z2α1 + zyα2 + xzα1 + xyα2

and finally from β1 ≥ z(xα1 + yβ2) and (x, y)α ∈ ∆ we obtain:

β1 = yxα1 + yzα2 + zxα1 + z2α2 + zxα2 + zyα1 + z2α1 + zyα2 + xzα1 + xyα2 + zyα1 + zxα2

which is indeed bigger than β2, which is the sum of the 5th, 7th, 10th and 11th terms. Hence

AnnA(α) is a congruence.
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Theorem 3.1.17. Let A be a B-algebra. A congruence I is prime if and only if it is QC and

irreducible.

Proof. It follows from Proposition 3.1.11 and Proposition 3.1.13 that prime congruences are QC and

irreducible. For the other direction, taking the quotient by I, we can assume that I = ∆ is QC

and irreducible (so A itself is cancellative). Note that this can be done because all three properties

depend on the quotient of the congruence. If ∆ is not prime there exists an element α /∈ ∆ such that

AnnA(α) ̸= ∆. By the previous lemma AnnA(α) is a congruence. Let Q =


β∈AnnA(α)AnnA(β).

Q is a congruence (as it is an intersection of congruences), and since α ∈ Q we have ∆ ⊊ Q. Clearly

AnnA(α)Q = ∆, we claim that AnnA(α)∩Q = ∆. Otherwise suppose that β ∈ (AnnA(α)∩Q) \∆,

since AnnA(α)Q = ∆ we have that β2 ∈ ∆, and then by Lemma 3.1.15 we have β ∈ ∆ completing

the proof.

3.2 Radicals of congruences

Our next objective is to establish the notion of radicals of congruences and provide a similar algebraic

description to the one in ring theory.

Definition 3.2.1. The radical of a congruence I is the intersection of all prime congruences con-

taining I. It is denoted by Rad(I). A congruence I is called a radical congruence if Rad(I) = I.

Let us introduce the following notation: for a pair α, let α∗ = (α1 + α2, 0). It is easy to verify

the following proposition:

Proposition 3.2.2. Let α, β ∈ A pairs from the B-algebra A,

(i) (αβ)∗ = α∗β∗

(ii) ((αβ)∗)k = ((αβ)k)∗

(iii) If α∗ ∈ ∆ then α ∈ ∆.

Now we will define a property for pairs in A×A that is analogous to nilpotency from ring theory.

The aim of this section is to show that the pairs contained in every prime congruence are precisely

the nilpotent ones. A natural first guess would be to define the pair α to be nilpotent if αn ∈ ∆

for some n. Indeed, in the case of commutative rings, one could characterize the congruence with

kernel the nilradical in this fashion. However as shown by the following example these pairs do not

even form a congruence in the case of B-algebras:
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Example 3.2.3. In the three variable polynomial semiring B[x1, x2, x3] take the congruence I =

⟨(x1, x2)2, (x2, x3)2⟩. Since (x1, x2)
2 = (x21 + x22, x1x2) and (x2, x3)

2 = (x22 + x23, x2x3) one easily

verifies that any pair in I \∆ will need to contain a monomial divisible by x2 on both sides, hence

we have (x1, x3)
k /∈ I for any k > 0. It follows that in the quotient B[x1, x2, x3]/I the pairs α that

satisfy αk ∈ ∆ for some k do not form a congruence, since otherwise (x1, x3) would have to be

amongst them by transitivity.

Looking for a parallel with congruences in commutative algebra, we arrive at the following easy

observation. If I is an ideal, Rad(I) its radical and CI , CRad(I) be the corresponding congruences

(with kernels I and Rad(I) respectively), then we have (a, b) ∈ CRad(I) if and only if for a large

enough n (a, b)n ∈ CI , where (a, b)n denotes the twisted n-th power. This follows from (a, b)n ∈

CI ⇔ ((a − b)n, 0) ∈ CI . For semirings the situation is somewhat more complicated, as illustrated

by the following example.

Example 3.2.4. Consider the congruence C = ⟨(x2, y2)⟩ in T[x, y]. Let P be a prime congruence

lying over C then we have

(x2 + xy, y2 + xy) ∈ P, hence

(x+ y, 0)(x, y) ∈ P

It follows that either (x, y) ∈ P or (x+y, 0) ∈ P . On the other hand if (x+y, 0) ∈ P then (x, 0) ∈ P

and (y, 0) ∈ P so again (x, y) ∈ P . It follows that (x, y) ∈ Rad(C). However (x, y)n is not in C for

any n.

To remedy these problems we will introduce some formulas, motivated by the above example,

called generalized powers of pairs that will turn out to have the desired properties.

Definition 3.2.5. For a pair α from the B-algebra A, the generalized powers of α are the pairs of

the form (α∗k + (c, 0))αl where k, l are non-negative integers, and c ∈ A an arbitrary element. The

set of generalized powers of α is denoted by GP (α). A pair α is called nilpotent if GP (α) ∩∆ ̸= ∅.

Proposition 3.2.6. For an arbitrary pair α the set GP (α) is closed under twisted product. Moreover

if β ∈ GP (α) then GP (β) ⊆ GP (α).

Proof. Both claims follow directly from the definition and Proposition 3.2.2.

One can immediately show the following:

Proposition 3.2.7. The nilpotent pairs are contained in every prime congruence.
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Proof. Indeed if (α∗k+(c, 0))αl ∈ ∆ then for any prime congruence P we have that (α∗k+(c, 0))αl ∈

P , which implies that either α ∈ P or (α∗k + (c, 0)) ∈ P . Moreover if (α∗k + (c, 0)) ∈ P then by

(ii) in Proposition 3.1.4 we have that α∗k ∈ P and by Proposition 3.2.2 α∗ = (α1 + α2, 0) ∈ P , now

applying (i) from Proposition 3.1.4 we get that (α1, 0) ∈ P and (α2, 0) ∈ P so α ∈ P .

Now we prepare to show that the reverse implication holds as well. We need the following two

lemmas:

Lemma 3.2.8. Let x ∈ A be an arbitrary element and I = ⟨(x, 0)⟩. Then (y, z) ∈ I if and only if

there exist an r ∈ A such that y + rx = z + rx.

Proof. Let J be the set of pairs (y, z) such that there exist an r ∈ A such that y+rx = z+rx. Clearly

(x, 0) ∈ J and J ⊆ I, so it is enough to show that J is a congruence. C1 and C2 hold trivially. For C3

assume that y+rx = z+rx and z+sx = v+sx, then we have y+(r+s)x = z+(r+s)x = v+(r+s)x

giving us (y, v) ∈ J . For C4 and C5 assume that y+ rx = z+ rx and v+ rx = w+ rx then we have

y+ v+(r+ s)x = v+w+(r+ s)x and yv+(vr+ zs)x = zv+(vr+ zs)x = zw+(vr+ zs)x showing

that both conditions hold.

Lemma 3.2.9. If for some c, x ∈ A and a pair α from A we have that

(α∗ + (c, 0))α ∈ ⟨(x, 0)⟩ ∩Ann(x)

then there exists a b ∈ A such that (α∗3 + (b, 0))α ∈ ∆.

Proof. Since (α∗ + (c, 0))α ∈ ⟨(x, 0)⟩ by Lemma 3.2.8 we have that for some r ∈ A

α2
1 + α1α2 + cα1 + rx = α2

2 + α1α2 + cα2 + rx

Let y = rx. By (α∗ + (c, 0))α ∈ Ann(x) we have that

y(α2
1 + α1α2 + cα1) = y(α2

2 + α1α2 + cα2).

Set b = y(α1 + α2 + c) + c(α1 + α2)
2, and β = (α∗3 + (b, 0))α. After expanding we get:

β1 =

4
i=1

αi
1α

(4−i)
2 + y(α2

1 + α1α2 + cα1) + c(

3
i=1

αi
1α

(3−i)
2 )
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β2 =

4
i=1

αi
2α

(4−i)
1 + y(α2

2 + α1α2 + cα2) + c(

3
i=1

αi
2α

(3−i)
1 )

The terms appearing in β2 but not in β1 are α4
2, yα

2
2, ycα2, cα

3
2. However we have:

β1 ≥ y(α2
1 + α1α2 + cα1) = y(α2

2 + α1α2 + cα2) ≥ yα2
2 + ycα2

It follows that

β2 ≥ α2
2(α

2
1 + α1α2 + cα1 + y) = α2

2(α
2
2 + α1α2 + cα2 + y) ≥ α4

2 + cα3
2

showing us β1 ≥ β2 and by symmetry β1 = β2, so indeed β ∈ ∆.

We are ready to prove:

Theorem 3.2.10. For any congruence I of a B-algebra A, we have that

Rad(I) = {α | GP (α) ∩ I ̸= ∅}.

In particular the intersection of every prime congruence of A is precisely the set of nilpotent pairs.

Proof. Note that the intersection of all prime congruences is Rad(∆). We can reduce to the case

I = ∆ after considering the quotient A/I. Proposition 3.2.7 tells us that the nilpotent elements are

contained in Rad(∆), for the other direction we have to show that for a non-nilpotent pair α there is

a prime congruence P such that α /∈ P . We have that GP (α) ∩∆ = ∅. By Zorn’s lemma there is a

congruence J that is maximal amongst the congruences that are disjoint fromGP (α). If J is prime we

are done. Assume J is not prime, we first show that J is irreducible. Assume the contrary J = K∩L

for some congruences J ⊊ K,L. Then the maximality of J implies that there exists a β ∈ K∩GP (α)

and a γ ∈ L∩GP (α), but then βγ ∈ L∩K ∩GP (α) = J ∩GP (α) a contradiction. So J is not prime

but irreducible, then it follows from Theorem 3.1.17 that J is not QC. Thus there exists a non-zero

x ∈ A/J such that AnnA/J(x) ⊃ ∆A/J . Let K be the congruence generated by (x, 0) in A/J . Again

by maximality, we have that every non-trivial congruence in A/J contains some element of GP (α),

so in particular for some k, l, c we have an element (α∗k+(c, 0))αl ∈ GP (α)∩AnnA/J(x)∩K. After

multiplying with some power of α∗ or α (depending on which of k or l is larger) we can assume that

k = l. Now we can apply Lemma 3.2.9 for the pair αk and the semiring A/J and obtain that for

some b we have (α∗3k + (b, 0))αk ∈ J contradicting GP (α) ∩ J = ∅.
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We conclude this section by a list of corollaries of the above theorem.

Proposition 3.2.11. QC congruences are radical congruences.

Proof. By considering the appropriate quotients it is enough to prove the theorem for the case

when the congruence is the trivial congruence. We have to show that if for some pair α we have

GP (α) ∩ ∆ ̸= ∅ then α ∈ ∆. Suppose that for some k, l we have (α∗k + (c, 0))αl ∈ ∆. Then by

cancellativity either αl ∈ ∆ and then by Lemma 3.1.15 α ∈ ∆, or (α∗k + (c, 0)) ∈ ∆ and then from

Proposition 3.1.4 it follows that α∗k ∈ ∆ which in turn by Proposition 3.2.2 implies that αk ∈ ∆,

and finally by Lemma 3.1.15 that α ∈ ∆.

Let us denote by AnnA(α) the set {β | GP (αβ) ∩∆ ̸= ∅}.

Proposition 3.2.12. Let A be an arbitrary B-algebra and α ∈ A×A a pair.

(i) AnnA(α) is the intersection of all prime congruences not containing α (where by empty inter-

section we mean the full set A×A), in particular AnnA(α) is a congruence.

(ii) If ∆ is a radical congruence then AnnA(α) = AnnA(α), in particular AnnA(α) is a congruence.

Proof. First let β ∈ AnnA(α). Then by Theorem 3.2.10, we have that αβ ∈ Rad(∆) =


P prime P ,

so by the prime property every prime that does not contain α needs to contain β. For the other

direction let β be an element of every prime congruence that does not contain α, then αβ is contained

in every prime and by Theorem 3.2.10 GP (αβ) ∩∆ ̸= ∅. The second half of the statement follows

from the fact that if ∆ is a radical congruence then GP (αβ) ∩∆ ̸= ∅ implies αβ ∈ ∆.

While it might appear that Proposition 3.2.12 provides a simpler proof for Lemma 3.1.16 and

Theorem 3.1.17, but we remind the reader that Theorem 3.1.17 was used in the proof of Theorem

3.2.10 which in turn we used to prove Proposition 3.2.12.

Proposition 3.2.13. A congruence is prime if and only if it is radical and irreducible.

Proof. Prime congruences are radical by definition and irreducible by Proposition 3.1.11. For the

other direction we can argue the same way as in the proof of Theorem 3.1.17, except that this time

β2 ∈ ∆ implies β ∈ ∆ simply by the definition of a radical congruence.

3.3 Semialgebras satisfying the ACC

While most of the algebras in this thesis do not satisfy the ascending chain condition (ACC) for

congruences, we make a few remarks about the ones that do satisfy it. Firstly, we have the following
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statement from ring theory that holds in this setting. The argument for it is essentially the same as

in the classical case.

Proposition 3.3.1. Let A be a B-algebra with no infinite ascending chain of radical congruences.

Then over every congruence there are finitely many minimal primes.

Proof. The primes lying over a congruence I are the same as the primes lying over Rad(I), so it is

enough to prove the statement for radical congruences. Assume that there are radical congruences

of A with infinitely many minimal primes lying over them, and let J be a maximal congruence

amongst these. Since J is not prime then by Proposition 3.2.13 it is the intersection of two strictly

larger congruences K and L. Then every prime containing J contains at least one of K and L so the

minimal primes lying over J are amongst those that are minimal over K or L and by the maximality

of J there is only finitely many of these.

One can define primary congruences in the following way:

Definition 3.3.2. We will call a congruence I of a B-algebra A primary if {α | ∃β /∈ I : αβ ∈ I} ⊆

Rad(I).

As one would expect this class satisfies the following property:

Proposition 3.3.3. The radical of a primary congruence is a prime congruence.

Proof. Let Q be a primary congruence, assume that Rad(Q) is not prime. Then we have α, β /∈

Rad(Q) such that αβ ∈ Rad(Q). Then for some k, l we have ((αβ)∗
k
+ (c, 0))(αβ)l ∈ Q. Now since

GP (αl) ⊆ GP (α), neither αl nor βl can be in Rad(Q) so by the primary property we have that

((αβ)∗
k
+(c, 0)) ∈ Q implying (αβ)∗

k ∈ Q. Since (αβ)∗
k
= (α∗)

k
(β∗)

k
, this means that at least one

of α∗, β∗ is nilpotent in the quotient by Q, but then since GP (α∗) ⊆ GP (α) we have that α or β is

nilpotent, a contradiction.

Unfortunately, there is no general analogue of primary decomposition from commutative algebra.

It is easy to show an example of an irreducible congruence that is not primary in a semiring that

satisfies the ACC.

Example 3.3.4. Consider the 4-element B-algebra A, with set of elements {1, 0, x, y} satisfying the

relations {1 + x = 1, x + y = x, x2 = x, xy = 0, y2 = 0}. It is easy to check that the 3 non-trivial

proper congruences of this algebra are I1 = {(0, y)} I2 = {(0, y), (0, x)} I3 = {(0, y), (1, x)}. We see

that I1 ⊆ I2, I3 so ∆ is irreducible. A/I2 ∼= B and A/I3 ∼= B so I2 and I3 are prime congruences. Also
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we have that (1, x)(x, 0) = (x, x) ∈ ∆, so neither I1 nor the trivial congruence are prime. It follows

that Rad(∆) = I2∩ I3 = I1 and (1, x) /∈ Rad(∆) so ∆ is irreducible but not primary. Also note that

Rad(∆) in this case is not prime so even if one changes the notion of primary congruences, as long

as we require the radical of primaries to be primes this algebra would provide a counterexample to

primary decomposition.
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4

Dimension Theory

Using the definition of prime congruence proposed in the previous chapter we can compute the Krull

dimension of a semiring analogously to commutative ring theory. In this chapter we prove an impor-

tant result, namely that if R is an idempotent semiring of finite dimension, then dimR[x1, . . . , xn] =

dimR[x±1
1 , . . . , x±1

n ] = dimR + n. We note that irreducibility of prime congruences is crucial since

without it most structures (e.g. T[xxx]) will contain infinitely long chains of congruences with can-

cellative quotients.

4.1 Infinite chains of QC congruences

We begin my making a remark justifying our choice for definition a prime congruence in view of

defining Krull dimension.

Remark 4.1.1. The heuristics for defining primes the way we do is that for a commutative ring R

a congruence C ⊂ R × R is prime in our sense if and only if its kernel is a prime ideal in the usual

sense. In the previous chapter we saw that it is also easy to deduce from the definition that every

prime congruence is QC (or equivalently every domain is cancellative) and irreducible. The converse

is also true - but not obvious: in Theorem 3.1.17 it was shown that a congruence of a B-algebra is

prime if and only if it is QC and irreducible. The key difference from ring theory (where the class

of QC and prime congruences coincide) is that a QC congruence does not need to be irreducible

and - as we will see at the end of this section - there are typically much more QC congruences than

primes. To avoid possible confusion we point out that our terminology differs from that of [PR14]

and [PR15], where the authors call every cancellative semiring a domain.
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We mentioned in Remark 4.1.1 that QC congruences do not need to be irreducible. Indeed one

can find several examples of such congruences by considering the following proposition:

Proposition 4.1.2. Let Pi denote the elements of a (possibly infinite) set of prime congruences

with trivial kernels in an B-algebra A. Then

Pi is a QC congruence.

Proof. Assume (xa, xb) ∈

Pi for some x, a, b ∈ A and x ̸= 0. Then (xa, xb) = (x, 0)(a, b) ∈ Pi

for every i. By the assumptions (x, 0) /∈ Pi for any i, hence the prime property implies that

(a, b) ∈

Pi.

Finally we show that the two variable polynomial (or Laurent polynomial) semiring over any B-

algebra contains an infinite ascending chain of QC congruences, hence the class of QC congruences

- without further restrictions - does not yield an interesting notion of Krull-dimension.

Proposition 4.1.3. For a B-algebra A the semirings A[x, y] and A[x±1, y±1] contain infinite as-

cending chains of QC congruences.

Proof. By Proposition 3.1.10, B is a quotient of A, hence it is enough to prove the statement for the

case A = B. We will see in the next chapter that to a non-zero real vector v ∈ R2 one can assign a

(minimal) prime Pv in B[x, y] or B[x±1, y±1] which is generated by the set of pairs

{(xn1yn2 + xm1ym2 , xn1yn2) | v1n1 + v2n2 ≥ v1m1 + v2m2}.

In other words one takes a (possibly not complete) monomial order by scalar multiplying exponent

vectors with a fixed v, and the congruence Pv identifies each polynomial with its leading term. Set

Cn =


k≥n P(k,1). We claim that C1 ⊂ C2 ⊂ . . . is an infinite ascending chain of congruences with

cancellative quotients. Indeed they are QC by Proposition 4.1.2 and are contained in each other by

definition. Moreover the containments are strict since (x+ yj , x) ∈ Pk if and only if k ≥ j.

4.2 Dimension of Laurent polynomial semiring with coeffi-

cients in an idempotent semifield

We will first determine the dimension of the polynomial and Laurent polynomial semiring with

coefficients in a semifield.

We begin by showing that the dimension of the polynomial or Laurent polynomial semirings over

a finite dimensional B-algebra is strictly bigger than the dimension of the underlying B-algebra.
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Proposition 4.2.1. Let A be a B-algebra of finite Krull dimension, then dimA[y±1] ≥ dimA + 1

and dimA[y] ≥ dimA+ 1.

Proof. First assume A is a domain. By Proposition 3.1.14 it is totally ordered with respect to the

order coming from addition. Consider the following total ordering on the set of monomials of A[y±1].

Let a1y
n1 and a2y

n2 be two monomials, then a1y
n1 > a2y

n2 if n1 > n2 or if n1 = n2 and a1 > a2.

Since A is a domain we can always compare the coefficients. This ordering is compatible with the

multiplication on A[y±1].

Consider the congruence generated by (b+ c, c), when c ≥ b, where b, c are monomials of A[y±1].

Denote by D the quotient of A[y±1] by this congruence and let

ϕ : A[y±1] → D,

be the quotient map. Note that D is a domain by Proposition 3.1.14 because it is totally ordered by

construction and is cancellative. The kernel of ϕ is a prime congruence, hence dimA[y±1] ≥ dimD.

Now consider an evaluation morphism

ψ : D → A, y →→ 1.

Note that D/ kerψ = A, hence kerψ is a non-trivial prime congruence of D and thus dimD > dimA.

Hence dimA[y±1] ≥ dimA+ 1.

If A is not a domain, then consider a prime p which is part of a maximal chain for A. Note

that A/p is a domain since p is prime and dimA/p = dimA. Since (A/p)(y) is a quotient of A[y±1]

we have dimA[y±1] ≥ dim(A/p)(y), thus dimA[y±1] ≥ dimA + 1 follows from the first part of the

proof. The proof for the case of the polynomial semiring A[y] is essentially the same.

One can immediately obtain the following:

Proposition 4.2.2. If A is a B-algebra and dimA[y] = 2 (or dimA[y±1] = 2) then dimA = 1.

Proof. By Proposition 4.2.1 dimA[y±1] > dimA (resp. dimA[y] > dimA). Thus dimA = 0 or 1. If

dimA = 0 then by Proposition 3.1.10 A/P = B for any prime P of A. Hence any strictly increasing

chain of primes in A[y±1] maps to a strictly increasing chain of primes in B[y±1], and by Proposition

5.1.7 (ii) we have dimA[y±1] = dimB[y±1] = 1.
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Next, we show that chains of prime congruences of A[y±1] in which all primes have the same

kernel can stabilize at most once when restricted to A. We will need the following two simple

lemmas:

Lemma 4.2.3. Let A be a cancellative B-algebra and a, b, c, d ∈ A such that a > b and c > d, then

ac > bd.

Proof. Clearly ac ≥ ad ≥ bd. If ac = bd, then we have ac = ad, and then by cancellativity c = d or

a = 0 both contradicting our assumptions.

Lemma 4.2.4. Let A be a B-algebra and P be a prime congruence in A× A. If (xn, yn) ∈ P then

(x, y) ∈ P .

Proof. Consider A/P , which is a domain since P is prime. Then we have that xn = yn in A/P . We

want to show that x = y. Assume for contradiction that x ̸= y. Recall that domains are totally

ordered so without loss of generality assume that x > y. Then after applying Lemma 4.2.3 n times

we arrive at a contradiction.

We are ready to prove:

Lemma 4.2.5. Let R be a B-algebra and P1 ⊂ P2 ⊆ P3 ⊂ P4 prime congruences of R[y±1] (resp.

R[y]), satisfying ker(P1) = ker(P2) = ker(P3) = ker(P4). Then at least one of P1|R ⊂ P2|R or

P3|R ⊂ P4|R holds.

Proof. By the assumption there exist two pairs,

(f1, g1) ∈ P2 \ P1, for some f1, g1 ∈ R[y±1] (resp. R[y])

(f2, g2) ∈ P4 \ P3, for some f2, g2 ∈ R[y±1] (resp. R[y])

The quotient by a prime is totally ordered by Proposition 3.1.14, which by the definition of the

ordering means that every sum is identified with at least one of its summands. Hence we may

assume that f1, f2, g1 and g2 are monomials and write the following instead:

(ayk1 , byk2) ∈ P2 \ P1, for some a1, b1 ∈ R

(cym1 , dym2) ∈ P4 \ P3, for some a2, b2 ∈ R,

By the assumption that the kernels of P1,2,3,4 are the same, none of the elements of the above

pairs may be in ker(P1) = · · · = ker(P4), implying that a, b, c, d /∈ ker(P1). It also follows that if

y ∈ ker(P1) then k1 = k2 = m1 = m2 = 0 and the statement follows from (a, b) ∈ P2 \ P1 and

(c, d) ∈ P4 \ P3. For the remainder of the proof we assume that y /∈ ker(P1). Without loss of
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generality we can assume that k1 ≥ k2 and m1 ≥ m2, and set k = k1 − k2 and m = m1 −m2. Since

the quotient by a prime is cancellative and y is not in the kernel of any of P1,2,3,4 it follows that

(ayk, b) ∈ P2 \ P1 and (cym, d) ∈ P4 \ P3.

Thus we have,

(amykm, bm) ∈ P2 ⊂ P4

(ckykm, dk) ∈ P4

Multiplying the first equation with ck the second with am we obtain:

(bmck, dkam) ∈ P4

as P3|R = P4|R we also have

(bmck, dkam) ∈ P3

Multiplying by ykm

(bmckykm, dkamykm) ∈ P3

But we also know that

(amykm, bm) ∈ P2 ⊆ P3

So from the above two we obtain that

(bmckykm, dkbm) ∈ P3 (4.2.1)

Now since b /∈ ker(P3) we also have that bm ∈ ker(P3), since P3 is prime implying that its quotient

is cancellative. Thus we obtain:

(ckykm, dk) ∈ P3

But then by Lemma 4.2.4

(cym, d) ∈ P3

a contradiction.

Proposition 4.2.6. (i) If p1 ⊂ p2 ⊂ . . . is a chain of primes in R[y±1] or R[y] such that the

kernel of every pi is the same, then after restricting the chain to A, in p1|R ⊆ p2|R . . . equality
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occurs at most once.

(ii) For an additively idempotent semifield F we have dimF [x±1
1 , . . . , x±1

n ] = dimF + n.

Proof. For (i), assume for contradiction that equality occurs at least twice, say pi|R = pi+1|R and

pj |R = pj+1|R with i+ 1 ≤ j. Then by setting P1 = pi, P2 = pi+1, P3 = pj and P4 = pj+1 we arrive

at contradiction with Lemma 4.2.5. (ii) follows by induction from (i) and Proposition 3.1.5 which

asserts that in F [x±1
1 , . . . , x±1

n ] the kernel of every congruence is trivial.

4.3 Dimension of polynomial semiring with coefficients in an

idempotent semiring

We will prove the general result by reducing to the previous case. We will prove the statement first

in the case when the coefficients of the polynomial or Laurent polynomial semiring lie in a domain.

Then we recall that the quotient of A by a prime congruence P is a domain and that we can relate

the dimension of the quotient A/P to the dimension of the original semiring A.

We recall that a cancellative semiring R embeds into its semifield of fractions Frac(R). The

elements of Frac(R) are the equivalence classes in R× (R \ {0}) of the relation (r1, s1) ∼ (r2, s2) ⇔

r1s2 = r2s1, with operations (r1, s1) + (r2, s2) = (r1s2 + r2s1, s1s2), (r1, s1)(r2, s2) = (r1r2, s1s2).

As usual for (r, s) ∈ Frac(R) we will write r
s . We refer to [Go99] for the details of this construction.

We would like to point out that part (i) of Proposition 4.3.2 is essentially the same as Lemma

2.4.4 of [PR15] and both of parts (i) and (ii) are likely well-known. We provide a short proof for

the convenience of the reader. Also, note that Proposition 4.3.2 is not specific to the additively

idempotent case.

Lemma 4.3.1. Let F be a semifield. Let C ⊆ F × F be symmetric and reflexive and closed under

addition and multiplication, that is for (a1, b1), (a2, b2) ∈ C we have that (a1 + a2, b1 + b2) ∈ C and

(a1a2, b1b2) ∈ C. Then C is a congruence.

Proof. We only need to show that C is transitive. Assume that (a, b), (b, c) ∈ C. If b = 0, then

(a + 0, 0 + c) = (a, c) ∈ C. If b ̸= 0 then (b−1, b−1) ∈ C and (ab, bc) ∈ C, and after multiplying it

follows that (a, c) ∈ C.

Proposition 4.3.2. Let R be a cancellative semiring. For a congruence C of R denote by ⟨C⟩Frac(R)

the congruence generated by C in Frac(R).
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(i) (a, b) ∈ ⟨C⟩Frac(R) if and only if there is an s ∈ R \ {0} such that (sa, sb) ∈ C. In particular

⟨C⟩Frac(R) is proper if and only if ker(C) = {0}.

(ii) If C is a QC congruence of R with ker(C) = {0} then ⟨C⟩Frac(R)|R = C and for any congruence

C of Frac(R) we have ⟨C|R⟩Frac(R) = C.

(iii) If C is a QC congruence of R with ker(C) = {0}, then C is prime if and only if ⟨C⟩Frac(R) is

prime. If C is a congruence of Frac(R) then C is prime if and only if C|R is prime.

Proof. For (i) set

C ′ = {(a, b) ∈ Frac(R)× Frac(R)| ∃s ∈ R \ {0} : (sa, sb) ∈ C}.

Since every s ∈ R \ {0} has a multiplicative inverse in Frac(R) it is clear that C ⊆ C ′ ⊆ ⟨C⟩Frac(R).

Hence one only needs to see that C ′ is a congruence. If s1, s2 ∈ R \ {0} is such that (s1a1, s1b1) ∈ C

and (s2a2, s2b2) ∈ C for some (a1, b1), (a2, b2) ∈ Frac(R)× Frac(R) then we have

(s1s2(a1 + a2), s1s2(b1 + b2)) ∈ C

and

(s1s2(a1a2), s1s2(b1b2)) ∈ C

showing that C ′ is closed under addition and multiplication (note that s1s2 ̸= 0 since R is cancella-

tive). Since C ′ is clearly symmetric and reflexive it follows from Lemma 4.3.1 that C ′ is indeed a

congruence. It follows that ⟨C⟩Frac(R) is proper if and only if there exists no s ∈ R \ {0} such that

(s, 0) ∈ C or equivalently if ker(C) = {0}.

For (ii) first note that it is immediate from the definition of C ′ that if C is a QC congruence of

R with ker(C) = {0} then C ′ ∩ R × R = C, implying that ⟨C⟩Frac(R)|R = C. On the other hand

if C is a congruence of Frac(R) then it is clear that ⟨C|R⟩Frac(R) ⊆ C. For the other direction if

( r1s1 ,
r2
s2
) ∈ C then (r1s2, r2s1) ∈ C|R implying that ( r1s1 ,

r2
s2
) ∈ ⟨C|R⟩Frac(R).

For the first statement of (iii) recall that the restriction of a prime to a subsemiring is always a

prime, hence if ⟨C⟩Frac(R) is a prime congruence, where C is a congruence of R with ker(C) = {0},

then C = ⟨C⟩Frac(R)|R is also a prime. For the other direction assume that C is a prime of R with

ker(C) = {0} and we have a twisted product ( r1s1 ,
r2
s2
)(

r′1
s′1
,
r′2
s′2
) ∈ ⟨C⟩Frac(R). Then by (i) it follows

that (r1s2, r2s1)(r
′
1s

′
2, r

′
2s

′
1) ∈ C. Since C is a prime congruence we obtain that one of the factors
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in the twisted product, say (r1s2, r2s1), has to be in C and thus ( r1s1 ,
r2
s2
) ∈ ⟨C⟩Frac(R) showing that

⟨C⟩Frac(R) is prime. The second statement in (iii) follows from the first statement and (ii).

We also recall the following well-known statement:

Proposition 4.3.3. In a semifield every proper congruence is determined by the equivalence class

of 1.

Proof. Indeed if C is a proper congruence of a semifield then ker(C) = {0} and (a, b) ∈ C if and

only if a = b = 0 or (a/b, 1) ∈ C.

Next we collect some elementary observations about additively idempotent semifields that are

domains which we will need to prove our main result. We point out that an additively idempotent

semifield needs not to be a domain in general. If A is a cancellative B-algebra that is not totally

ordered then by Proposition 3.1.14 Frac(A) is an additively idempotent semifield that is not a

domain. In the proof of Proposition 4.3.5 we will often use the following trivial but important fact:

Lemma 4.3.4. Let A be a B-algebra. If x, y ∈ A both have multiplicative inverses then x ≥ y if and

only if 1/y ≥ 1/x.

Proof. x ≥ y means x+ y = x, multiplying both sides by 1
xy we get 1/y + 1/x = 1/y showing that

1/y ≥ 1/x.

Proposition 4.3.5. Let F be an additively idempotent semifield that is a domain.

(i) Every proper congruence of F is prime.

(ii) The congruences of F form a chain. Moreover if dimF is finite, then every congruence is

principal, i.e. generated by (1, x) for some x ∈ F \ {0}.

(iii) For x, y ∈ F \ {0}, we have that (1, y) ∈ ⟨(1, x)⟩ if and only if there exist an n ∈ Z such that

1 ≤ y ≤ xn or 1 ≥ y ≥ xn.

Proof. First note that a proper congruence of any semifield is always cancellative, since if (ca, cb) ∈ C

for c ̸= 0 then multiplying by c−1 we get (a, b) ∈ C. Now (i) follows from Proposition 3.1.14 and

the fact that the quotient of a totally ordered B-algebra is also totally ordered.

For (ii) assume that there are two congruences C1 and C2 such that C1 ̸⊆ C2 and C2 ̸⊆ C1.

Then by Proposition 4.3.3 we have x, y ∈ F \ {0} such that (1, x) ∈ C1 \C2 and (1, y) ∈ C2 \C1. By

possibly replacing x or y with their multiplicative inverse we may assume that x, y ≥ 1. Moreover

36



F is totally ordered, thus without loss of generality we can set x ≥ y. Now it follows from (ii) of

Proposition 3.1.4 that (1, y) ∈ C1, a contradiction. When dimF is finite this implies that there is a

unique chain of primes ∆ = P0 ⊂ P1 · · · ⊂ PdimF in F. Choosing any (a, b) ∈ Pk \ Pk−1 we see that

⟨(a/b, 1)⟩ = Pk proving the second statement in (ii).

For (iii) set H ⊂ F × F to consist of the pair (0, 0) and the pairs (a, b) ∈ (F \ {0}) × F \ {0}

for which exists an n ∈ Z such that 1 ≤ b/a ≤ xn or 1 ≥ b/a ≥ xn. We need to show that

H = ⟨(1, x)⟩ to prove the claim. Clearly we have (1, x) ∈ H and by Proposition 3.1.14 we also have

that H ⊆ ⟨(1, x)⟩ so we only need to show that H is a congruence. Note that if (y, 1), (z, 1) ∈ H

and y ≤ v ≤ z then we also have (v, 1) ∈ H, moreover that (a, b) ∈ H if and only if (1, b/a) ∈ H.

First we show that if (a1, b1), (a2, b2) ∈ H then (a1 + a2, b1 + b2) ∈ H. Without loss of generality

we may assume a1 ≥ a2. If b1 ≥ b2 then (a1 + a2, b1 + b2) = (a1, b1) and the claim is obvious. If

b2 ≥ b1 then (a1 + a2, b1 + b2) = (a1, b2), moreover we have b2/a2 ≥ b2/a1 ≥ b1/a1 showing that

(1, b2/a1) ∈ H, hence (a1, b2) ∈ H. To show that H is closed under products let (a1, b1), (a2, b2) ∈ H

and let n1, n2 be integers as in the definition of H. Without loss of generality we can assume x ≥ 1

and then we have x−(|n1|+|n2|) ≤ a1a2

b1b2
≤ x|n1|+|n2|, hence (a1a2, b1b2) ∈ H. Finally H is symmetric

since 1 ≤ b/a ≤ xn if and only if 1 ≥ a/b ≥ x−n, hence by Lemma 4.3.1 H is a congruence.

Corollary 4.3.6. If an B-algebra A is a domain, then the prime congruences of A with trivial

kernels form a chain.

Proof. This follows immediately from Proposition 4.3.2 and (ii) of Proposition 4.3.5.

Remark 4.3.7. We would like to point out that (iii) of Proposition 4.3.5 can also be deduced from

Proposition 4.1.3. in [PR14] and the second statement in (ii) could be recovered from Remark 4.1.8

in [PR14]. We also call the reader’s attention to the fact that that kernels in [PR14] refer to the

equivalence class of 1 in a congruence and not to the equivalence class of 0 as in the current paper.

Let F be an additively idempotent semifield that is a domain and for x ∈ F \ {0} denote by

Px the unique minimal prime containing (1, x). For x, y ∈ F \ {0} we will write x ⊴F y whenever

x ∈ Py and x ⋄F y whenever Px = Py. Clearly ⋄ is an equivalence relation, and when F is finite

dimensional the number of its equivalence classes is dimF + 1.

Lemma 4.3.8. Let A be a B-algebra that is a domain, and x, y, z ∈ A \ {0} with x ⊴Frac(A)
y
z .

Then for any prime congruence P with x ∈ ker(P ) we also have that at least one of y ∈ ker(P ) or

z ∈ ker(P ) hold.
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Proof. By (iii) of Proposition 4.3.5 we have that there exist an n ∈ Z such that 1 ≤ x ≤ yn

zn or

1 ≥ x ≥ yn

zn holds in Frac(A). If 1 ≤ x ≤ yn

zn then, by Proposition 3.1.4, x ∈ ker(P ) implies

1 ∈ ker(P ) contradicting that P is proper. If 1 ≥ x ≥ yn

zn with n ≥ 0 then after multiplying with

zn we obtain zn ≥ xzn ≥ yn. Since xzn ∈ ker(P ) by Proposition 3.1.4 we have that yn ∈ ker(P ).

Since P is prime it follows that y ∈ ker(P ). If n < 0 then after multiplying by y−n we obtain that

y−n ≥ xy−n ≥ zn. Since xy−n ∈ A we have xy−n ∈ ker(P ) and it follows that zn ∈ ker(P ) and thus

z ∈ ker(P ).

Proposition 4.3.9. Let A be a B-algebra that is a domain, with dimA < ∞. Then dimA =

dimFrac(A), in particular the primes of A with a trivial kernel form a chain of maximal length.

Proof. First it follows immediately from Proposition 4.3.2 that dimA ≥ dimFrac(A) since the unique

chain of primes in Frac(A) restricts to a chain of primes in dimA of the same length. We will prove

by induction on dimFrac(A). If dimFrac(A) = 0 then by Proposition 3.1.10 Frac(A) ≃ B, and since

A embeds into Frac(A) we also have that A ≃ B.

Next we assume that dimFrac(A) = d > 0 and that the claim holds for all d′ < d. Let

∆ = P0 ⊂ P1 ⊂ · · · ⊂ PdimA

be a chain of maximal length in A and set A′ = A/P1. Clearly dimA′ = dimA−1. If ker(P1) = {0}

then applying Proposition 4.3.2 we see that P1 extends to a prime ⟨P1⟩Frac(A) of Frac(A) and

dimFrac(A)/⟨P1⟩Frac(A) = d − 1. It follows that dimFrac(A′) = d − 1 and applying the induction

hypothesis we obtain dimA′ = d− 1, and thus dimA = d.

We are left to deal with the case when 0 ̸= x ∈ ker(P1). First note that the elements of Frac(A′)

can be written as [a]
[b] with a, b ∈ A and b /∈ ker(P1), where [a], [b] denote the images of a, b in

A′. (Note however that there is no natural map from Frac(A) to Frac(A′) in this case.) Now it

follows from (iii) of Proposition 4.3.5 that for [a]
[b] ,

[c]
[d] ∈ Frac(A′), if we have that a

b ⋄Frac(A)
c
d then

[a]
[b] ⋄Frac(A′)

[c]
[d] . Finally it follows from Lemma 4.3.8 that whenever x⋄Frac(A)

a
b at least one of a or b

map to 0 in A′, hence ⋄Frac(A′) has strictly less equivalence classes than ⋄Frac(A). We obtained that

dimFrac(A′) ≤ d − 1, and hence by the induction hypothesis we have that dimA′ = dimFrac(A′)

and it follows that dimA = dimA′ + 1 = d.

We are ready to state our main result:

Theorem 4.3.10. Let A be a B-algebra with dimA < ∞. Then we have that dimA[y±1] =

dimA[y] = dimA+ 1.
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Proof. Let P0 ⊂ P1 · · · ⊂ PdimA[y±1] be a chain of primes of maximal length in A[y±1]. By Proposi-

tion 4.3.9 we may assume that the congruences Pi/P0 have trivial kernel in A[y
±1]/P0 or equivalently

that ker(P0) = ker(Pi) for all 0 ≤ i ≤ dimA[y±1]. Now it follows from (i) of Proposition 4.2.6 that

after restricting the chain to A, in P0|A ⊆ P1|A ⊆ . . . equality occurs at most once proving that

dimA + 1 ≥ dimA[y±1]. Finally by Proposition 4.2.1 we also have that dimA + 1 ≤ dimA[y±1],

proving that dimA[y±1] = dimA + 1. The equality dimA[y] = dimA + 1 can be verified by the

same argument.

Remark 4.3.11. In commutative algebra (e.g. [Ei95]), if R is a Noetherian ring of finite dimension

then we have that

dimR[x] = dimR+ 1.

However, if we consider a non-Noetherian ring S of finite dimension, we have the following inequality

for the polynomial ring with coefficients in S

dimS + 1 ≤ dimS[x] ≤ 2 dimS + 1.

Furthermore, for any N , s+ 1 ≤ N ≤ 2s+ 1 one can find a ring S of dimension s, such that S[x] is

N -dimensional. For the proof of this claim we refer the reader to [Se54].
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5

Prime congruences of polynomial

and Laurent polynomial semirings

with coefficients in B, Zmax, T

Our next goal is to understand the prime congruences of the polynomial and Laurent polynomial

rings over the semifields B, Zmax and T. In all of these cases minimal primes turn out to correspond to

monomial orderings. Applying a result of Robbiano from [Rob85] that classifies monomial orderings,

it can be then shown that every prime congruence of these semirings can be described by a certain

defining matrix.

We show that in the considered cases above every congruence there exists a unique chain of

primes. We show that the dimension of the quotient by a prime is equal to the number of rows of

its defining matrix. As a consequence and in accordance with the results from the previous chapter

the dimension of a k-variable polynomial or Laurent polynomial semiring is k over B and k+1 over

T or Zmax.

Furthermore using this description of prime congruences we show that two polynomials with

coefficients in B are congruent in every prime if and only if their Newton polytopes are the same.

Consequently the quotient of the polynomial algebra over B by the intersection of all prime congru-

ences (i.e. the radical of the trivial congruence) can be described as the semiring of lattice polytopes

with the sum of two polytopes being the convex hull of their union and the product the Minkowski

sum. Similar descriptions can be given in all of the other studied cases.
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5.1 The prime congruences of B[xxx±1] and B[xxx]

Throughout this section B[xxx±1] and B[xxx] denote respectively the Laurent polynomial semiring and

the polynomial semiring in k variables xxx = (x1, . . . , xk). First we show that the kernel of the primes

of these semirings are easy to describe:

Proposition 5.1.1. (i) For any proper congruence I of B[xxx±1], we have that Ker(I) = {0}.

(ii) For any QC congruence Q of B[xxx] we have that Ker(Q) is the polynomial semialgebra generated

by a subset of the variables x1, . . . , xk.

Proof. In both cases by Proposition 3.1.4 we have that the kernel of any congruence is generated

by monomials. In the case of B[xxx±1] any monomial has a multiplicative inverse, so if Ker(I) ̸= {0}

then we have (1, 0) ∈ Ker(I) so I has to be the improper congruence. For (ii) if Q is QC then

(fg, 0) ∈ Q implies that (f, 0) ∈ Q or (g, 0) ∈ Q, so a monomial is in Ker(Q) if and only if at least

one of the variables in that monomial is in Ker(Q).

So in fact prime congruences of B[xxx] with non-zero kernels will correspond to prime congruences

of a polynomial semirings in less variables. Next recall that quotients by primes are totally ordered

and consider the following proposition:

Proposition 5.1.2. (i) If Q is a congruence of B[xxx] or B[xxx±1] such that the quotient by Q is

totally ordered, then in each equivalence class of Q there is at least one monomial.

(ii) A congruence P of B[xxx±1] is prime if and only if B[xxx±1]/P is totally ordered.

(iii) If Q is a prime congruence of B[xxx] with Ker(Q) = {0}, then Q = P |B[xxx] = P for some prime

congruence P of B[xxx±1].

(iv) For a prime P of B[xxx±1] the multiplicative monoid of B[xxx±1]/P is isomorphic to a quotient

of the additive group (Zk,+). For a prime P of B[xxx] the multiplicative monoid of B[xxx]/P is

isomorphic to the restriction of a quotient of the additive group (Zk′
,+) to (Nk′

,+), where

k − k′ = |{x1, . . . , xk} ∩Ker(P )|.

Proof. The first statement follows from the fact that if the quotient is totally ordered, then every

polynomial is congruent to any of its monomials that is maximal with respect to the ordering on

the quotient. For (ii) consider that every monomial in B[xxx±1] has a multiplicative inverse, so by (i)

we see that the if the quotient by a congruence P is totally ordered then it is a semifield, which

is in particular cancellative and then by Proposition 3.1.14 P is prime. For (iii) first note that
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congruences of B[xxx±1] with totally ordered quotients are determined by the equivalence class of 1.

Take a prime congruence Q of B[xxx] with Ker(Q) = {0}, and let P be the congruence of B[xxx±1] with

a totally ordered quotient satisfying that for any monomials m1,m2 ∈ B[xxx]:

(1,m1/m2) ∈ P ⇐⇒ (m2,m1) ∈ Q and (1,m1/m2 + 1) ∈ P ⇐⇒ (m2,m1 +m2) ∈ Q.

Note that while writing a Laurent monomial as quotient of monomials of B[xxx] is not done uniquely,

the above is still well defined because of the QC property of Q. P is prime since its quotient is

totally ordered and cancellative and it is straightforward to check that P |B[xxx] = Q. (iv) follows from

(i),(iii) and Proposition 5.1.1.

A group ordering (resp. semigroup ordering) of a group (resp. semigroup) (G,+), is an ordering

≤ on the the elements of G satisfying that for any g1, g2 ∈ G with g1 ≤ g2 and an arbitrary g3 ∈ G

we have g1 + g3 ≤ g2 + g3. The previous proposition tells us that to understand the the prime

quotients of B[xxx±1] we need to describe the group orderings on the quotients of (Zk,+). When

we think of (Zk,+) (resp. (Nk,+)) as the group (resp. semigroup) of Laurent monomials (resp.

monomials) with the usual multiplication their group orderings are called term orderings. (Note

that in the literature it is sometimes required that the generating variables are larger than the unit

under a term ordering, but we do not use this convention). Term orderings are described by a result

of Robbiano in [Rob85]:

Proposition 5.1.3. For every term ordering ≤ of the Laurent monomials {xxxnnn | nnn ∈ Zk} there exist

a matrix U with k columns and l ≤ k rows, such that xxxnnn1 < xxxnnn2 if and only if the first non-zero

coordinate of U(nnn2−nnn1) is positive. Term orderings of the monomials {xxxnnn | nnn ∈ Nk} are restrictions

of the orderings on the Laurent monomials.

We will say that the i-th row of the matrix U is non-redundant if there is an integer vector

nnn ∈ Zk such that the first non-zero coordinate of Unnn is the i-th coordinate. If all of the rows of U

are non-redundant we will call it an admissible matrix. If U is an admissible matrix for an ordering

as in the setting of Proposition 5.1.3, then it will be called a defining matrix of the ordering. It is

easy to verify that the defining matrix can always be chosen to have orthonormal rows, and that for

an ordering defined by a square matrix there is a unique orthogonal defining matrix.As explained

above, term orderings define prime congruences of B[xxx±1] and B[xxx], which will be denoted by P (U)

and P [U ] respectively. One can also consider the B-algebra of Laurent monomials (resp. monomials)

whose addition is defined by the term ordering of U , and the surjections from B[xxx±1] (resp. B[xxx])
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onto these that map each polynomial to their leading monomial, then P (U) (resp. P [U ]) are just

the kernel of these maps. Note that prime congruences given by term orderings are minimal by (i)

of Proposition 5.1.2 since every equivalence class of them contains precisely one monomial.

If an admissible matrix U is the defining matrix of a term ordering then the zero vector is the only

integer vector in the kernel of U , since a term ordering is a total ordering of all of the monomials. If U

has integer vectors in its kernel, it still gives us a group ordering on the quotient Zk/(Ker(U)∩Zk),

defined the same way as in Proposition 5.1.3. In this case we will still call U the defining matrix

of the ordering on that quotient and denote by P (U) or P [U ] the corresponding prime congruences

of B[xxx±1] and B[xxx]. Explicitly speaking, P (U) is generated by the pairs (xxxnnn1 + xxxnnn2 ,xxxnnn2) such that

either U(nnn2−nnn1) = 000 or the first non-zero coordinate of U(nnn1−nnn2) is positive and P [U ] = P (U)|B[xxx].

We will soon see that every prime congruence of these B-algebras arise this way.

Example 5.1.4. Let U =

−1 1 1

0 1 0

, that defines the prime P (U) in B(x, y, z). This matrix

defines an ordering on the monomials in B(x, y, z)/P (U). Consider the monomials m1 = x2y3z

and m2 = x3yz2. Using the notation of Proposition 5.1.3 we have that nnn1 =


2

3

1

, nnn2 =


3

1

2

 and

Unnn1 =

2
3

, Unnn2 =

0
1

. Notice that Unnn1 −Unnn2 =

2
3

−

0
1

 =

2
2

, and thus in B(x, y, z)/P (U)

we have that m1 > m2 . Now consider the monomials m3 = xy2z and m4 = x2y2z2. Here we have

that Unnn3 = Unnn4, that is nnn3 −nnn4 ∈ Ker(U) ∩ Zk) and thus m3 = m4 in B(x, y, z)/P (U).

Since the rows of an admissible matrix U are linearly independent its rank r(U) is equal to the

number of its rows. For i ≤ r = r(U) let us denote by U(i) the matrix that consists of the first

i rows of U . Note that if U is admissible then so are all of the U(i). Let us use the convention

that U(0) for any U is the ”empty matrix” which corresponds to the only group ordering of the one

element quotient Zk/Zk and P (U(0)) (resp. P [U(0)]) are the maximal congruences of B[xxx±1] (resp.

B[xxx]) that identify every non-zero element with 1. Accordingly we will write r(U(0)) = 0. Now we

describe the primes lying above a congruence P (U).

Proposition 5.1.5. Let U be an admissible matrix with k columns. Then every proper congruence

of B[xxx±1] containing P (U) is an element of the strictly increasing chain

P (U) = P (U(r(U))) ⊂ P (U(r(U)− 1)) ⊂ · · · ⊂ P ((U(0))).
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In particular every proper congruence of B[xxx±1]/P (U) is prime and dim(B[xxx±1]/P (U)) = r(U).

Proof. The congruences P (U(i)) are prime since their quotients are totally ordered and cancellative.

Furthermore the chain in the proposition is strictly increasing since the rows of U are non-redundant.

Since the P (U(i))-s form a finite chain, it is enough to verify that every congruence that is generated

by a single pair is one of these, and then it will follow for an arbitrary congruence P (U) ⊆ I that

I = P (U(i)) where i is the smallest such that P (U(i)) can be generated by a pair in I. Note that in a

semifield each congruence is determined by the equivalence class of 1, since for any congruence I we

have that (α1, α2) ∈ I ⇐⇒ (α1α
−1
2 , 1) ∈ I. Therefore for any congruence P (U) ⊊ I generated by a

single pair we have that I = ⟨(1,xxxnnn)⟩ for some nnn ∈ Zk satisfying nnn /∈ Ker(U). Let s be the smallest

integer such that for the s-entry of Unnn we have (Unnn)[s] ̸= 0, then we have that (1,xxxnnn) ∈ P (U(s−1)).

Moreover, if (1,xxxnnn
′
) ∈ P (U(s − 1)) for some nnn′, then ∀j < s : (Unnn′)[j] = 0. Then for some k ∈ Z

with large enough absolute value we have that either 1 ≤ xxxnnn
′ ≤ xxxknnn or xxxknnn ≤ xxxnnn

′ ≤ 1 where ≤ is the

ordering on the quotient B[xxx±1]/P (U). Then by (iii) of Proposition 3.1.4 we have that (1,xxxnnn
′
) ∈ I,

so P (U(s− 1)) ⊆ I and then P (U(s− 1)) = I.

Finally we need the following lemma to prove our main result:

Lemma 5.1.6. For every prime congruence Q of B[xxx±1] we have an admissible matrix U such that

P (U) ⊆ Q and Ker(U) ∩ Zk = {000}.

Proof. Recall that for an admissible matrix U the condition Ker(U) ∩ Zk = {000} is equivalent to

saying that U is the defining matrix of a term ordering. Intuitively speaking U can be obtained

by taking an arbitrary ordering on the subspace that Q identifies with 1. To see this, denote the

ordering induced by the addition on B[xxx±1]/Q by ≤Q and fix an arbitrary term ordering ⪯0. Now

we define a new term ordering ⪯ as

m1 ⪯ m2 ⇐⇒ m1 <Q m2 or [(m1,m2) ∈ Q and m1 ⪯0 m2].

To verify that ⪯ is indeed a term ordering consider m1,m2 such that m1 ⪯ m2 and an arbitrary

monomial s ̸= 0. We have that either m1 <Q m2, but then by the cancellativity of B[xxx±1]/Q it

follows that sm1 <Q sm2, or (m1,m2) ∈ Q and m1 ⪯0 m2 and then since Q is a congruence and ⪯0

is a term ordering we have that (sm1, sm2) ∈ Q and sm1 ⪯0 sm2. Now from the definition of ⪯ we

see that m1 ⪯ m2 ⇒ m1 ≤Q m2, so for the defining matrix U of ⪯ we have P (U) ⊆ Q.

A lattice polytope in Rk is just a polytope whose vertices are all in Zk. The Newton polytope of

a polynomial f =


i xxx
nnni of B[xxx±1] or B[xxx] is the convex hull of the lattice points nnni ∈ Zk. It will
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be denoted by newt(f). By convention newt(0) is the empty set. Now we proceed to describe the

prime congruences and radical of B[xxx±1]. We remind that by convention we also write the maximal

congruence of B[xxx±1] as P (U) where U is a matrix with ”zero rows”.

Theorem 5.1.7. For the k-variable Laurent polynomial semialgebra B[xxx±1] we have that:

(i) The set of prime congruences of B[xxx±1] is {P (U) | U is an admissible matrix with k columns}.

The prime congruence P (U) is minimal if and only if Ker(U) ∩ Zk = {000}.

(ii) dim(B[xxx±1]) = k.

(iii) The pair (f, g) lies in the radical of the trivial congruence of B[xxx±1] if and only if newt(f) =

newt(g).

(iv) The B-algebra B[xxx±1]/Rad(∆) is isomorphic to the B-algebra with elements the lattice polytopes

and addition being defined as the convex hull of the union, and multiplication as the Minkowski

sum.

(v) Every radical congruence is QC.

Proof. For (i) consider that by Lemma 5.1.6 every prime contains a prime P (U) with Ker(U)∩Zk =

{000} and by Proposition 5.1.5 every prime lying over some P (U) is P (U(i)) for some 0 ≤ i ≤ r(U).

(ii) follows from Proposition 5.1.5 and the fact that there are term orderings whose defining series is

of length k (for example the usual lexicographic order). For (iii) first note that since every prime is

contained in a minimal prime the radical of the trivial congruence is the intersection of the minimal

primes. By (i) a minimal prime P (U) corresponds to a term ordering, and for a monomial m and a

polynomial f we have (f,m) ∈ P (U) if and only if m is the leading term of f in the corresponding

term ordering. Hence it is enough to show that the set of vertices of newt(f) are precisely the

exponents of the monomials of f that are leading terms with respect to some term ordering. On one

hand by Proposition 5.1.3 the leading term is determined by maximizing a set of linear functionals

on newt(f), so its exponent indeed has to be one of the vertices. On the other hand for any vertex

v of newt(f) one can pick a hyperplane that separates it from the rest of the vertices. Choosing the

normal vector uuu of such a hyperplane to point towards the side of v, for any admissible matrix U with

Ker(U) ∩ Zk = {000} having uuu as a first row we have that the leading term of f in the term ordering

defined by U is the monomial with exponent v. Now since the set of vertices determine the polytope

newt(f) we have that (f, g) lies in every prime if and only if newt(f) = newt(g). For (iv) one easily

checks that newt(f + g) is the convex hull of newt(f) ∪ newt(g) and newt(fg) is the Minkowski
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sum of newt(f) and newt(g). For (v) assume that for a radical congruence I, (g, 0)(f1, f2) ∈ I then

(g, 0)(f1, f2) is in every prime containing I, but since all primes have trivial kernels (f1, f2) has to

be in every prime containing I and then (f1, f2) ∈ I.

In the one variable case there are only finitely many primes are the radical is easily computable,

Example 5.1.8. Let P be a prime of the one variable Laurent polynomial semiring B(x). Then by

Proposition 5.1.2 the quotient B(x)/P is totally ordered and hence we have one of the three options

1 = x or x > 1 or 1 > x.

• If 1 = x then P is the congruence that identifies every non-zero element with 1. Thus P is a

maximal congruence and B(x)/P = B.

• If x > 1 then xi > xj whenever i > j, so P identifies every polynomial with it is highest degree

term, and B(x)/P = Zmax.

• If 1 > x then every polynomial is identified with its lowest degree term and B(x)/P = Zmin.

We obtained that B(x) has precisely 3 prime congruences. It is easy to see that Rad(∆) is then

the congruence that identifies two polynomials if their highest and lowest degree terms agree. As

expected by Theorem 5.1.7 Rad(∆) is QC, however it is clearly not prime.

However, in the case of two or more variables there are infinitely many primes, hence by Propo-

sition 3.3.1 we have the following corollary:

Corollary 5.1.9. If k > 1 there are infinitely many minimal prime congruences in B[xxx±1] and if

k = 1 there are exactly two. In particular for k > 1 B[xxx±1] does not satisfy the ACC for radical

congruences (or equivalently for QC congruences).

Now we turn to B[xxx]. Recall from (iii) of Proposition 5.1.2 that the primes of B[xxx] with trivial

kernel are restrictions of the primes of B[xxx±1]. Here we also have over any prime P [U ] the strictly

increasing chain

P [U ] = P [U(r(U))] ⊂ P [U(r(U)− 1)] ⊂ · · · ⊂ P [U(0)].

It follows that dim(P [U ]) ≥ dim(P (U)) = r(U), the next proposition shows that the dimensions are

in fact equal.

Proposition 5.1.10. For any admissible matrix U we have that dim(B[xxx]/P [U ]) = r(U).

46



Proof. We will prove by induction on r(U). The r(U) = 0 case is clear, since by our earlier conven-

tions for the matrix with ”zero rows” we have B[xxx]/P [U ] = B and dim(B) = 0. Let U now be an

arbitrary admissible matrix and Q a prime congruence that is minimal amongst those that strictly

contain P [U ], to complete the proof we need to show that dim(Q) ≤ r(U)−1. If Ker(Q) = {0} then

by (iii) of Proposition 5.1.2 and Proposition 5.1.5 we have that Ker(Q) = P [U(r(U)− 1)] and then

by the induction hypothesis we have dim(Q) = r(U)−1. If Ker(Q) ̸= {0} then by Proposition 5.1.1,

Ker(Q) is generated by a subset of the variables, say x1, . . . , xj . Also by the minimality of Q we have

that Q = ⟨P (U) ∪ {(xi, 0)|1 ≤ i ≤ j}⟩. It follows that for some prime P [UQ] of B[xj+1, . . . , xk] the

quotient B[xxx]/Q is isomorphic to B[xj+1, . . . , xk]/P [UQ]. The matrix UQ can be obtained from U by

removing the first j columns, then removing any possible redundant rows. Now since (1, 0) /∈ Q by

(iii) of Proposition 3.1.4 we have that for any monomial m containing any of the variables x1, . . . , xj ,

m < 1 in the ordering defined by U . This implies that the for some 1 ≤ i ≤ r(U) the first i rows of

U have to be such that all non-zero entries are in the first j columns, and the first non-zero entry

in those columns is negative. Consequently when the first j columns are removed from U , then the

first i rows will have all 0-s as the remaining entries, so they are removed when we obtain UQ. In

particular we have that dim(Q) = r(UQ) < r(U) completing the proof.

Now we have the following theorem about the primes and radical of B[xxx]:

Theorem 5.1.11. For the k-variable polynomial semiring B[xxx] we have that,

(i) For every prime congruence P of B[xxx] there is a (possibly empty) subset H of the variables

xxx and a prime P [U ] of the polynomial semiring B[xxx′] with variables xxx′ = xxx \ H, such that

P is generated by the pairs {(xi, 0)| xi ∈ H} and the image of P [U ] under the embedding

B[xxx′] ↩→ B[xxx].

(ii) The minimal prime congruences of B[xxx] have {0} as their kernel and are all of the form P [U ],

where U is an admissible matrix with Ker(U) ∩ Zk = {000}.

(iii) dim(B[xxx]) = k.

(iv) The pair (f, g) lies in the radical of the trivial congruence of B[xxx] if and only if newt(f) =

newt(g).

(v) The B-algebra B[xxx]/Rad(∆) is isomorphic to the B-algebra with elements the lattice polytopes

lying in the non negative quadrant Rk
+,0, and addition being defined as the convex hull of the

union, and multiplication as the Minkowski sum.
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(vi) The congruence Rad(∆) is QC.

Proof. (i) follows from Proposition 5.1.1, Theorem 5.1.7 and (iii) of Proposition 5.1.2. For (ii) let Q

be a minimal prime congruence with Ker(Q) ̸= 0. We can assume that Ker(Q) is generated by the

variables x1, . . . , xj for some j. By the minimality of Q, B[xxx]/Q is isomorphic to P [U ′] where U ′ is

the defining matrix of a term ordering on the variables xj+1, . . . , xk. Let U be the defining matrix of

the term ordering that first orders the variables x1, . . . , xj reverse lexicographically, then the rest of

the variables by U ′ (so the first j rows of U are negatives of the first j rows of the identity matrix).

Now for the prime congruence P [U ] we have Ker(P [U ]) = {0} and P [U ] ⊆ Q. (iii) follows from (ii)

and Proposition 5.1.10. (iv) and (v) follow by the same argument as in the proof of Theorem 5.1.7.

Finally (vi) also follows the same way as in Theorem 5.1.7 after considering that the radical is the

intersection of the minimal primes and minimal primes of B[xxx] have trivial kernels.

We finish this section by providing an explicit description of the defining matrices of prime

congruences above which lie primes with non-trivial kernel.

Lemma 5.1.12. Let P be a prime of B[x1, . . . , xn] with trivial kernel and defining matrix U and let

the first row of this matrix be given by the vector (a1, a2, . . . , an). Let Q be a prime lying above P

such that Ker(Q) is generated by only one of the variables, say x1. Then a1 < 0 and ai = 0, for all

2 ≤ i ≤ n.

Proof. Assume for contradiction that a1 > 0, this means that x1 > 1 but (x1, 0) ∈ P which in turn

implies that (1, 0) ∈ P which is a contradiction since P is a proper congruence. If a1 = 0 and a2 > 0

then x1x2 > 1 thus (1, 0) ∈ Q, again a contradiction. However if a2 < 0 , then x1 > x2 and this

implies that (x2, 0) ∈ Q contradiction, since x2 ̸∈ Ker(Q). Hence a1 < 0. Looking at the rest of the

ai’s, if a2 > 0 then for some l, k ∈ N and k big enough, x1
lx2

k > 1, thus (1, 0) ∈ Q. Alternatively

if a2 < 0, take l ∈ N big enough, then x2
l < x1. Then by primeness of Q and x1 ∈ Ker(Q) we get

that x2 ∈ Ker(Q), contradiction.

Proposition 5.1.13. Let P be a prime with trivial kernel of B[xxx] with defining matrix U . Let Q be

a prime lying above P such that Ker(Q) be generated by a subset of the variables, say {x1, . . . , xk}.

Then U =

A 000

B C

, where A is a l × k admissible matrix, l ≤ k and first entry of every column is

negative. Furthermore C is also admissible and Q = P [C].

Proof. The statement follows directly from Lemma 5.1.12. Admissibility is obvious since P [A] =

P [U(i)], where i is the number of rows of B.
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Remark 5.1.14. In the set up of Proposition 5.1.13 the columns corresponding to the variables in

the kernel of Q are a linear combination of the first column and the columns of

000

C

.
5.2 The prime congruences of Zmax[xxx

±1] and Zmax[xxx]

The description of the primes and the radical of Zmax[xxx
±1] and Zmax[xxx] can be easily derived from

that of B[xxx±1] and B[xxx]. The key observation is that Zmax
∼= B(t)/⟨(1 + t, t)⟩ and consequently

Zmax[xxx
±1] = B(t,xxx)/⟨(1 + t, t)⟩ where B(t,xxx) is just the semiring of Laurent polynomials over B

with k+1 variables (t, x1, . . . , xk). Hence prime congruences of Zmax[xxx
±1] can be identified with the

prime congruences of B(t,xxx) containing (t, 1+t). By Theorem 5.1.7 these are of the form P (U) where

U is an admissible matrix with k+1 columns, such that the either its first column has all 0 entries or

the first non-zero entry of the first column is positive. We will call such a matrix z-admissible, and

we will denote the congruence defined by it in Zmax[xxx
±1] by P (U)Z and its restriction to Zmax[xxx]

by P [U ]Z.

By the Newton polytope, newt(f), of a polynomial f =


i t
cixxxnnni in Zmax[xxx

±1] or Zmax[xxx], we

mean the convex hull of the points [ci,nnn
i] ∈ Zk+1. We define the hat of newt(f) to be the set

newt(f) = {(y0, . . . , yk) ∈ newt(f) | ∀z > y0 : (z, y1, . . . , yk) /∈ newt(f)}.

We have the following theorem:

Theorem 5.2.1. For the k-variable polynomial semiring Zmax[xxx] and the k-variable Laurent poly-

nomial semiring Zmax[xxx
±1] we have that:

(i) The minimal primes of Zmax[xxx
±1] (resp. Zmax[xxx]) are of the form P (U)Z (resp. P [U ]Z) for a

z-admissible matrix U with k + 1 columns satisfying Ker(U) ∩ Zk+1 = {000}.

(ii) dim(Zmax[xxx
±1]) = dim(Zmax[xxx]) = k + 1

(iii) For any f, g ∈ Zmax[xxx
±1] (resp. f, g ∈ Zmax[xxx]) the pair (f, g) lies in the radical of the trivial

congruence of Zmax[xxx
±1] (resp. Zmax[xxx]) if and only if newt(f) = newt(g).

(iv) Every congruence of Zmax[xxx
±1] is QC. Rad(∆) in Zmax[xxx] is QC.

Proof. (i) and (ii) follows from the discussion preceding the theorem. For (iii) by the same argument

as in the proof of Theorem 5.1.7 we need to show that the vertices of newt(f) are precisely the

exponents of the monomials of f that are maximal with respect to the ordering in the quotient of
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some minimal prime. By (i) we have that in both cases minimal primes correspond to term orderings

of the variables (t,xxx) such that 1 < t and it is clear that the leading monomial of f with respect to

such a term ordering has to be one of the vertices lying on newt(f). For the other direction for a

vertex v on newt(f) let uuu be a linear combination with positive coefficients of the outwards pointing

normal vectors of the k-dimensional faces of newt(f) containing v, such that the first coordinate of uuu

is positive. Such a uuu can be chosen since the outwards pointing normal vector of any k-dimensional

face of newt(f) have positive first coordinate, so if we set the coefficients corresponding to those

faces large enough uuu will also have a positive first coordinate. Moreover v is the unique vertex that

maximizes the scalar product taken with uuu on newt(f). Hence we can choose a z-admissible matrix

U with uuu as its first row and Ker(U)∩Zk+1 = {000} and in the term ordering defined by U the leading

term of f will be the monomial with exponent v. Finally (iv) follows the same way as in Theorems

5.1.7 and 5.1.11.

5.3 The prime congruences of T[xxx±1] and T[xxx]

In this section we describe the primes and the radical of the semirings of polynomials and Laurent

polynomials with coefficients in T.

A matrix U whose first column has either all zero entries or its first non-zero entry is positive

can define a prime congruence P (U)T of T[xxx±1], which, as in the previous cases is generated by pairs

(tc1xxxnnn1 + tc2xxxnnn2 , tc2xxxnnn2) such that U((c2,nnn2) − (c1,nnn2)) is either the 000 vector or its first non-zero

coordinate is positive. Clearly if U is z-admissible and we consider Zmax[xxx
±1] as a subsemiring of

T[xxx±1], we have P (U)T|Zmax[xxx±1] = P (U)Z. However P (U)T might not be the only congruence that

restricts to P (U)Z as shown by the following example:

Example 5.3.1. Let r ∈ R be an irrational number and let U be the matrix that consists of the

single line [1 r]. Since Ker(U) ∩ Z2 = {000}, U defines a total ordering on Z2 and hence P (U)

is a minimal prime of B(x1, x2) and P (U)Z is a minimal prime of Zmax(x1). Consequently any

subsequent rows to U would be redundant. However Ker(U) ∩ R ⊕ Z ̸= {0}, so U does not define a

total ordering on the monomials of T(x1), and one can add a subsequent row to U which will give

the ordering on the elements in Ker(U) ∩ (R ⊕ Z). For example denoting by U+ the matrix which

is obtained from U by adding the row [0 1] and U− the matrix which is obtained by adding the

row [0 − 1], we have that P (U+)T and P (U+)T are distinct minimal primes of T(x1) both strictly

containing P (U)T, and P (U+)T|Zmax[xxx±1] = P (U−)T|Zmax[xxx±1] = P (U)T|Zmax[xxx±1] = P (U)Z.
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Motivated by this example we define an l × (k + 1) matrix U to be t-admissible if its rows are

non-redundant with respect to the ordering defined on R ⊕ Zk, i.e. for every 1 ≤ i ≤ l there is

a vvv ∈ R ⊕ Zk such that the i-th is the first non-zero entry of Uvvv moreover we require that in

the first column of U either all of the entries are 0 or its first non-zero entry is positive. Clearly

z-admissible matrices are also t-admissible, but some t-admissible matrices, like U+ and U− from

the above example, might not be z-admissible. Then the prime congruence P (U)T is defined for

all t-admissible matrices U , and P (U)T|Zmax[xxx±1] = P (U ′)Z where U ′ is the matrix we obtain from

U after removing rows that become redundant when U defines an ordering of the monomials with

coefficients in Zmax. The restriction of P (U)T to T[xxx] will be denoted by P [U ]T. As previously, we

aim to show that all primes of T[xxx±1] are of the form P (U) for a t-admissible U . For this we will

need the following variation on the result from [Rob85] which we recalled in Proposition 5.1.3.

Lemma 5.3.2. For any group ordering ⪯ on the multiplicative group of the monomials of T[xxx±1]

satisfying that for every c1, c2 ∈ R and nnn ∈ Zk we have that tc1xnnn1 ⪯ tc2xnnn2 if and only if c1 ≤ c2 by

the usual ordering on R, there exits a t-admissible matrix U such that tc1xnnn1 ≺ tc2xnnn2 if and only if

the first non-zero coordinate of U((c2,nnn2)− (c1,nnn1)) is positive.

Proof. First note that the multiplicative group of the monomials of T[xxx±1] is isomorphic to the

additive group (R ⊕ Zk,+). It follows from Lemma 1 of [Rob85] (and can also be easily checked)

that every group ordering of (R⊕Zk,+) uniquely extends to a group ordering of G = (R⊕Qk,+). By

a slight abuse of notation let us denote the ordering induced on G by ⪯ as well. Let G+ denote the

set {vvv ∈ G|vvv ≻ 000} and G− denote the set {vvv ∈ G|vvv ≺ 000}. Now following the original argument from

[Rob85] we define IG to be the set of points p ∈ Rk+1 such that each open (Euclidean) neighbourhood

of p contains elements from both G+ and G−. It is easy to verify that IG is a linear subspace. Let

V+ (resp. V−) denote the open set in Rk that consists of points with an open neighbourhood that

does not intersect G− (resp. G+). Now we have that Rk+1 \ IG = V− ∪ V+, so the complement

of IG is the union of disjoint open sets and hence disconnected, it follows that dim(IG) ≥ k. On

the other hand V+ and V− each contain at least an open quadrant, so dim(IG) = k. Let us note

that this is where the argument would fail if one wanted to extend it to an arbitrary group ordering

on R ⊕ Zk, but in our case, due to the the elements of R ⊕ {000} being ordered in the usual way,

for the vector eee0 = (1, 0, . . . , 0) and a Z-basis eee1, . . . , eeek of Zk satisfying eeei ≻ 000, we have that the

the positive R-linear combinations of eee0, . . . , eeek are indeed in V+ and the negatives of these are in

V−. Now for the normal vector uuu of IG pointing towards V+ and any vvv1, vvv2 ∈ G we have that

uuu · (vvv2 − vvv1) > 0 ⇒ vvv1 ≺ vvv2, where · denotes the usual scalar product on Rk+1, so uuu can be chosen
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as the first row of U . Moreover the subgroup G0 = {vvv ∈ G|uuu · vvv = 0} is isomorphic to Zk when the

first coordinate of uuu is non-zero, and it is isomorphic to R ⊕ Zl for some l < k if the first coordinate

of uuu is zero. Hence either by Proposition 5.1.3 or by induction we have that the ordering on G0 is

given by a matrix with at most k rows, and by adding to that matrix uuu as a first row we obtain the

U in the lemma.

In the following proposition we will list the analogues of Propositions 5.1.2/(iii), 5.1.1, 5.1.5,

5.1.10 and Lemma 5.1.6 for T[xxx±1] and T[xxx]. We will omit the proofs since they are essentially the

same as in the previous section. Recall that U(i) denotes the matrix that consists of the first i rows

of U .

Proposition 5.3.3. (i) Primes of T[xxx±1] always have {0} as their kernel, and the kernel of a

prime in T[xxx] is generated by a subset of the variables xxx.

(ii) If Q is a prime congruence of T[xxx] with Ker(Q) = {0}, then Q = P |T[xxx] = P for some prime

congruence P of of T[xxx±1].

(iii) Every congruence of T[xxx±1] containing some P (U)T for an l × (k + 1) t-admissible matrix U

is of the form P (U(i))T) for some 0 ≤ i ≤ l.

(iv) For an l × (k + 1) t-admissible matrix U , we have dim(T[xxx±1]/P (U)T) = dim(T[xxx]/P [U ]T) =

r(U) = l.

(v) Every prime of T[xxx±1], contains a prime P (U)T for a t-admissible matrix U with Ker(U) ∩

R ⊕ Zk = {000}.

Similarly to the previous cases the Newton polytope, newt(f), of a polynomial f =


i t
cixxxnnni

in T[xxx±1] or T[xxx], we mean the convex hull of the points [ci,nnni] ∈ R ⊕ Zk. The hat of the Newton

polytope is defined the same way as in the case of Zmax[xxx
±1].

Now we are ready to describe the primes and the radicals of T[xxx] and T[xxx±1], which is analogous

to the previous cases studied, except that this time we need to consider t-admissible matrices for

defining prime congruences.

Theorem 5.3.4. For the k-variable polynomial semiring T[xxx] and the k-variable Laurent polynomial

semiring T[xxx±1] we have that:,

(i) Every prime congruence of T[xxx±1] is of the form P (U)T for a t-admissible matrix U . For every

prime congruence P of T[xxx] there is a (possibly empty) subset H of the variables xxx and a prime
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P [U ] of the polynomial semiring T[xxx′] with variables xxx′ = xxx \H, such that P is generated by

the pairs {(xi, 0)| xi ∈ H} and the image of P [U ] under the embedding T[xxx′] ↩→ T[xxx].

(ii) The minimal prime congruences of T[xxx] have {0} as their kernel. Every minimal prime of T[xxx]

(resp. T[xxx±1]) is of the form P [U ]T (resp. P (U)T), where U is a t-admissible matrix with

Ker(U) ∩ R ⊕ Zk = {000}.

(iii) dim(T[xxx±1]) = dim(T[xxx]) = k + 1.

(iv) For any f, g ∈ T[xxx±1] (resp. f, g ∈ T[xxx]) the pair (f, g) lies in the radical of the trivial

congruence of T[xxx±1] (resp. T[xxx]) if and only if newt(f) = newt(g).

(v) Every congruence of T[xxx±1] is QC. Rad(∆) in T[xxx] is QC.

Proof. (ii) follows from Lemma 5.3.2, and the rest of the theorem follows from Proposition 5.3.3 by

the same arguments as in Theorems 5.1.7, 5.1.11 and 5.2.1.

5.4 Prime congruences of Rnlex ∪ {−∞}

To end this chapter we introduce an idempotent semifield which is not a subsemifield of T. This

is the semifield Rn
lex ∪ {−∞} which we denote by Tn. Its underlying set is Rn ∪ {−∞}. The two

operations are lexicographical ordering playing the role of addition and multiplication - the usual

vector addition, which we will denote by ⊙. Note that this is a totally ordered semifield thus

a domain. We would like to remark that Tn is not Tn, which contains non-invertible elements.

However, when n = 1 then Tn is just T.

Proposition 5.4.1. The prime congruences of Tn are kernels of morphisms Tn → Tn−k, for some

k ∈ N.

Proof. Let P be a prime Tn and (aaa,bbb) ∈ P , where aaa = (a1, . . . , an) and bbb = (b1, . . . , bn).

If a1 ̸= b1, then without loss of generality a1 < b1 thus aaa < bbb, by which we mean aaa <lex bbb. Then

there exists a vvv ∈ Tn with a1 < v1 < b1 so let vvv = aaa⊙ ϵϵϵ = (a1 + ϵ, . . . , an + ϵ), for some ϵ > 0. Then

we get aaa < aaa⊙ ϵϵϵ < bbb < bbb⊙ ϵϵϵ. Since (aaa,bbb) ∈ P then (aaa,aaa⊙ ϵϵϵ) ∈ P and hence (aaa,bbb⊙ ϵϵϵ). This way we

obtain (aaa,uuu) ∈ P , for every uuu ∈ Rn. Thus all vectors in Tn \ {−∞} are congruent to each other. In

this case we obtain a maximal congruence with quotient B.

If ai = bi, for some 1 ≤ i ≤ k, then assume again aaa < bbb and that there exists vvv, with aaa < vvv < bbb

and ai = vi = bi, for 1 ≤ i ≤ k. Then if ∀(aaa,bbb) ∈ P , the first i coordinates are the same, then P is

a prime with Tn/P = Tn−k.
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Corollary 5.4.2. The dimension of Tn is n.

Proof. Follows directly from Proposition 5.4.1.
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6

Tropical Nullstellensatz

We show that for any finitely generated congruence C in a polynomial or Laurent polynomial semiring

over B, Zmax or T, Rad(C) is the intersection of the primes that contain C and have a quotient with

dimension 1. This result is an analogue to the classical statement that in a polynomial ring over a

field every radical ideal is the intersection of maximal ideals.

In this section we regard the elements of the k-variable semiring T[xxx] as functions on the set Tk.

For a congruence C denote by V(C) the subset of Tk where every congruent pair from C gives the

same value. For a subset H of Tk we denote by E(H) the congruence that identifies polynomials

that agree on every point of H. In this terminology the aim of a “tropical Nullstellensatz” is to

describe the set E(V(C)) for a finitely generated congruence C. We show that this set is obtained as

the intersection of the geometric congruences (congruences with quotient T), hence is a congruence

itself and is described by generalized powers.

6.1 The Tropical Nullstellensatz Problem

The problem of finding an analogue of the Nullstellensatz for the tropical semifield T was raised by

A. Bertram and R. Easton in [BE13]. For a congruence C of the k-variable polynomial semiring T[xxx]

we consider the following set,

V(C) = {v ∈ Tk | f(v) = g(v), ∀(f, g) ∈ C}.
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For a subset H ⊆ Tk we define the congruence

E(H) = {(f, g) ∈ T[xxx]× T[xxx] | f(v) = g(v) ∀v ∈ H}.

The aim of a “Tropical Nullstellensatz” is to describe the set E(V(C)) with some suitable power

formulas, when C is finitely generated. In [BE13] for a congruence C the set C+ is defined to consist

of all pairs (f, g) for which there exist 1 ̸= ϵ ∈ T, h ∈ T[xxx] and a non-negative integer i, such that:

(1, ϵ)((f, g)∗
i
+ (h, 0))(f, g) ∈ C.

Moreover it is shown that C+ consists of certain limits of pairs of elements that lie in E(V(C)). In

Theorem 3 of [BE13], and in the discussion preceding it, it was established that C ⊆ C+ ⊆ E(V(C))

and V(C) = V(C+), moreover that if C is finitely generated then the set V(C) is empty if and only

if C+ = T[xxx]× T[xxx].

However two questions were left open, namely whether one has C+ = E(V(C)) for all finitely

generated C and if the set C+ is a congruence in general. The aim of Section 6.3 is to show that

the answer to both these questions is positive.

Example 6.1.1. In the 2-variable semiring T[x, y] consider the congruence C = ⟨(x2, y2)⟩. Since

for a, b ∈ T we have

a2 = b2 ⇔ a = b

one can easily see that

V(C) = {(a, a) | a ∈ T}

It follows that (x, y) ∈ E(V(C)). Moreover it is easy to see that E(V(C)) = ⟨(x, y)⟩. Recall that we

saw earlier in Example 3.2.4 that (x, y) ∈ Rad(C). However (x, y)n is not in C for any n. In fact

this happens since some generalized power of (x, y) lies in the congruence C and Rad(C) ⊆ E(V(C)).

6.2 Maximal and Geometric congruences

We give a characterization of a class of congruences which will be central to the solution of the

Nullstellensatz problem. In commutative algebra maximal ideals of a polynomial ring k[xxx] over a

field k are the kernels of evaluation morphisms and the quotient by a maximal ideal is the underlying

field k. However maximal congruences of idempotent semifields are not the kernels of evaluation
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morphisms and for every idempotent semifield A, the maximal congruences of A[xxx] have quotient B.

Moreover there are very few maximal congruences as shown in the following proposition.

Proposition 6.2.1. In the polynomial semiring A[x1, . . . , xn], where A is a semifield there are 2n

maximal congruences which are in one to one correspondence with saturated prime ideals.

Proof. Consider the surjective semiring morphism ϕ : A[x1, . . . , xn] → B. Note that ϕ can only send

every invertible element of A to 1, for otherwise the image of ϕ is 0. Hence ϕ is defined in the

following way,

0A →→ 0, and A \ 0A →→ 1

xi →→ 1, for i ∈ I ⊆ {1, . . . , n}

xj →→ 0, for j ∈ {1, . . . , n} \ I.

Denote by P the kernel of ϕ. Note that P is a prime congruence and A[x1, . . . , xn]/P ∼= B. Further-

more the kernel of P is a saturated ideal by definition, but it is also prime since P is prime. The

map ϕ is completely determined by the choice of the set I and hence there are 2n such maps.

Now we want to see that every saturated prime ideal determines a maximal congruence. For the

saturated prime ideal a of A[x1, . . . , xn], consider the congruence Pa, generated by the pairs (a, 0),

for a ∈ a and (u, 1), for u /∈ a. Note that this is a proper congruence with quotient B and hence it

is prime and maximal.

We proceed to describe the congruences of T[xxx] with quotient T and understand their role in

the context of the Nullstellensatz problem. First note that if aaa = (td1 , . . . , tdk) = tddd is a point

in Tk such that all of its coordinates are non-zero and m = tcxxxnnn is a monomial in T[xxx], then

m(aaa) = tc+


i(dini) = t(c,nnn)(1,ddd). Hence E({aaa}) = P [U ]T for the matrix U consisting of the single row

(1, d1, . . . , dk). Similarly, when some of the coordinates of aaa are zero Ker(E({aaa}) will be generated

by the variables corresponding to the zeros of aaa, and E({aaa}) restricted to the rest of the variables will

be defined by the matrix whose single row is (1, d′1, . . . , d
′
i), where the d′1, . . . , d

′
i are the exponents

of the non-zero entries of aaa. We will call the congruences E({aaa}) geometric congruences. Note that

these are precisely the congruences whose quotient is T.

Remark 6.2.2. It is important to note that E(V(C)) is the intersection of all geometric congruences

lying above C, because v ∈ V(C) if and only if C is contained in the geometric congruence Ker(φv),

where φv : T[xxx] → T is the evaluation morphism at the point v.
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6.3 The Tropical Nullstellensatz

We will need the following proposition:

Proposition 6.3.1. (i) For a B-algebra A, a pair α ∈ A×A and a congruence C with GP (α) ∩

C ̸= ∅, there is a non-negative integer i and an element h ∈ A such that (α∗i + (h, 0))α ∈ C.

(ii) For a congruence C of T[xxx] and any ϵ ∈ T \ {1, 0} we have that

C+ = {(f, g) ∈ T[xxx]× T[xxx]| GP ((1, ϵ)(f, g)) ∩ C ̸= ∅} = {(f, g) | (f, g)(1, ϵ) ∈ Rad(C)}.

Proof. For (i), if GP (α) ∩ C ̸= ∅, then by definition we have non-negative integers i, j and a h ∈ A

such that β := (α∗i + (h, 0))αj ∈ C. If j ≤ 1 we are done, let us assume j > 1. After expanding, we

obtain that in the quotient A/C we have

αi+j
1 + hαj

1 ≤ β1 = β2 ≤
s=i+j
s=1

αi+j−s
1 αs

2 + h

s=j
s=1

αj−s
1 αs

2.

Now set h′ = h(α1 + α2)
j−1 and γ := (α∗i+j−1 + (h′, 0))α. After expanding the parenthesis, we

obtain:

γ1 =

s=i+j
s=1

αs
1α

i+j−s
2 + h

s=j
s=1

αs
1α

j−s
2

γ2 =

s=i+j
s=1

αi+j−s
1 αs

2 + h

s=j
s=1

αj−s
1 αs

2

We see that the only terms appearing in γ1 but not in γ2 are αi+j
1 and hαj

1, so comparing with the

previous inequality we obtain that in the quotient A/C we have γ2 ≥ γ1 and then by a symmetric

argument γ2 = γ1, hence γ ∈ C.

For (ii) first note that a prime congruence contains the pair (1, ϵ) for an ϵ ∈ T \ {1, 0} if and

only if its defining matrix has all zero entries in the first column. Now by Proposition 3.2.12 the

set F := {(f, g) ∈ T[xxx]× T[xxx]| GP ((1, ϵ)(f, g))∩C ̸= ∅} is the intersection of the prime congruences

containing C but not containing (1, ϵ) so by the previous comment it does not depend on the choice

of ϵ. Furthermore we have

(1, ϵ)((f, g)∗
i
+ (h, 0))(f, g) ∈ GP ((1, ϵ)(f, g))

hence C+ ⊆ F . For the other inclusion if (f, g) ∈ F then by (i) we have an integer i and a h ∈ T[xxx]
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such that

((1, ϵ)∗
i
(f, g)∗

i
+ (h, 0))(1, ϵ)(f, g) ∈ C.

Now since (1 + ϵ) has a multiplicative inverse for any ϵ ∈ T, after multiplying the above expression

with 1/(1+ ϵ)i we obtain that (f, g) ∈ C+. The second equality follows from Proposition 3.2.12.

We will denote the i-th row of the matrix U by U [i]. For an l× k admissible (resp. z-admissible,

t-admissible) matrix U and a vector www = (w1, . . . , wl) ∈ Rl
+, P [wwwU ] (resp. P [wwwU ]Zmax

, P [wwwU ]T) will

denote the prime defined by the matrix consisting of the single row wwwU =


i wiU [i]. Note that since

the coefficients wi are positive and the rows of an admissible matrix are linearly independent wwwU

will be also admissible (resp. z-admissible, t-admissible). The following lemma holds by identical

arguments over all polynomial and Laurent polynomial semirings we have studied so far, to simplify

its formalization we will denote by P (U)∗ one of P (U), P [U ], P (U)Zmax
, P [U ]Zmax

, P (U)T or P [U ]T

depending on which semiring is being considered.

Lemma 6.3.2. Let P (U)∗ be a prime with trivial kernel in one of B[xxx±1], B[xxx], Zmax[xxx
±1], Zmax[xxx],

T[xxx±1] or T[xxx]. Then for any pair (f, g) we have that (f, g) ∈ P if and only if there exist positive

real numbers r1, . . . , rl−1 such that for any www ∈ Rl
+ satisfying wi/wi+1 > ri (∀i : 1 ≤ i ≤ l − 1), we

have (f, g) ∈ P (wwwU)∗.

Proof. We will prove the proposition for polynomials in B[xxx±1] and note that it holds by identical

arguments for all of the semirings listed. Let f =


i xxx
nnni a polynomial in B[xxx±1], and recall that

since the quotient of any prime is totally ordered f will be congruent in any prime to one or more

of its monomials. Now it is easy to verify that if we pick ri large enough then for any w satisfying

wi/wi+1 > ri for all 1 ≤ i ≤ l − 1 and any nnni,nnnj appearing as exponents in f we have that

wwwUnnni ≥ wwwUnnnj if and only if either Unnni = Unnnj or for the smallest s such that U [s]nnni ̸= U [s]nnnj

we have U [s]nnni > U [s]nnnj . It follows that for large enough ri-s and a www as in the proposition, the

leading terms of both f and g in P (wwwU) are the same as in P (U), hence (f, g) ∈ P (U) if and only

if (f, g) ∈ P (wwwU).

Theorem 6.3.3. (i) For a finitely generated congruence C in one of B[xxx±1], B[xxx], Zmax[xxx
±1],

Zmax[xxx], T[xxx±1] or T[xxx], we have that Rad(C) is the intersection of the primes that contain C

and have a quotient of dimension at most 1.

(ii) In T[xxx], for any finitely generated congruence C, we have C+ = E(V(C)).
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Proof. For (i) let C be a congruence generated by the pairs {(f1, g1), . . . , (fs, gs)}. By definition we

have that Rad(C) = ∩{P | P prime, (fi, gi) ∈ P ∀i}. If P (U)∗ is a prime with trivial kernel and

a quotient of dimension l ≥ 2, containing all of the (fi, gi) then we can choose (r1, . . . , rl−1) that

are large enough for all of the (fi, gi) in the setting of Proposition 6.3.2. Denoting by W the set of

vectors www ∈ Rl
+ satisfying wi/wi+1 > ri for all 1 ≤ i ≤ l− 1, it follows that (fi, gi) ∈ P (wwwU)∗ for all

1 ≤ i ≤ s and www ∈ W . Moreover by applying the other direction of Proposition 6.3.2 we also have

that ∩www∈WP (wwwU)∗ ⊆ P (U)∗, hence P (U)∗ can be removed from the intersection defining Rad(C).

We can argue the same way in the case when P (U)∗ has non-trivial kernel by considering it in the

polynomial subsemiring generated by the variables that are not in Ker(P (U)∗).

For (ii) by Proposition 6.3.1 and Proposition 3.2.12 we have that C+ is the intersection of the

primes that contain C but not contain (1, ϵ) for any ϵ ∈ T \ {1}, and by the discussion at the start

of this section it follows that E(V(C)) is the intersection of the geometric congruences containing C,

which are exactly those primes that have quotients with dimension 1 and not contain the pair (1, ϵ)

for any ϵ ∈ T\{1}. Note that (1, ϵ) for ϵ ∈ T\{1} is contained in a prime precisely when its defining

matrix has all zeros in the first column, thus if (1, ϵ) /∈ P [U ]T then (1, ϵ) /∈ P [wwwU ]T for any vector www

with positive entries. Now one can argue the same way as for (i).

Without the assumption on the finite generation of the congruence C the above statement is not

necessarily true as could be seen in the following example.

Example 6.3.4. Set C to be the congruence of T[x] generated by the pairs (t−c+x, x) for all c > 0.

Then notice that (1 + x, x) is not in C and moreover it is not in Rad(C). To see this, consider the

prime P with defining matrix

U =

1 0

0 −1

 .
Then C ⊂ P since in T[x]/P we have that t−c ≤ x, but (1 + x, x) ̸∈ P .

Now let C ⊂ P ′, where P ′ is a rank one prime, that is, there exists a 1× 2 matrix U ′, such that

P ′ = P [U ′]. Then it is easy to see that (1 + x, x) ∈ P ′ and hence in the intersection of all primes of

rank at most 1.

We conclude this section with a statement showing that the polynomials that agree on every

point of Tk are precisely the pairs that are in Rad(∆). This is essentially the same as Theorem 1 of

[BE13], but our proof is different.

Proposition 6.3.5. E(Tk) = ∆+ = Rad(∆).
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Proof. The first equality follows from Theorem 6.3.3. For the second equality since ∆+ is the

intersection of a subset of all primes we clearly have Rad(∆) ⊆ ∆+. For the other inclusion, if

(f, g) /∈ Rad(∆) then by Theorem 5.3.4 we have that for one of them, say f , there is a vertex v on

newt(f) that lies outside of newt(g). Now by the same argument as in the proof of Theorem 5.2.1

one can pick a vector uuu with positive first entry such that v is the unique vertex that maximizes the

scalar product taken with uuu on newt(f). Now let U be a t-admissible matrix with uuu as its first row

such that P [U ]T is a minimal prime. Since in P (U)T each equivalence class contains precisely one

monomial and f is congruent to the monomial with exponent v we have (f, g) /∈ P [U ]T. Moreover

since the first entry of uuu is nonzero (1, ϵ) /∈ P [U ]T for any ϵ ∈ T\{1}. Now since by Proposition 6.3.1

and Proposition 3.2.12 ∆+ is the intersection of all primes that do not contain (1, ϵ) for ϵ ∈ T \ {1},

we have that ∆+ ⊆ P [U ]T and consequently (f, g) /∈ ∆+.

6.4 On the Weak Nullstellensatz

In this chapter we discuss the tropical weak Nullstellensatz.

It was originally proven in Theorem 2 of [BE13], but here we show how the statement follows

from our theory. The weak Nullstellensatz answers the question when the set E(V(C)) is empty if C

is a finitely generated congruence. We show that E(V(C)) = ∅ if and only if there exists a polynomial

h ∈ T[xxx] with nonzero constant term such that (h, ϵh) ∈ C for some ϵ ∈ T.

A recent result presents a different formulation of the weak Nullstellensatz cf. Theorem 8 in

[GP14] stated in terms of the lack of solution to a system of polynomial equations of degree no

higher than a certain number. The part of the theorem concerning the existence of a solution can

be regarded as a special case of our work.

The following proposition can be regarded as a weak Nullstellensatz,

Proposition 6.4.1. Consider a finitely generated congruence C, of T[xxx] or T[xxx±1] then (1, ϵ) ∈

Rad(C) if and only if V(C) = ∅.

Proof. Recall that E(V(C)) = C+ = {(f, g)|(f, g)(1, ϵ) ∈ Rad(C)}, hence (1, ϵ) ∈ Rad(C) if and only

if E(V(C)) = T[xxx]× T[xxx] or equivalently V(C) = ∅.

Remark 6.4.2. If (1, ϵ) ∈ Rad(C), then by Proposition 6.3.1 (i) there exist k and h such that

((1, ϵ)k)∗+(h, 0))(1, ϵ) ∈ C. Without loss of generality we assume that 1 > ϵ. We can do this because

of the following observation. If (1, ϵ) ∈ Rad(C) then so does the product (1/ϵ, 0)(1, ϵ) = (1/ϵ, 1).

Furthermore, either ϵ < 1 or 1/ϵ < 1. With this assumption we obtain that if (1, ϵ) ∈ Rad(C) then
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(1 + h, ϵ+ ϵh) ∈ C. However, by Proposition 6.4.1 (1, ϵ) ∈ Rad(C) implies that V(C) = ∅, which is

exactly the weak Nullstellensatz theorem from [BE13].

We recall some definitions from [GP14], which reformulate for the max-plus case. A point aaa ∈ Tk

root of a polynomial f ∈ T[xxx] if the maximum of f(aaa) is attained on at least two monomials or is

−∞. A point aaa ∈ Tk root of a pair of polynomials f(xxx) = g(xxx), for f, g ∈ T[xxx] if f(aaa) = g(aaa).

An algebraic combination denoted by f = g or (f, g) of a set of polynomials F = {f1 =

g1, . . . , fk = gk} over T[xxx] is an element of the smallest ideal I of T[xxx] × T[xxx], which contains

F , ∆ and is symmetric, that is (m,n) ∈ I implies (n,m) ∈ I. Note that the multiplication operation

here is the usual coordinate-wise multiplication and not the twisted product.

We now recall the existence part of Theorem 8 from [GP14]. Consider a system of polynomials

F = {f1 = g1, . . . , fk = gk} over T[xxx]. Over the semiring T \ {−∞} the system F has no solution if

and only if we can construct an algebraic combination f = g, where f, g ∈ T[xxx] such that for each

monomial M its coefficient in f is greater than its coefficient in g. Over T, F has no solution if the

same condition holds with the extra condition that the constant term of g is finite.

Remark 6.4.3. Given a system of polynomials F = {f1 = g1, . . . , fk = gk}, the solutions of F are

the same as the points of V(C), where C is the congruence generated by the elements of F .

Here we restate the Theorem 8 from [GP14] using the formalism of this thesis.

Theorem 6.4.4. Let C be the congruence generated by {(f1, g1), . . . , (fk, gk)}. Then

a) F has no solution over T \ {−∞}, equivalently V(C) is empty if and only if there is a pair

(f, g) which is an algebraic combination of the generators, such that every coefficient in f is

bigger than the corresponding coefficient in g. (i.e. newt(f) is sitting over newt(g)).

b) F has no solution over T, if and only if there is a pair (f, g) which is an algebraic combination

of the generators, such that every coefficient in f is bigger than the corresponding coefficient

in g and g has a constant term.

We would need the following lemma for the proof of the theorem.

Lemma 6.4.5. Let (f, g) be a pair of polynomials over T[xxx±1] or T[xxx], such that the coefficient of

every monomial of f is bigger than the coefficient of the corresponding monomial of g. Then for any

polynomial h the pair h(f, g) satisfies the same condition on the coefficients.

Proof. Follows from straightforward computation and the observation that the multiplication of the

coefficients is usual addition.
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We would also like to make the following observation.

Lemma 6.4.6. Let C be a congruence generated by the pairs (f1, g1), . . . , (fk, gk). If α is in C then

for some non-zero h, the pair (h, 0)α is algebraically generated by the pairs (fi, gi), for 1 ≤ i ≤ k.

Proof. The only part that is not obvious is the transitivity. Consider two pairs of polynomials

(a, b) and (b, c). Then the pair obtained by coordinate-wise multiplication (a, b)(b, c) = (ab, bc) =

(b, 0)(a, c) = b(a, c) is algebraically generated by (a, b) and (b, c), even though (a, c) might not be.

We are now ready to prove Theorem 6.4.4.

Proof. We will treat both cases at the same time. In the first case, when we are looking for solutions

over T, the condition on g ensures that even if every coefficient of f is bigger than the corresponding

coefficient of g there is no aaa ∈ Tn such that f(aaa) = g(aaa) = −∞.

First we show that if there exists a pair (f, g) with the desired property then ∄ aaa ∈ Tn such

that f(aaa) = g(aaa) and so we always have f(aaa) > g(aaa) or f(aaa) < g(aaa). Without loss of generality we

can assume that f and g have the same monomials all with non-zero coefficients, because we can

always add to (f, g) a pair from the diagonal, that is of the form (h, h) keeping the condition on the

coefficients and the algebraic generation. Note that we can also assume without loss of generality

that all coefficients are positive by multiplying (f, g) with pairs of the form (k, 0) for large enough

positive k. Thus if f =

ciMi, whereMis are monomials and g =


biMi, f(aaa) = max(ci+Mi(aaa))

and g(aaa) = max(bi +Mi(aaa)). Hence we see that if ci > bi for every i, then f(aaa) > g(aaa).

For the other direction, if V(C) = ∅, then show there is a pair (f, g) which satisfies the conditions

in the proposition. However from Proposition 6.4.1 follows that if V(C) = ∅, then (1, ϵ) ∈ Rad(C)

and hence (f, ϵf) ∈ C, for some f with a non-zero constant term. Depending on ϵ either f or ϵf

has bigger coefficients, i.e. newt(f) is sitting over newt(ϵf) (or the other way around). Note that

even though this pair satisfies the condition on the coefficients it (f, ϵf) may not be an algebraic

combination of the set F , that is it is in the transitive closure of (all algebraic combinations of) F .

But by Lemma 6.4.5 and the observation following it we can take instead a pair h(f, ϵf) for some h

which has all desired properties.
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7

Connections to tropical varieties

In this chapter we describe how the results obtained in the previous sections relate to the existing

notions of tropical varieties and tropical schemes introduced in Chapter 2.

For the rest of this section K will be a field with a valuation ν : K → T and (K∗)n will be the

n-dimensional torus over K.

7.1 Bend relations and set theoretic tropicalization

We start with a remark on our notation. We would use V (I) to denote the zero locus of an ideal I

and V(C) to be the set defined in the previous section V(C) = {www ∈ Tk | f(w) = g(w), ∀(f, g) ∈ C},

for a congruence C. This should not lead to ambiguity.

We make an observation that links set-theoretic tropicalization, tropical schemes and the sets

V(C) defined in the previous section. Let I be an ideal of K[x±1] and let X = V (I), then

V(Bend(I)) = trop(X). (7.1.1)

This equality follows directly from the definition of the above objects. Recall that Bend(I) =

{(ν(f), ν(f)î) : ∀f ∈ I}, then V(Bend(I)) = {www : ν(f)(www) = ν(f)î(www),∀f ∈ I} = {www :

trop(f)(www) = trop(f)î(www)}. In other words V(Bend(I)) is the set of all points for which every f ∈ I,

trop(f)(www) achieves its maximum twice or alternatively the initial ideal inwwwI does not contain 1.

This set is trop(X) by Theorem 2.1.9.

Remark 7.1.1. Notice that if X = V (I), then every point www on trop(X) corresponds to a geometric

prime congruence which lies above Bend(I) and has defining matrix [1 www].
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Let I be an ideal of K[x±1
1 , . . . , x±1

n ], where K a valued field, and let I be generated by

{f1, . . . , fk}. We saw in Example 2.2.3 that the bend congruence Bend(I) of an ideal may not

be determined by the generators of I, in fact this is rarely the case even for principal ideals. In other

words Bend(f) ⊊ Bent(I).

Remark 7.1.2. This strict containment be seen even in the simplest case, for example when f =

x+ y+ z. It is easy to show that the relation x2+xy+ y2 ∼ x2+xy+ y2+ yz belongs to Bend(⟨f⟩)

but not to Bend(f).

Remark 7.1.3. Note that even if we consider the polynomials as functions that is, consider Bend(I)

over the Rad(∆), then we still have ⟨Bend(f), Rad(∆)⟩ ⊊ ⟨Bend(I), Rad(∆)⟩. We can see this in

the following example.

Example 7.1.4. Similarly to Example 2.2.3, let f = x3 + x2y + xy2 + y3 and I = ⟨f⟩. Then the

bend relations in degree 3 are generated by

x2y + xy2 + y3 ∼ x3 + xy2 + y3 ∼ x3 + x2y + y3 ∼ x3 + x2y + xy2.

Now if we look at the congruence over Rad(∆) we see that in degree 3 the bend relations are

generated by

x3 + y3 ∼ x3 + xy2 ∼ x2y + y3.

However in degree 4, we have x4 ∼ y4, since (x − y)f ∈ I, but (x4, y4) is not in the semi-module

congruence ⟨Bend(f), Rad(∆)⟩.

However, we have the following (non-surprising) result.

Proposition 7.1.5. Let I be and ideal of K[x±1
1 , . . . , x±1

n ] such that I = ⟨f⟩ , then

V(Bend(f)) = V(Bend(I)).

Proof. First note that V(Bend(f)) = {www ∈ Tn : f(www) = fî(www)}, in other words this is the set of points

in T for which the maximum of f is achieved at least twice. But this means that V(Bend(f)) =

trop(V (I)) by definition of a tropical hypersurface. On the other hand, by (7.1.1) we have that

V(Bend(I)) = trop(V (I)), hence the statement.

We know that by Theorem 2.1.7 and Corollary 2.1.8 every tropical variety is determined by a

finite set of polynomials, namely its tropical basis. In particular, if an ideal is principal then its
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generators is a tropical basis. We can generalize the above result.

Let I be an ideal of K[xxx±1] with tropical basis T . We will denote by Bend(T ) the congruence

generated by the bend relations of the coefficient-wise valuations of the elements of T .

Proposition 7.1.6. Let I be an ideal of the Laurent polynomial ring over K. Then there exists

a finite subset G ⊂ Bend(I) such that V(G) = V(Bend(I)), namely G = Bend(T ), where T is a

tropical basis for I.

Proof. Let G = Bend(T ). Since G ⊆ Bend(I) then V(G) ⊇ V(Bend(I)). We need to show

the opposite inclusion. Assume www′ ̸∈ V(Bend(I)), we want to see that www′ ̸∈ V(G). Recall that

V(Bend(I)) = trop(X) = {www : inwwwI ̸= ⟨1⟩}, so www′ is such that inwww′I = ⟨1⟩, but then by definition of

tropical basis this means that inwww′T = ⟨1⟩, then www′ ̸∈ V(G), which means that trop(f)(w) achieves

its maximum only once for some f ∈ T .

Remark 7.1.7. Note that Bend(I) is almost never finitely generated and thus usuallyG ⊊ Bend(I).

Remark 7.1.8. If C is any non-finitely generated congruence, then there does not necessarily exist

a finite set G such that V(G) = V(C). It can be seen in the following example.

Example 7.1.9. Recall from Example 6.3.4 the congruence C of T[x] generated by the pairs (t−c+

x, x) for all c > 0. Note that

V(C) = {tc : c ≥ 0} = [1,∞).

To see this, note that V(C) =


(f,g)∈C

V (f, g), where V (f, g) = {a : f(a) = g(a)}. We obtain that

V(C) =


(f,g)∈C

V (f, g) =

c>0

{a : t−c ≤ a} =

c>0

[t−c,∞) = [1,∞).

Now let G be a finite subset of C, of cardinality g < ∞. Assume that V(G) = V(C), then

V(G) = [1,∞). But

V(G) =


(f,g)∈G

V (f, g) =

g
c>0

[t−c,∞) = [1,∞),

but since this is a finite intersection if intervals (g < ∞), then one of the intervals is [1,∞), which

means that one of the pairs in G is (1 + x, x), but this is a contradiction because (1 + x, x) ̸∈ C as

seen in Example 6.3.4.
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7.2 Krull dimension of tropical varieties

Recall that by Theorem 2.1.10 the tropicalization trop(X) of a d-dimensional subvariety X of (K∗)n

is a polyhedral complex of pure dimension d. The goal of this section is to relate the dimension of

X or rather trop(X) to the Krull dimension that we have defined in Chapter 3.

Theorem 7.2.1. Let X = V (I) be a subvariety of (K∗)n of dimension d. Then

dimT[xxx]/Bend(I) = d+ 1.

Proof. We begin by making the following observation. Let C be a congruence, then dimT[xxx]/C =

dimT[xxx]/P, where P is a prime over C of maximal rank. If P has a defining matrix U of rank r(U),

then recall that by Proposition 5.3.3 we have that dimT[xxx]/P = r(U). Thus if P is a maximal rank

prime over Bend(I), it suffices to show that P has rank d+ 1.

We first see that there always exists a prime P with defining matrix U containing Bend(I), such

that P has a geometric prime lying over it and has rank r(U) = d+ 1. Let F be a maximal cell of

the polyhedral complex trop(X) and ω ∈ F . Now the affine span of F has dimension equal to the

dimension of trop(X) which is d. Hence, there exist d vectors u1, . . . , ud such that ω, u1, . . . , ud are

affine independent and inωI = inu1
I = · · · = inud

I. Now consider the matrix

U =



1 ω

1 u1
...

...

1 ud


.

Since ω, u1, . . . , ud are affine independent then the rows of U are linearly independent and thus

r(U) = d+ 1. Furthermore, U is admissible. Hence it is the defining matrix of a prime congruence,

which we will call P . Notice that P contains Bend(I), since if v ∈ trop(X) then every polynomial

of I takes its maximum twice with respect to the vector (1, v).

We remain to see that every prime P over Bend(I) has rank at most d + 1. We first show this

in the case when P has a geometric prime over it. Assume for contradiction that P is such a prime

over Bend(I). Let W be the defining matrix of P of rank r(W ) > d + 1. Denote the rows of

W by w1, . . . , wr(W ). Note that they are linearly independent by definition. Consider the vectors

w′
1 = w1, w

′
2 = w1+ ϵ

′
1w2, . . . , w

′
r(W ) = w1+ · · ·+ ϵ′r(W )wr(W ) which are also linearly independent.

We can scale each of the vectors w′
1, . . . , w

′
r(W ) so that the first entry is 1. Now consider the rescaled
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vectors without the first entry and call them w′′
1 , . . . , w

′′
r(W ). Note that the vectors w′′

1 , . . . , w
′′
r(W )

are affine independent and lie on the same face of trop(X). Since we know that the dimension of

trop(X) is at most d, we know that r(W ) ≤ d+ 1.

Remains to investigate the case when P (containing Bend(I)) does not have a geometric prime

over it. Let the matrix of P be U . By assumption the first entry of the first row is zero. However, if

the first entry of any other row is not zero, we can add a suitable multiple of this row to the first one.

This way we obtain the matrix of a different prime of the same rank, which still contains Bend(I)

but has a geometric prime over it. We are done by the previous discussion. So we can assume that

the entries in first column of U are all zeroes. Now consider the prime P ′ with matrix U ′, where

U ′ =

1 000

000 U

 .
Then there are two cases. First if the valuation ν is trivial, then prime P ′ lies above Bend(I) and

clearly r(U ′) > r(U). So P is not a maximal rank prime over Bend(I). Now, let ν be non-trivial.

Consider the prime P ′ as before and notice that since it is a prime over Bend(I) when ν is trivial,

and since there is a geometric prime over P ′, then by the earlier argument dimT[xxx]/P ′ is at most

dimX + 1, that is at most d + 1. Now since r(U ′) > r(U), then r(U) < d + 1 and hence is not

a maximal rank prime. So we conclude that if P is a maximal rank prime with matrix U , then

r(U) = d+ 1.

7.3 Bend congruences and higher rank primes

We begin by pointing the reader’s attention to the fact that

trop(V (I)) = Hom(T[xxx]/Bend(I),T).

In this section we investigate the answer to the following question. Can we find two different

congruences C,C ′ such that Hom(T[xxx]/C,Tn) = Hom(T[xxx]/C ′,Tn)? Recall that we denote by Tn

the semifield with underlying set Rn ∪ {−∞}, with multiplication being the usual vector addition

and addition defined so it induces the lexicographic ordering on the base set.

Proposition 7.3.1. Let R and S be two semirings and let S be a domain. Let ϕ : R → S be a

semiring homomorphism. Then kerϕ is prime.
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Proof. Imϕ ≃ R/ kerϕ. But Imϕ is a subsemiring of S hence also a domain. Therefore kerϕ is

prime by Proposition 4.2 (ii)

Note that Tn is a domain, since it is quotient cancellative and totally ordered by Proposition

3.1.14. Thus if ϕ : T[xxx] → Tn then kerϕ is prime by Proposition 7.3.1.

Consider the set Hom(T[xxx]/C,Tn). It is the set of morphisms ϕ from T[xxx] to Tn, such that

kerϕ ⊇ C. In general, Hom(T[xxx]/C,Tn) = Hom(T[xxx]/Rad(C),Tn) thus we only need to consider

the case where C and C ′ are radical congruences, because by the above discussion kerϕ is a prime

congruence over C for every ϕ ∈ Hom(T[xxx]/C,Tn) and Rad(C) is the intersection of all prime

congruences lying over C.

Proposition 7.3.2. In the case when n = 1 and C and C ′ are finitely generated congruences

Hom(T[xxx]/C,T) is completely determined by C+. In particular Hom(T[xxx]/C,T) = Hom(T[xxx]/C ′,T)

if and only if C+ = C ′
+.

Proof. By definition C+ is the set of all primes that contain C but not (1, ϵ) hence C+ = Rad(C)+,

and by Theorem 5.3 (ii) C+ = E(V(C)). We conclude that the intersection of the geometric congru-

ences over C and Rad(C) are the same.

Remark 7.3.3. It depends whether the Hom(T[xxx]/C,T) is taken in the category of idempotent

semirings (B-algebras) or T-algebras, in particular whether T is preserved by these morphisms. If

it were the latter, then in the case n = 1 the maps T[x] → T are simply evaluation maps and

in particular surjective. Note, however, that in the case n ≥ 2 there are no surjective morphisms

ϕ : T[xxx] → Tn, which is shown in the following proposition.

Proposition 7.3.4. There is no surjective morphisms ϕ : T[x1, . . . , xk] → Tn, for n > 1.

Proof. Assume there is a surjective map ϕ : T[x1, . . . , xk] → Tn. Notice that for the map ϕ to be

surjective we need k + 1 > n. Now we have that T[x1, . . . , xk]/ kerϕ ∼= Tn where kerϕ is a prime

congruence since Tn is a domain. The multiplicative semigroup of T[x1, . . . , xk]/ kerϕ is a quotient

of R⊕Nk while the multiplicative group of Tn is Rn. However, Rn is not a quotient of R⊕Nk unless

n = 1, which is a contradiction to the choice of n.

Note that if the maps ϕ are not surjective then the kernel no longer determines them completely.

Consider the following example,
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Example 7.3.5. There are infinitely many copies of Zmax embedded into T. Consider the surjective

morphism T[x] → Zmax. Then its kernel is determined by the kernel of the morphism T[x] → T,

obtained after composing T[x] → Zmax with the embedding of Zmax into T. However, if we consider

just the maps into T then the kernel no longer carries the information which copy of Zmax we map

onto.

Remark 7.3.6. Analogously to classical algebraic geometry, the T-rational pointsHomT−alg(T[xxx]/C,T)

is the set of evaluation maps, which are in particular surjective and thus determined by their kernel.

The kernels of these maps are the geometric primes containing C.

Lemma 7.3.7. Every morphism ϕ : T → T is of the form ϕ(ta) = tac for some fixed c ≥ 0.

Furthermore, ϕ is surjective when c > 0. In other words a morphism T → T is uniquely determined

by the image of t.

Proof. Let ϕ(t) = tc. We want to show that ϕ(ta) = tac. In the case when a ∈ Z the statement

holds, since ϕ is a morphism. It also holds if a ∈ Q. If a ∈ R \ Q, we would like to show that tb ∈ T

is the preimage of tb/a, or equivalently that ϕ(tc) = tac, for all c ∈ R. Let q ∈ Q and q > c, then

tc + tq = tq thus ϕ(tc) + ϕ(tq) = ϕ(tq) = tqa, so we conclude that ϕ(tc) < tqa. Now take r ∈ Q and

r < c, to we conclude that ϕ(tc) > tra. Since Q is dense in R we get that ϕ(tc) = tac.

Proposition 7.3.8. If dim(T[x1, . . . , xk]/P ) > 1, then there is no semiring homomorphism ϕ :

T[x1, . . . , xk] → T, such that kerϕ = P .

Proof. Let us assume that there exists a semiring homomorphism ϕ : T[x1, . . . , xk] → T. There are

two possibilities. In the first case ϕ(t) = ta, for a > 0. Note that a cannot be negative, because we

define t > 1. Then we can see that this map is surjective, for every tb ∈ T is the preimage of tb/a.

This holds since every automorphism of the additive group of R that preserves the ordering is linear.

Alternatively this follows from Lemma 7.3.7. Hence T[x1, . . . , xk]/P ≃ Imϕ = T. But dimT = 1,

hence dim(T[x1, . . . , xk]/P ) = 1 which contradicts the assumption.

In the second case, ϕ(t) = t0 = 1 and ϕ(xi) = tai . Here we can explicitly see that kerϕ = P [U ],

where U = [0 a1 . . . an]. But then dim(T[x1, . . . , xk]/P [U ]) = r(U) = 1 which is a contradiction.

Remark 7.3.9. Finitely generated additively idempotent semirings are quotients of a polynomial

semiring over B, which has countable cardinality.
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Proposition 7.3.10. Let P be a prime in the polynomial semiring T[x1, . . . , xk], such that P =

P [U ], for a t-admissible n× (k+1) matrix U , with n < k+1. Then exists a map ϕ : T[x1, . . . , xk] →

Tn, such that P = kerϕ.

Proof. Let U be the matrix, whose i-th row is given by [τi ui1 . . . uik ], for all 1 ≤ i ≤ n. Denote

the generator of the l-th copy of T of Tn by tl. Then define the map ϕ,

ϕ(t) = (t1
τ1 , . . . , tn

τn)

ϕ(xj) = (t1
uj1 , . . . , tn

ujn ),

for all 1 ≤ j ≤ n.

Note that for two monomials m1 = xxxaaa1 and m2 = xxxaaa2 we have that (m1,m2) ∈ P if and only if

Uaaa1 = Uaaa2 which happens if and only if ϕ(m1) = ϕ(m2).

Relation to existing tropicalization constructions

The explicit description of prime congruences allows one to interpret the points of the set theoretic

tropicalization as geometric congruences of T[xxx].

We can also think of the set theoretic tropicalization of a variety X as the T-points of the scheme

T rop(X) as constructed in [GG13]. If X = Spec A, where A is a k-algebra and k is a valued field,

then the set of these points can be obtained as the image of the Berkovich analytification of X

under the standard tropicalization map. The Berkovich analytification of X is the set of rank one

valuations on A compatible with k.

On the other hand, the Tn-points of T rop(X) correspond to the points of the Hahn tropicalization

[FR15], which is a tropicalization over a higher rank valued field (higher rank setting was initially

studied by [Ba12]). The Tn-points of the universal embedding constructed in [GG14] are the same as

the points of the Hahn analytification. One of my ongoing research projects focuses on investigating

the relation between the primes of higher rank (corresponding to a matrix of rank greater than 1)

and the points on the Hahn analytification.
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