PROBLEM SET 2

due March 14, 2017

1. The maximal ideal $\left\langle x_{1}+x_{2}+3, x_{1}+5 x_{2}+7\right\rangle \subseteq \mathbb{C}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}\right]$ defines a point in the plane. Find a tropical basis for this ideal.
2. Let I be a homogeneous ideal in $\mathbb{Q}[x, y, z]$ generated by the set

$$
\mathcal{G}=\left\{x+y+z, x^{2} y+x y^{2}, x^{2} z+x z^{2}, y^{2} z+y z^{2}\right\} .
$$

Show that \mathcal{G} is a universal Gröbner basis, that is \mathcal{G} is a Gröbner basis for I for all $w \in \mathbb{R}^{n}$. Also show that \mathcal{G} is not a tropical basis.
3. Draw $\operatorname{trop}(V(f))$ for

- $f=t^{3} x^{2}+x y+t y^{2}+t x+y+1$
- $f=t x^{2}+4 x y-7 y^{2}+8$.

4. Suppose that $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle \subset \mathbb{C}\{\{t\}\}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, where each $f_{i} \in$ $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ is homogeneous with respect to each vector v in a linear space $L \subset \mathbb{R}^{n}$.

- Show that for each $a \in \mathbb{C}\{\{t\}\}, v=\left(v_{1}, \ldots, v_{n}\right) \in L$ and $p=$ $\left(p_{1}, \ldots, p_{n}\right) \in V(I)$ the point $a^{v} p=\left(a^{v_{1}} p_{1}, \ldots, a^{v_{n}} p_{n}\right)$ also lies on $V(I)$.
- Prove that if $w \in \operatorname{trop}(V(I))$, then $\operatorname{trop}(V(I))$ contains the affine space $w+L$.

5. (bonus) Let $K=\mathbb{Q}$ with the 2 -adic valuation. Compute a tropical basis for the ideal $\langle 2 x+y-4, x+2 y+z-1\rangle \subset \mathbb{Q}[x, y, z]$.
