PROBLEM SET 2 due March 14, 2017

- 1. The maximal ideal $\langle x_1 + x_2 + 3, x_1 + 5x_2 + 7 \rangle \subseteq \mathbb{C}[x_1^{\pm 1}, x_2^{\pm 1}]$ defines a point in the plane. Find a tropical basis for this ideal.
- 2. Let I be a homogeneous ideal in $\mathbb{Q}[x, y, z]$ generated by the set

$$\mathcal{G} = \{x + y + z, x^2y + xy^2, x^2z + xz^2, y^2z + yz^2\}.$$

Show that \mathcal{G} is a universal Gröbner basis, that is \mathcal{G} is a Gröbner basis for I for all $w \in \mathbb{R}^n$. Also show that \mathcal{G} is not a tropical basis.

- 3. Draw trop(V(f)) for
 - $f = t^3x^2 + xy + ty^2 + tx + y + 1$
 - $f = tx^2 + 4xy 7y^2 + 8$.
- 4. Suppose that $I = \langle f_1, \ldots, f_r \rangle \subset \mathbb{C}\{\{t\}\}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$, where each $f_i \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ is homogeneous with respect to each vector v in a linear space $L \subset \mathbb{R}^n$.
 - Show that for each $a \in \mathbb{C}\{\{t\}\}, v = (v_1, \ldots, v_n) \in L$ and $p = (p_1, \ldots, p_n) \in V(I)$ the point $a^v p = (a^{v_1} p_1, \ldots, a^{v_n} p_n)$ also lies on V(I).
 - Prove that if $w \in trop(V(I))$, then trop(V(I)) contains the affine space w + L.
- 5. (bonus) Let $K = \mathbb{Q}$ with the 2-adic valuation. Compute a tropical basis for the ideal $\langle 2x + y 4, x + 2y + z 1 \rangle \subset \mathbb{Q}[x, y, z]$.