PROBLEM SET 3
 due April 28, 2017

1. Compute the multiplicities of all rays in the one dimensional fan trop $(V(f))$, where

$$
f(x, y)=x^{3} y^{2}-x^{2} y^{3}-5 x^{2} y^{2}-2 x^{2} y-4 x y^{2}-33 x y+16 y^{2}+72 y+81 .
$$

2. What is the largest multiplicity of any edge in the tropicalization of any plane curve of degree d ?
3. Let V be the row space of the following matrix

$$
A=\left[\begin{array}{cccccc}
1 & 1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0 & -1 & -1
\end{array}\right]
$$

defined over $K=\mathbb{C}\{\{t\}\}$. Let M be the matroid of columns of A with ground set $[6]=\{1, \ldots, 6\}$.
(a) Let $I(V)$ be the linear ideal in $K\left[x_{1}, \ldots x_{6}\right]$, defining $V \subset \mathbb{P}^{5}$. Compute $I(V)$, list the circuits of $I(V)$ and M, respectively.
(b) Draw the Hasse diagram of the lattice of flats of M and show that the flats of M are in correspondence with partitions of the set $\{2,3,4,5\}$.
(c) For each $i=1, \ldots, 6$ let H_{i} be the hyperplane in \mathbb{P}_{K}^{3} with normal vector $a_{i}=$ the i-th column of A. Let X be $\mathbb{P}_{K}^{3} \backslash \bigcup_{i=1}^{6} H_{i}$. Show that the map

$$
\phi: X \rightarrow \mathbb{P}_{K}^{5}, \quad \boldsymbol{x}=\left[x_{1}: \cdots: x_{4}\right] \mapsto\left[a_{1} \cdot \boldsymbol{x}: \cdots: a_{6} \cdot \boldsymbol{x}\right] \in\left(K^{*}\right)^{6} / K^{*} \cong\left(K^{*}\right)^{5} .
$$

is injective and identifies its image with V.
4. Given the lattice of flats of a matroid M (not necessarily realizable), describe a method to recover the circuits of M, the independent sets of M and the bases of M.
5. (bonus) Let I be a homogeneous ideal in $K\left[x_{1}, \ldots, x_{n}\right]$, and let \boldsymbol{w} be in the relative interior of a maximal cell σ of trop $(V(I))$. Let P be the toric ideal associated to the lattice $\left\{\boldsymbol{u} \in \mathbb{Z}^{n}: i n_{\boldsymbol{u}}\left(i n_{\boldsymbol{w}}(I)\right)=i n_{\boldsymbol{w}}(I)\right\}$. ${ }^{1}$ Show that the multiplicity of σ can be computed by the formula

$$
\operatorname{mult}(\sigma)=\operatorname{degree}\left(i n_{\boldsymbol{w}}(I)\right) / \operatorname{degree}(P)
$$

[^0]
[^0]: ${ }^{1}$ cf Sturmfels - "Gröbner basis and convex polytopes"

