SOLUTIONS TO MATH 225 NOTES AND SOLUTIONS LINEAR ALGEBRA AND MATRIX THEORY

SHIYUE LI

Midterm Review I

Basics of Linear Transformation. Are these true or false? Let $T: V \rightarrow W$ where V, W are finite dimensional vector spaces over F.
(a) If T is linear, then T preserves sums and scalar products.
(b) If $T(x+y)=T(x)+T(y)$, then T is linear.
(c) T is one-to-one if and only if the only vector x such that $T(x)=0$ is $x=0$.
(d) If T is linear, then $T(0)=0$.
(e) If T is linear, then $\operatorname{dim} \operatorname{ker}(T)+\operatorname{rk}(T)=\operatorname{dim} W$.
(f) If T is linear, then T carries linearly independent subsets of V onto linearly independent subsets of W.
(g) If $T, U: V \rightarrow W$ are both linear and agree on a basis for V, then $T=U$.
(h) Given $x_{1}, x_{2} \in V$ and $y_{1}, y_{2} \in W$, there exists a linear transformation $T: V \rightarrow W$ such that $T\left(x_{1}\right)=y_{1}$ and $T\left(x_{2}\right)=y_{2}$.

Examples of Linear Transformation.

(a) Consider the linear transformation $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by $T(f(x))=$ $x f(x)+f^{\prime}(x)$.

- Compute the nullity and rank of T.
- Verify the dimension theorem.
- Determine if T is one-to-one or onto.
(b) Consider the linear transformation $M_{n \times n}(F) \rightarrow F$ defined by $T(A)=\operatorname{tr}(A)$. Recall that

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i} .
$$

- Compute the nullity and rank of T.
- Verify the dimension theorem.
- Determine if T is one-to-one or onto.
(c) Prove that there exists a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $T(1,1)=$ $(1,0,2)$ and $T(2,3)=(1,-1,4)$. What is $T(8,11)$?
(d) Let $T: P(\mathbb{R}) \rightarrow P(\mathbb{R})$ be defined by $T(f(x))=f^{\prime}(x)$. Recall that T is linear. Prove that T is onto, but not one-to-one.

Characteristic of Fields. Linear independence or dependence of a set depends on the characteristic of the field.
(a) Is the set $\left\{\left(\begin{array}{lll}1 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 1 & 1\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)\right\}$ a linearly independent set in $\mathbb{F}_{2}^{3}=(\mathbb{Z} / 2 \mathbb{Z})^{3}$?

