Review for Math 225

1. Consider the matrix:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 3 \\
5 & 2 & -1 \\
1 & 1 & 1
\end{array}\right]
$$

(a) What is $\operatorname{det}(A)$?
(b) What are the rank and nullity of A ?
(c) Is L_{A} an isomorphism?
(d) Find the eigenvalues and eigenvectors of A.
(e) Let \mathbb{B} be the set of eigenvectors of A. Is this a basis for \mathbb{R}^{3} ? If so find the matrix of L_{A} in this basis.
(f) Compute A^{5}.
2. (a) Find two different orthonormal bases for the image of A, where A is the matrix in Problem 1.
(b) Find an orthonormal basis for the vector space $V=\operatorname{span}\{(1,0,2),(1,-1,3)\} \subseteq$ \mathbb{R}^{3}.
3. Consider the matrix $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
(a) How many different A^{k} are there for k a non-negative integer?
(b) Find a matrix A such that there are only 6 different matrices that A^{k} can be, for k a non-negative integer.
4. Let A be a 2×2 matrix such that $A^{2}=0$.
(a) What is the relation between the image and the kernel of A ?
(b) Is A invertible?
(c) What is the rank of A ?
(d) What is an example of such matrix?
5. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$, such that $T(a, b, c)=\int_{0}^{1}\left(a x^{2}+b x+c\right) d x$.
(a) Show T is linear.
(b) Find a basis for the kernel T.
6. Decide if the following statements are true or false. If true, prove it. If false, give a counterexample.
(a) If two matrices are similar, then they share the same reduced row reduced echelon form.
(b) If two matrices share the same reduced row echelon form, they are similar.
7. Let $A \in M_{n \times m}(\mathbb{R})$ with m linearly independent columns. Is $A^{T} A$ invertible? Is it an isomorphism? Does that depend on whether $n \geq m$ vs $m \geq n$?
8. Let A be an $n \times n$ matrix with real entries.
(a) Show that $T(A)=A-A^{T}$ is linear.
(b) What is the dimension of the kernel of T ?
9. Let $V \subseteq \mathbb{R}^{n}, \operatorname{dim} V=m$. Let A be the matrix of the orthogonal projection onto V. What can you say about the eigenvalues of A and their multiplicities. (Hint: Look at an example).
10. Consider the $n \times n$ matrix $A=\left[\begin{array}{cccc}n-1 & -1 & \ldots & -1 \\ -1 & n-1 & \ldots & -1 \\ \ldots & & & \\ -1 & -1 & \ldots & n-1\end{array}\right]$.
(a) Find the eigenvalues of A and their algebraic multiplicities.
(b) Find a basis of eigenvectors for A.
11. Let T be a linear operator on a finitely dimensional vector space V. Assume that T is a diagonalizable. Let \mathcal{B} and \mathcal{B}^{\prime} be two different basis for V. How are the eigenvalues of $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{B}^{\prime}}$ related?
12. Denote by $C(\mathbb{R} ; \mathbb{R})$ the set of all continuous functions from \mathbb{R} to \mathbb{R}.
(a) Let P_{n} denote the set of all polynomials of degree n or less. Show that P_{n} is a subspace of $C(\mathbb{R} ; \mathbb{R})$.
(b) Let P denote the set of all polynomials (of all degrees). Show that P is a subspace of $C(\mathbb{R} ; \mathbb{R})$. What is the dimension of P ? How do you know?
13. Consider the set of vectors $S=\left\{v_{1}, \ldots v_{5}\right\}$, where

$$
\begin{aligned}
v_{1} & =(0,1,2,3) \\
v_{2} & =(1,2,3,4) \\
v_{3} & =(3,2,1,0) \\
v_{4} & =(0,0,0,0) \\
v_{5} & =(1,1,1,1) .
\end{aligned}
$$

What is $\operatorname{dim} S$?
14. From the book:
(a) p. 117-6 d)
(b) p. $181-7 \mathrm{~d}$)
(c) p. 196-6
(d) p. 221-4
(e) all True/False (problem 1 after each section)

