PROBLEM SET 2
 due February 5, 2018

Solve at least three problems:

1. Show that if A, B are nilpotent ideals of R then so is their sum $A+B$.
2. Show that if R is a ring then $J(R)$ contains every nil left ideal.
3. Let R be a J-semisimple domain (that is $J(R)=0$ and there are no zero divisors). Let $a \in Z(R) \backslash 0$. Conclude that the maximal left modules not containing a have a trivial intersection.
4. Assume $I_{1}, I_{2}, \ldots I_{n}$ are ideals of R such that R / I_{i} are all semisimple. Show that $R / \cap I_{i}$ is also semisimple. (Hint: One can assume that they are all maximal and distinct).
5. Give a counterexample to the above claim if there are infinitely many ideals.
6. Is it true that the minimal left ideals of $M_{n}(R)$ are of the form $M_{n}(I)$, where I is a minimal left ideal?
7. We know that R is a ring with exactly 7 non-trivial left ideals. Show that one of them is two-sided.
8. Are there non-trivial units of $\mathbb{Z} C_{7}$, where C_{7} is the cyclic group of order 7 ? (The trivial units of a group ring $\mathbb{Z} G$ are of the form $\pm g$ with $g \in G)$.
