PROBLEM SET 4 due March 7, 2018

Solve at least three problems:

1. Find infinitely many distinct primary decompositions of $\left(x^{2}, x y\right) \subseteq \mathbb{R}[x, y]$.
2. Find the primary decomposition of $\left(x^{2}-(y+1)^{3},\left(y^{2}-1\right)^{2}\right) \subseteq \mathbb{Q}[x, y]$. (Warning: This requires patience and determination!)
3. Find the primary decomposition of $\left(x^{2}-y z, x(z-1)\right) \subseteq \mathbb{Q}[x, y, z]$.
4. Let I be an ideal of R and $x \in R$ such that both $I+(x)$ and ($I: x)$ are finitely generated. Show that I is also finitely generated.
5. Show that if the nilradical of R is trivial then the Jacobson radical of $R[x]$ is trivial. (Hint: find a condition for the invertibility of a polynomial)
6. Show that if the nilradical is a maximal ideal then (0) is a primary ideal.
7. Let I, J be two ideals of a Noetherian ring. Show that there exists an integer n such that $I \cap J^{n} \subseteq I J$.
