PROBLEM SET 3

due March 23, 2020

Solve at least three problems:

1. Prove that the character table of G is an invertible matrix.
2. Compute the character of the group $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
3. Show that the character table of the dihedral group D_{4} of order 8 is the same as the character table of the group of quaternions Q_{8}.
4. Prove that if χ_{U} is a linear character of $\mathbb{C} G$ and χ_{V} is an irreducible character of $\mathbb{C} G$ the the product $\chi_{U} \chi_{V}$ is an irreducible character of $\mathbb{C} G$.
5. Show that the orthogonal central idempotents of $\mathbb{C} G$ can be computed using the formula

$$
e_{i}=\frac{1}{|G|} \sum_{g \in G} \chi_{i}(1) \chi_{i}\left(g^{-1}\right) g .
$$

6. Let N be a normal subgroup of G, and let V be a $\mathbb{C}(G / N)$-module. Show that if ϕ is the character of V, then when V is viewed as a $\mathbb{C} G$-module the corresponding character is $\phi \pi$, where $\pi: G \rightarrow G / N$ is the natural projection.
7. Find the character table of S_{4}. (Hint: Use the previous exercise)
