PROBLEM SET 1 due September 13, 2018

- 1. Compute the remainder on division of the polynomial $f = x^7y^2 + x^3y^2 y + 1$ by the polynomials $g = xy^2 x$, $h = x y^3$. Use the graded lexicographical order.
- 2. Show that there is a unique monomial order on $\mathbb{C}[x]$.
- 3. Suppose that $I = \langle \boldsymbol{x}^{\alpha(1)}, \dots, \boldsymbol{x}^{\alpha(s)} \rangle \subseteq k[x_1, \dots, x_n]$ is a monomial ideal. Prove that a polynomial f is in I if and only if the remainder of f on division by $\{\boldsymbol{x}^{\alpha(1)}, \dots, \boldsymbol{x}^{\alpha(s)}\}$ is zero.
- 4. Let $I = \langle z x^2, y x^3 \rangle$ be an ideal of $\mathbb{C}[x, y, z]$. Use Buchberger's Criterion to check if $G = \{z x^2, y x^3\}$ is a Gröbner basis for I with respect to the lexicographic order.
- 5. Let $I \in k[x_1, \ldots, x_n]$ be a principal ideal. Show that any finite subset of I containing a generator for I is a Gröbner basis for I.
- 6. Let $f \in k[x_1, \ldots, x_n]$. If $f \notin \langle x_1, \ldots, x_n \rangle$, then show that $\langle f, x_1, \ldots, x_n \rangle = k[x_1, \ldots, x_n]$.