PROBLEM SET 1
 due September 13, 2018

1. Compute the remainder on division of the polynomial $f=x^{7} y^{2}+x^{3} y^{2}-y+1$ by the polynomials $g=x y^{2}-x, h=x-y^{3}$. Use the graded lexicographical order.
2. Show that there is a unique monomial order on $\mathbb{C}[x]$.
3. Suppose that $I=\left\langle\boldsymbol{x}^{\alpha(1)}, \ldots, \boldsymbol{x}^{\alpha(s)}\right\rangle \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is a monomial ideal. Prove that a polynomial f is in I if and only if the remainder of f on division by $\left\{\boldsymbol{x}^{\alpha(1)}, \ldots, \boldsymbol{x}^{\alpha(s)}\right\}$ is zero.
4. Let $I=\left\langle z-x^{2}, y-x^{3}\right\rangle$ be an ideal of $\mathbb{C}[x, y, z]$. Use Buchberger's Criterion to check if $G=\left\{z-x^{2}, y-x^{3}\right\}$ is a Gröbner basis for I with respect to the lexicographic order.
5. Let $I \in k\left[x_{1}, \ldots, x_{n}\right]$ be a principal ideal. Show that any finite subset of I containing a generator for I is a Gröbner basis for I.
6. Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$. If $f \notin\left\langle x_{1}, \ldots, x_{n}\right\rangle$, then show that $\left\langle f, x_{1}, \ldots, x_{n}\right\rangle=k\left[x_{1}, \ldots, x_{n}\right]$.
