PROBLEM SET 2

due October 2, 2018

Notation and conventions:
We assume that varieties are irreducible.
We denote by $\mathbb{I}(S)$ the set $\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(s)=0, \forall s \in S\right\}$.

1. Use Buchberger's Algorithm to compute (by hand) a Gröbner basis for the ideal $I \in$ $\mathbb{C}[x, y, z]$, where

$$
I=\left\langle z-x^{5}, y-x^{3}\right\rangle,
$$

with respect to either the lexicographic order or graded reverse lexicographic order. Use a computer algebra system ${ }^{1}$ to check which of these two orderings gives you a smaller Gröbner basis (that is, which basis has fewer elements).
2. Let $X \subset \mathbb{A}_{\mathbb{C}}^{n}$ be the variety of the ideal $J=\left\langle x^{2}+y^{2}-1, x-1\right\rangle$. Determine the ideal $\mathbb{I}(X)$. Is it true that $\mathbb{I}(X)=J$?
3. Let $X \subset \mathbb{A}_{k}^{n}$ be a closed algebraic set (reducible variety) which consist of two (distinct) points. What's the coordinate ring of X ?
4. Prove that \mathbb{A}_{k}^{n} is compact in the Zariski topology, that is, prove that from any covering of \mathbb{A}_{k}^{n} by Zariski open sets one can extract a finite subcovering.
5. A curve C in \mathbb{A}_{k}^{n} is a one dimensional closed subvariety. Show that if $X \subset \mathbb{A}_{k}^{n}$ is a closed subvariety, containing infinitely many points of C, then $C \subseteq X$.

[^0]
[^0]: ${ }^{1}$ I recommend using Macaulay2. You can learn about it here: http://www2.macaulay2.com/Macaulay2/ and you can use it online: http://habanero.math.cornell.edu:3690/

