PROBLEM SET 2 due October 2, 2018

Notation and conventions: We assume that varieties are irreducible. We denote by $\mathbb{I}(S)$ the set $\{f \in k[x_1, \ldots, x_n] : f(s) = 0, \forall s \in S\}$.

1. Use Buchberger's Algorithm to compute (by hand) a Gröbner basis for the ideal $I \in \mathbb{C}[x, y, z]$, where

$$I = \left\langle z - x^5, \ y - x^3 \right\rangle,$$

with respect to either the lexicographic order or graded reverse lexicographic order. Use a computer algebra system¹ to check which of these two orderings gives you a smaller Gröbner basis (that is, which basis has fewer elements).

- 2. Let $X \subset \mathbb{A}^n_{\mathbb{C}}$ be the variety of the ideal $J = \langle x^2 + y^2 1, x 1 \rangle$. Determine the ideal $\mathbb{I}(X)$. Is it true that $\mathbb{I}(X) = J$?
- 3. Let $X \subset \mathbb{A}_k^n$ be a closed algebraic set (reducible variety) which consist of two (distinct) points. What's the coordinate ring of X?
- 4. Prove that \mathbb{A}_k^n is compact in the Zariski topology, that is, prove that from any covering of \mathbb{A}_k^n by Zariski open sets one can extract a finite subcovering.
- 5. A curve C in \mathbb{A}_k^n is a one dimensional closed subvariety. Show that if $X \subset \mathbb{A}_k^n$ is a closed subvariety, containing infinitely many points of C, then $C \subseteq X$.

 $^{^1\}mathrm{I}$ recommend using <code>Macaulay2</code>. You can learn about it here: http://www2.macaulay2.com/Macaulay2/ and you can use it online: http://habanero.math.cornell.edu:3690/