PROBLEM SET 4
 due December 4, 2018

Notation and conventions:
We assume that varieties are irreducible.

1. Determine the singular points on the Steiner surface in \mathbb{P}^{3} with equation

$$
x_{1}^{2} x_{2}^{2}+x_{0}^{2} x_{2}^{2}+x_{0}^{2} x_{1}^{2}-x_{0} x_{1} x_{2} x_{3}=0 .
$$

2. Show that the product of smooth quasi projective varieties is smooth. (Hint: Use the Segre embedding to reduce to the affine case).
3. Show that a finite map between affine varieties is surjective. (Hint: You probably will need to use Nakayama's Lemma at some point).
4. Find the normalization of the plane curve defined by $x^{2}+x^{3}=y^{2}$.
5. Let $S \subseteq \mathbb{P}^{3}$ be a smooth cubic surface and let L_{1} ad L_{2} be two disjoint lines on S. Given a point $P \in \mathbb{P}^{3} \backslash\left(L_{1} \cup L_{2}\right)$ check that there is a unique line in \mathbb{P}^{3}, passing through P and intersecting L_{1} and L_{2}. Denote by P_{1} and P_{2} for the intersection points. Explain that $P \mapsto\left(P_{1}, P_{2}\right)$ defines a rational map $S \rightarrow L_{1} \times L_{2}$. (One can also show that there is a rational map $L_{1} \times L_{2} \rightarrow S$ making S is birational to $\left.\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$.
