We meet weekly on Wednesday at 3:00 PM (Central time), Richardson 108
Organizers: Alessandra Constantini and Kalina Mincheva.
Fall 2025
September 3
Kalani Thalagoda, Tulane University. A summation formula for mock modular forms.
.
Analytic number theorists frequently use summation formulas to study the asymptotic and statistical behavior of interesting (and sometimes erratic) arithmetic functions.
For Dirichlet series satisfying a certain functional equation, Chandrasekharan and Narasimhan proved a formula for a weighted sum of the first n coefficients. In this talk,
I will discuss a summation formula for mock modular forms of moderate growth and an application of it to Hurwitz class numbers. This is joint work with Olivia Beckwith,
Nicholas Diamantis, Rajat Gupta, and Larry Rolen.
September 10
Catherine Babecki. Oriented matroids from non-polyhedral cones.
.
Existing generalizations of matroids to infinite settings are combinatorial in nature-- we propose a geometric alternative. One perspective
on realizable oriented matroids comes from vector configurations and linear dependences among them. Pulling this back a step, the circuits
(minimal dependences) are exactly the support-minimal vectors which lie in the null space of a linear map. We define conic matroids in a way
that mimics this, and in particular, the "face-minimal" vectors in a subspace form a conic matroid analogously to standard realizable matroids.
If the cone is the nonnegative orthant, we recover standard realizable oriented matroids. We will discuss our precise definitions, show how
this structure captures features of Gale duality and conic programming, and share some of the directions we have yet to make headway in.
Joint work with Isabelle Shankar and Amy Wiebe.
September 17
Shahriyar Roshan Zamir, Tulane University. TBA.
.
TBA
September 24
Stephen Landsittel. TBA.
.
TBA
October 1
Madeline Brandt. TBA.
.
TBA
October 6 - note the special date and place (Hebert 201)!