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The synchronization of nearby sperm flagella as they swim in a viscous fluid was

observed nearly a century ago. In the early 1950s, in an effort to shed light on this

intriguing phenomenon, G.I. Taylor initiated the mathematical analysis of the fluid

dynamics of microorganism motility. Since then, models have investigated sperm

hydrodynamics where the flagellum is treated as a waving sheet (2D) or as a slender

waving filament (3D). Here we study the interactions of two finite length, flexible

filaments confined to a plane in a 3D fluid, and compare these to the interactions

of the analogous pair of finite, flexible sheets in a 2D fluid. Within our computa-

tional framework using regularized Stokeslets, this comparison is easily achieved by

choosing either the 2D or 3D regularized kernel to compute fluid velocities induced

by the actuated structures. We find, as expected, that two flagella swimming with

a symmetric beatform will synchronize (phase-lock) on a fast time scale and attract

towards each other on a longer time scale in both 2D and 3D. For a symmetric beat-

form, synchronization occurs faster in 2D than 3D for sufficiently stiff swimmers. In

3D, a greater enhancement in efficiency and swimming velocity is observed for at-

tracted swimmers relative to the 2D case. We also demonstrate the tendency of two

asymmetrically beating filaments in a 3D fluid to align - in tandem - exhibiting an

efficiency boost for the duration of their sustained alignment.

a)sdolson@wpi.edu; http://users.wpi.edu/∼sdolson/; NSF DMS 1122461
b)fauci@tulane.edu; http://math.tulane.edu/∼ljf/; NSF DMS 1043626

1



I. INTRODUCTION

The classic work of G.I. Taylor in the early 1950’s initiated the study of the hydrodynam-

ics of microorganism motility by examining the progression of an infinite sheet undergoing

small sinusoidal oscillations in a Stokesian fluid1, and also an infinite cylindrical filament

undergoing the same small oscillations2. Since then there has been a wealth of experimental,

computational and analytical studies aimed at understanding hydrodynamic interactions of

microorganisms. Taylor1 showed that the in-phase configuration of two parallel sheets mini-

mized the rate at which these idealized swimmers do work against the viscous fluid. Mettot

and Lauga3 recently extended Taylor’s analysis2 to show that infinite waving filaments in

3D dissipate the least amount of energy when they beat in-phase, consistent with the 2D

sheets. The closer the sheets or filaments are to each other, the more energetically favorable

the in-phase configuration is. Recent experiments by Woolley et al. demonstrate the dy-

namic phase-locking of swimming bull sperm4. Two nearby sperm flagella, initially beating

with different phases and beat frequencies, interact through the viscous fluid to synchronize

their beats and eventually attract, shown in panels (A)-(C) of Fig. 1. The swimmers also

exhibited a marked increase in velocity (by several µm s−1) when this synchronization and

attraction occurred. The dynamics of flagellar synchronization and attraction occur as these

elastic structures modulate their waveforms, and as differences in their swimming velocities

emerge due to interactions with the viscous fluid.

In the idealized model of parallel, identical, infinite sheets with prescribed phase-shifted

waveforms of front-back symmetry, the time-reversibility of Stokes flow and symmetry argu-

ments affirm that phase-locking cannot be achieved by swimming at different velocities5,6.

Adding either flexibility to the sheets or viscoelasticity to the fluid does break this sym-

metry and phase-locking of these infinite sheets can occur7–9. Early computational studies

demonstrated the dynamic synchronization of undulating, flexible sheets immersed in a 2D

viscous, incompressible fluid at low but non-zero Reynolds number10.

When flagella are modeled by finite sheets in a 2D fluid, much of the restrictive sym-

metry imposed when considering infinite sheets is removed. In addition, unlike the case of

infinite sheets which cannot attract due to the incompressiblity of the fluid between them,

finite sheets can indeed attract in a 2D fluid. Using an actuated Euler elastica model of

flexible, finite flagella, Fauci and MacDonald11 investigated synchronization of waveforms
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FIG. 1. Experiments of Woolley et al.4, reproduced with permission. Panels (A)-(C) are three

snapshots in time of bull sperm swimming in a fluid of viscosity similar to that of cervical mucus.

(A) Initially, the two sperm are swimming with flagellar waveforms that are not in-phase. (B)

Through hydrodynamic interactions, the two sperm synchronize and attract. (C) The two sperm

have fully attracted and synchronized.

and demonstrated attraction of swimmers to each other in 2D. More recently, Yang et al.12

used multiparticle collision dynamics in 2D to study both synchronization and attraction of

actuated finite sheets. They observed a fast time scale of synchronization, and a longer time

scale of attraction.

How closely does a two-dimensional fluid model approximate the corresponding three-

dimensional model - even in a very idealized system? When G.I. Taylor considered infinite

sheets and filaments1,2, he showed that infinite filaments in a 3D fluid subject to the same

small amplitude kinematics as an infinite sheet governed by 2D fluid dynamics progressed

more slowly than the sheet, with the ratio of corresponding speeds depending upon the

thickness of the filament1,2. The ratio of swimming speeds is:

V3D
V2D

=
K0(κa)− 1

2

K0(κa) + 1
2

. (1)

Here K0 is the zeroth order modified Bessel function of the second kind, a is the filament

radius and κ is the wavenumber of the flagellar oscillation. It is, of course, not surprising

that differences arise when 2D fluid dynamics is used to approximate 3D dynamics.

Here we investigate the hydrodynamic interactions of two coplanar filaments in a 3D fluid

(Fig. 2(B)), and compare these to the interactions of the analogous pair of sheets in a 2D
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fluid (Fig. 2(A)). The swimmers considered here are finite and flexible. Moreover, while the

preferred kinematics are prescribed, the realized kinematics emerge from the full coupling

of the viscous fluid and the flexible structures. Flagellar forces due to a preferred planar

waveform are derived from an energy functional, and these forces are coupled to either 2D

or 3D Stokes flow. Within our computational framework using regularized Stokeslets, this is

easily achieved by choosing either the 2D or 3D regularized kernel to solve for fluid velocities

induced by the actuated structures. We examine the phase synchronization of nearby swim-

mers with symmetric beatforms, as well as the attraction of phase-locked swimmers towards

each other. We find that synchronization for sufficiently stiff swimmers happens on a faster

time scale for the 2D symmetric sheet, while efficiency increases and power decreases for

both the symmetric sheets and filaments. In 3D, we observe increases in swimming speed

and efficiency for attracted filaments. We also examine the interaction of two swimmers

whose preferred waveforms, like hyperactivated mammalian sperm, are asymmetric13,14. A

single asymmetric swimmer, whose planar bends are more pronounced on one side, would

trace out a circular trajectory in free space. Here we report the tendency for two asymmetric

swimming filaments in a 3D fluid to transiently align, in tandem. This “sperm train” results

in an efficiency boost for the duration of the filaments’ alignment.
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FIG. 2. Representation of Taylor’s swimming sheet in (A) and 3D cylindrical filament in (B). The

amplitude b and arc length parameter q are labeled on the structures.

II. MATHEMATICAL MODEL

In order to compare the dynamics of 2D sheets to those of filaments interacting in 3D, we

only consider filaments whose centerlines are confined to the same plane. In an unbounded

fluid, symmetry arguments affirm that the motion of these filaments will remain in that

plane. In both 2D and 3D, each of the two flagellar centerlines is modeled as a general-
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ized Euler elastica whose shape changes are driven by the pursuit of a preferred curvature

wave15–17. The force per unit length gi supported by the ith flageller centerline Xi(q, t) is

derived from tensile and bending energies:

εi,tens = ST

∫ L

0

(∣∣∣∣∣∣∣∣∂Xi

∂q

∣∣∣∣∣∣∣∣− 1

)2

dq , (2a)

εi,bend = SB

∫ L

0

(
∂Θi

∂q
− ζi(q, t)

)2

dq . (2b)

Here q is an arclength parameter, 0 ≤ q ≤ L, Θi is the shear angle and ζi(q, t) is the

time-dependent preferred curvature that drives the swimming motion of the flagellum. The

stiffness coefficients ST and SB control how strictly the emergent waveform conforms with

the preferred waveform. For simplicity, these stiffness constants are chosen to be the same

for both flagella. By choosing the stiffness coefficient ST sufficiently large, the flagella

are effectively inextensible since Eq. (2a) limits stretching and compression. The bending

energy εi,bend in Eq. (2b) is minimized if the actual curvature ∂Θi/∂q is equal to the preferred

curvature ζi. Below we will discuss how we choose preferred curvature to simulate observed

sperm motility patterns.

The force per unit length gi concentrated at each material point of the flagellar centerline

is defined by:

gi dq = −∂(εi,tens + εi,bend)

∂Xi

. (3)

These forces are coupled to an unbounded viscous fluid by the incompressible Stokes equa-

tions:

0 = −∇p+ µ∆u +
2∑
i=1

∫ L

0

gi(Xi(q, t), t)φδ(x−Xi(q, t))dq (4a)

0 = ∇ · u (4b)

Here u is the fluid velocity, x is any point in free space (2D or 3D) µ is the dynamic

viscosity, p is the pressure, and Xi(q, t) is the ith flagellar centerline. The force per unit length

that each flagellum exerts on the fluid gi is supported along its centerline, but regularized

by a 2D or 3D blob function φδ. The regularization distributes forces supported on the

centerline to a small volume of fluid around the curve. While one may regard the blob
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function φδ as a regularized Dirac delta function, we treat the regularization parameter δ as

a physical parameter chosen to be on the order of the flagellar radius17,18. Here we choose

the blob functions:

φδ(r) =
3δ3

2π(r2 + δ2)5/2
(2D) (5a)

φδ(r) =
15δ4

8π(r2 + δ2)7/2
(3D) (5b)

where r = ||x||.

For a single point force gk concentrated at a point Xk, these choices of φδ give rise to the

regularized Stokeslets:

u2D(x) =
−gk
4πµ

(
ln(Rk + δ)− δ(Rk + 2δ)

(Rk + δ)Rk

)
+

1

4πµ

(
[gk · (x−Xk)] (x−Xk)(Rk + 2δ)

(Rk + δ)2Rk

)
,

(6a)

u3D(x) =
1

8πµ

(
r2k + 2δ2

R3
k

gk +
[gk · (x−Xk)] (x−Xk)

R3
k

)
, (6b)

where rk = ||x−Xk|| and Rk =
√
r2k + δ2. These regularized Stokeslets are exact solutions of

the Stokes equations and are everywhere incompressible19,20. Because the Stokes equations

are linear, we may determine the fluid velocity due to a collection of concentrated forces

by summing up the regularized Stokeslets centered at the points where forces are applied.

These fluid velocities are defined everywhere, even at points on the centerlines of the flagella

where forces are exerted. We evolve the coupled fluid-elastica system by requiring that the

material points of the flagellar centerline move at the local fluid velocity:

dXi

dt
(q, t) = u(Xi(q, t), t), i = 1, 2. (7)

A. Preferred Curvature

Propagating curvature waves have been observed in human sperm flagella using high speed

imaging21. Symmetric bending, called activated motility, is often seen in mammalian sperm

when the cytosolic calcium concentration is at a basal or resting level. Such symmetric bends

passed along an isolated sperm flagellum will result in linear swimming trajectories22,23.
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Highly asymmetric planar waves, with flagellar amplitude much more pronounced in one di-

rection, correspond to higher cytosolic calcium concentrations. This hyperactivated motility

leads to circular swimming trajectories13,14,23,24.

The swimming motion of a flagellum is due to the action of dynein molecular motors that

use energy from ATP dephosphorylation to generate sliding between adjacent microtubule

doublets that comprise the axoneme25. The presence of other passive elastic structural forces

converts this sliding to bending26,27. While previous computational studies have examined

the action of individual model dyneins on elastic filaments to produce flagellar waveforms28,

here we take a simplified approach that does not attempt to capture the details of internal

force generation, but instead assumes that the elastic flagellum is in pursuit of a preferred

wave of curvature. We assume this preferred wave is sinusoidal for symmetric swimmers

and asymmetric for hyperactivated swimmers, based on previous experimental studies13,21.

We guide the sheet or filament centerlines to pursue planar sinusoidal waves of the form

Xi(q, t) = (q, b(q, t) sin(κq − ωt− ψi), 0) , where b(q, t) is amplitude, ω is frequency, and ψi

is a phase shift. Such preferred kinematics corresponds to the preferred curvature:

ζi(q, t) = −b(q, t)κ2 sin(κq − ωt− ψi) (8)

that we note has been used in previous models11,16,17,29. We choose:

b(q, t) =

 bA,1 for sin(κq − ωt− ψi) < 0

bA,2 for sin(κq − ωt− ψi) > 0.
(9)

In the case where bA,1 = bA,2, our preferred flagellar beat would be symmetric. Asymmetric

(hyperactivated) flagellar beats are achieved by choosing bA,1 6= bA,2.

III. RESULTS

We nondimensionalize the Stokes equations and tensile and bending energies using a

viscosity of water and length and time scales representative of a mouse sperm, as detailed

previously in Olson et al.17. The nondimensional flagellar length of L = 1 corresponds to

100 µm (mouse sperm is 120 µm30), and a nondimensional beat period of T = 1 corresponds

to a flagellar beat frequency of 10 Hz. Previous experiments have recorded amplitudes

of flagellar bending in the range of 2-20 µm21,23. The nondimensional amplitude b = 0.1

corresponds to 10 µm. For filaments in a 3D fluid, the flexural rigidity of the elastic flagellar
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centerline achieved by choosing ST = 25 − 125 and SB = 0.025 − 0.075 is on the order of

5× 10−21Nm2, which falls in the range of bull sperm (4− 27× 10−21Nm2 )31 and rat sperm

(1−10×10−19Nm2 )32. The corresponding stiffnesses for a sheet in a 2D fluid are calibrated

so that the achieved kinematics of the flagellar centerline in a baseline case of a symmetric

swimmer are approximately the same as those of the centerline for the corresponding filament

in 3D. We note that model parameters, summarized in Table I, have been shown to result in

flagellar swimming velocities characteristic of human and mouse sperm for both symmetric

and asymmetric swimmers17. To represent other species, we use a range of bending modulus

SB in simulations where an increased (decreased) stiffness generally corresponds to a small

increase (decrease) of 0.02–0.05 in achieved average amplitude. In the numerical simulations

presented here, the flagellar centerlines are discretized into M = 101 points and Eq. (7) is

solved using the forward Euler method with time step ∆t = 5× 10−7.

Fig. 3 shows the achieved flagellar waveforms for the sheet in 2D (panel A) and the

filament in 3D (panel B) during a single period of flagellar oscillation. The first material

points of the flagellar centerlines are superimposed in each panel for the different time points.

We emphasize that the kinematics of the flagellar centerline are not prescribed. Even for a

single swimmer in an unbounded fluid, the emergent waveform will differ from the preferred

waveform due to the viscous coupling. While the preferred nondimensional amplitude b = 0.1

was input for both the sheet and the filament in Fig. 3, the averaged achieved amplitude for

both was ba = 0.108. Small differences between the swimmers can be seen in Fig. 3, such

as the larger deflection in the tail for the filament in a 3D fluid at t = 0.4 and t = 0.6. The

swimming velocity of the finite sheet in 2D, averaged over a beat period, was computed to

be V2D = 0.39, and the corresponding averaged filament velocity V3D = 0.29. The computed

ratio of velocities for these finite, flexible swimmers is V3D/V2D = .74. Choosing the flagellar

radius a to be the blob parameter δ, the ratio given by Eq. (1) for the corresponding infinite

sheets and filaments in Taylor’s asymptotics is1,2 V3D/V2D = 0.70.

A. Phase Locking

Here we examine the synchronization of flagellar centerlines whose preferred kinematics

share identical amplitudes, wavelengths, and frequencies, but differ by a phase shift. Their

flexural rigidities are also identical. In Fig. 4, a time progression of flagellar waveforms is
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TABLE I. Parameters for swimmers in 3D (finite filament) and 2D (finite sheet).

L, filament length 1

M , points on swimmer 101

δ, regularization parameter 0.01

ST , tensile stiffness 100 (3D), 10000 (2D)

SB, bending stiffness 0.025 (3D), 2.5 (2D)

∆t, time step 5×10−7

κ, wavenumber 2π/L

b (symmetric case), amplitude 0.1

bA,1, bA,2 (asymmetric case) 0.075, 0.1125

ω, frequency 2π
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FIG. 3. Flagellar envelopes for (A) a finite sheet in a 2D fluid and (B) a finite filament in a 3D

fluid. A wave is propagated to the left. Six snapshots of the flagellum within one beat period are

superimposed such that the material point on the right is fixed.

shown for the sheets in panels (A)-(D) and for the filaments in panels (E)-(H). In both 2D

and 3D, the two swimmers are initialized a vertical distance of d = 0.25 apart with a phase

shift of ψ = π/2 (panels (A) and (E)). As the wave propagates to the left, the swimmers

progress to the right. A heuristic measure of synchrony is the alignment of the crests of the

waves as the flexible flagella modulate their swimming velocities and shapes.

As in previous studies of the synchronization of flexible, infinite sheets8,9, the realized

shapes of these interacting finite swimmers differ dramatically from the sinusoids they are

in pursuit of (e.g. the top swimmer in panels 4(B) and 4(F)). In Fig. 4, we chose time

points at which the shapes achieved by the sheets and filaments were similar. In both cases,
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FIG. 4. Waveforms for two sperm initialized with a phase shift of ψ = π/2 and stacked a distance

of d = 0.25 apart. Panels (A)-(D) correspond to the sheet in a 2D fluid, and Panels (E)-(H)

correspond to a filament in a 3D fluid. Note that the times of the snapshots chosen are different

in 2D and 3D - phase synchronization occurs on a faster timescale in 2D.

the temporal beat periods of all flagellar waves are T = 1. In panels 4(D) and 4(H), we see

that the crests of the pair of 2D and 3D swimmers have mostly aligned at t = 0.0625 and

t = 0.18, respectively. While this synchronization occurs very early during the beat cycle in

both cases, the sheet synchrony occurs much more quickly than the filament synchrony. We

note that that phase locking is observed in this model with out of phase forcing since the

achieved shape of the flagellum emerges due to the fluid-structure interaction.

In order to further characterize synchronization, we examine the swimming speeds and

power expended for each individual sheet and filament during the first half of the first

beat (Fig. 5). For swimmers with identical actuation and material properties, a perfectly

synchronized state would yield identical swimming velocities and power expenditures for each

swimmer. In Fig. 5(A), we see that for both the 2D sheets and 3D filaments, the top swimmer

initially exhibits greater swimming speed, with the difference much more pronounced in the

2D case. This relative difference in velocities along with the shape changes of the flexible

swimmers allow them to evolve into a synchronized state. Fig. 5(A) indicates that the 2D

swimmers have approximately the same swimming speed near time t =0.2, while for the 3D

swimmers this occurs at about t = 0.3.
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FIG. 5. Evolution of swimming speed (panel (A)) and normalized power expenditure (panel (B))

for the pairs of sheets and filaments with identical preferred shapes, but with an initial phase shift

of ψ = π/2. In the figure inset, T and B correspond to the top and bottom swimmers in Fig. 4,

respectively.

We define the power Pi(t) of the ith flagellar centerline as

Pi(t) =

∫ L

0

[gi(Xi(q, t), t) · u(Xi(q, t), t)] dq , (10)

where integration is over the sheet or filament centerline, gi is the force, and u(Xi(q, t), t)

is the velocity defined on the swimmer. Because the forces scale differently in 2D and 3D,

in order to compare the evolution of power expenditures of the pairs of sheets or filaments

as they synchronize, we normalize Pi(t) by the average power of the corresponding isolated

single sheet or filament in the respective fluid domain. Fig. 5(B) shows the time evolution

of the normalized power for each individual sheet or filament. A similar trend to that of

velocity is seen; the top swimmers have increased power initially and within a short period

of time, before quickly equalizing.

To further investigate synchronization of sheets and filaments, we show results for several

cases of bending stiffness SB and phase difference ψ. The phase locking time is calculated

in terms of the number of nondimensional beats at which the speed and power difference

between the two swimmers is less than 0.005 for at least one-tenth of a beat period. In

Fig. 6(A)-(C), for sufficiently stiff swimmers (0.5-1 ×SB), we observe that phase locking

occurs on a faster time scale for the 2D sheets than for the 3D filaments. For the 2D sheets

initialized 0.5 and 0.75 apart, the synchronization time decreases as stiffness increases. When
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the vertical separation is smaller in 6(A), we observe that larger phase shifts correspond to

larger times to phase locking for the 2D sheets. The 3D filaments exhibit a non monotonic

relationship (parabolic) between the stiffness and the time to phase lock for all three separa-

tion distances shown in 6(A)-(C). The floppiest 3D filaments are able to interact and modify

their waveforms quickly in order to phase lock the fastest for all three initialized separation

distances.

(A) (B) (C)
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FIG. 6. Phase locking time for different bending rigidities 0.2SB, 0.5SB, SB, 2SB, and 10SB.

Three phase differences for the 2D sheet and 3D filament are shown (ψ = π/4, π/2, 3π/4). (A)

Initial distance apart is d = 0.25, (B) d = 0.5, (C) d = 0.75.
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FIG. 7. The finite filament centerlines in a 3D fluid are shown in the top row. The bottom row

shows the flow fields (arrows) and pressure contours (colorbar) projected onto the transverse plane

x = 0.75 for two flagella at t = 0.00125. Column (A): ψ = 0 (in phase). Column (B): ψ = π/4.

Column (C): π/2. The flagella cross sections are depicted in the bottom panel as white circles.

12



B. Transverse dynamics for filament pairs

The interpretation of a two-dimensional fluid model is that there is no change in state

variables when moving out of that plane. However, in 3D this is not true, even for a filament

undergoing planar undulations. As in recent work by Mettot and Lauga3 for infinite fila-

ments, we show computed instantaneous flow fields and pressure fields in a plane transverse

to a pair of identical finite filaments initialized at different phases. The filaments are in the

x− y plane (z = 0), and their cross sections are shown with white circles in the y− z plane

at x = 0.75. For the in-phase swimmers, Fig. 7(A), the flow is in the positive y direction

corresponding to the lower peak of the sine wave pushing up. There is minimal flow in the

z direction. The flow is much smaller in the positive y direction for the upper filament in

Fig. 7(B) when ψ = π/4. When the filaments are ψ = π/2 out of phase initially, a flow in

the negative y direction is created by the top filament as shown in Fig. 7 (C).

C. Attraction

We next examine attraction of two finite, flexible flagellar centerlines whose preferred

kinematics share the identical amplitudes, wavelengths and frequencies shown in Table I.

Tensile and bending stiffness coefficients are also shown in Table I. Because attraction

occurs on a much longer time scale than synchronization due to translational resistance12,33,

we initialize two swimmers that are already in phase (ψ = 0) at a distance of d=0.25 apart.

The preferred flagellar waveforms are symmetric with constant amplitude for both of the

2D sheets and the 3D filaments. Fig. 8(A) and (B) show the swimming progression of the

2D and 3D swimmers, respectively, up through forty-five beat periods. We note that the

attraction does not progress uniformly along the flagellar centerlines, with the gap between

the head points closing more dramatically than that between the tail points at t = 15, for

instance.

We found that the dynamics of attraction depend upon the initial distance between the

two swimmers and the flagellar bending rigidity. This bending rigidity is determined by the

choice of the stiffness coefficient SB that controls how closely the bending energy in Eq. (2b)

is minimized. We note that different species of sperm can have a flexural rigidity varying

by two to three orders of magnitude. In Fig. 9, we measure the evolution of attraction of
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FIG. 8. Snapshots of flagellar centerlines for two sperm initialized in phase (ψ = 0) and stacked

a distance of d = 0.25 apart, with preferred kinematic parameters from Table I. In (A) sheets in

a 2D fluid and in (B) filaments in a 3D fluid. In both (A) and (B), the waveforms are shown at

t = 0.025, t = 15, t = 30, and t = 45.

three pairs of swimmers with different bending rigidities ((1/5)SB, SB, 5SB) in both 2D and

3D. The first column shows the distance between the head points as a function of time,

and the second column shows the distance between the tail points. Each pair of swimmers

was initialized at a distance of d = 0.25, 0.5, or 0.75 apart at t = 0. We note that when

the distance between two points on the sheets or filaments is less than 4δ = 0.04 (twice

the flagellar diameter), we turn on a repulsive force to ensure the structures do not self

cross. The repulsive force acts like one due to a compressed Hookean spring, whose stiffness

coefficient SR is chosen to ensure that this repulsive force is at least an order of magnitude

smaller than the bending and tensile forces. The repulsive force is not on continually; it is
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only nonzero at time steps where points on the structure are less than 4δ = 0.04 apart.

Fig. 9(A) demonstrates that the stiffer sheets (SB and 5SB) are able to attract and reach

a steady state distance of 0.046-0.05 apart at the head (4δ is the minimum allowed based

on the repulsion term). We observe a nontrivial ‘saturation’ where an increase in stiffness

of SB to 5SB has very similar dynamics of attraction. However, the floppier 2D sheets

with bending stiffness (1/5)SB are not able to fully attract and level off at a distance of

0.055 apart. In this graph, for the initial distances used, we observe a similar time scale of

attraction in 2D for all three cases of bending stiffness. Fig. 9(C) shows the evolution of the

distances between the head points of the corresponding 3D filaments. As in the 2D case,

the stiffer swimmers are able to reach the minimum distance between the heads or front

of the swimmer. Note that the attraction of head points occurs more quickly for filaments

than sheets for the case d = 0.25, with full attraction after approximately 10 (5SB) and 15

(5SB) beats. In contrast to the 2D case in Fig. 9(A), the time scale of attraction for the 3D

filaments increases as the distance between the swimmers increases. Additionally, the time

scale of attraction increases as bending stiffness decreases. For all cases, the 3D head distance

eventually sustains a distance apart that is around 0.041, close to the minimum distance of

0.04 allowed. Thus, once the 3D swimmers have attracted, they are able to have a smaller

distance between the head points than the 2D swimmers for all cases. In contrast, the gaps

between the tail points (Fig. 9(B) and (D)) do not close as quickly as those between the

head points. Additionally, the distance between the tail points actually increases initially,

as the heads turn towards each other. For the 2D tail distance in 9(B), we observe similar

dynamics as the head distance in 9(A), times for attraction remain constant at the tail for

different starting distances. We note that the stable long term distance between the tail

points of the 2D swimmers is the same as the head distance for all cases. For the distance

d = 0.25, the stiffer 3D swimmers in 9(D) are able to reach a minimal tail distance faster

than the corresponding 2D swimmers in 9(B). Similar to the 3D head distance in 9(C),

the decrease of the distance between the tail points in 3D shown in 9(D) depends on the

bending stiffness and initial distance apart. We note that the tail distance does decrease

to a minimal value around 0.07-0.08 for the stiffer swimmers. For the case of the floppiest

swimmer ((1/5)SB) starting d = 0.75 apart, it takes more than 100 beat periods to reach

the minimal distance apart.

Do attracting sheets and filaments swim faster than a single isolated swimmer with the
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(A) Head - 2D (B) Tail - 2D

(C) Head - 3D (D) Tail - 3D

FIG. 9. Evolution of distances between the head points (A) for sheets and (C) for filaments as they

attract with different bending rigidities and different starting locations. The sperm are initially

stacked a vertical distance of d = 0.25, 0.5, or 0.75 apart. Corresponding distance between tail

points for sheets in (B) and filaments in (D). The legend indicating stiffness and initial distances

is given in (A) and is the same for (B)-(D). (SB corresponding to the baseline value given in Table

I.)

same preferred kinematics? Does the swimming become more efficient as they attract?

Fig. 10 reports the velocity of attracting sheets (panel (A)) and filaments (panel (C)) ini-

tialized d = 0.25 apart, normalized by the velocity of the corresponding solo swimmer. The

velocity we report here is the velocity of the center of mass of the swimmer, time averaged

over each period of flagellar beating. Since the top and bottom swimmers exhibit almost

identical velocities and efficiencies, we only show the curve for the top swimmer in each

case. In each individual simulation, we see that swimming speed increases initially as the

swimmers attract. Compared to a single swimmer, however, Fig. 10(A) shows that attract-
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FIG. 10. Swimming speeds of attracting swimmers initialized d = 0.25 apart and normalized by

that of the corresponding solo swimmer: (A)sheets and (C) filaments. Efficiencies of attracting

swimmers normalized by that of the corresponding solo swimmer: (B) sheets and (D) filaments.

The squares denote the first time the repulsion time is nonzero at any point along the swimmer.

ing sheets always swim more slowly than the corresponding single swimmer, with only the

stiffest swimmers approaching the speed of the single swimmer as they attract. In contrast,

Fig. 10(C) shows that the stiffest attracting filaments are able to achieve swimming speeds

greater than that for a single filament. An enhancement in swimming speed for attracted

and synchronized sperm has also been observed in experiments4. The time that repulsion

turns on is denoted with a square on each of the curves; additional enhancement in swimming

speed beyond this time is not seen.

We define efficiency Effi of the ith swimmer as follows:

Effi =
(Vi)

2

< Pi >
, (11)
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where power < Pi > is the average power defined in Eq. (10) over one flagellar beat and Vi

is the time averaged velocity shown in Fig.10(A) and (C). The efficiency of the attracted

swimmers, normalized by the efficiency of the corresponding solo swimmer, are shown in

Fig. 10(B) and (D). In each individual simulation, the sheets and filaments initially show

an increase in normalized efficiency as they attract. Moreover, Fig.10(B) and (D) show that

attracted swimmers with bending stiffness SB achieve efficiences more than 1.4 times that

of the corresponding single swimmer. This enhancement in efficiency for the filament in

3D is much greater than that in the 2D fluid. The stiffest (5SB) attracted filaments in 3D

also exhibit greater efficiencies than a solo filament, but the stiffest sheets do not. For the

floppiest sheets and filaments ((1/5)SB), the efficiencies compared to the single swimmer

are significantly less. We note that once the swimmers have attracted, we observe similar

enhancements in swimming speed and efficiency for swimmers initialized with a vertical

separation of d = 0.5 and 0.75 for both the 2D sheets and 3D filaments.

(A) 2D t = 0− 46 (B) 3D t = 0− 100
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FIG. 11. Trajectories for a single asymmetric swimmer: (A) 2D fluid and (B) 3D fluid. The head

point is plotted once per beat period and the diamond denotes the starting point. The curvature of

the sheet’s circular trajectory is c2D = 0.77, and the curvature of the filament’s circular trajectory

is c3D =0.75.

D. Asymmetric Swimmers

Hyperactivated motility in mammalian sperm occurs when there is an increased calcium

concentration within the flagellum13,14,23,24. Hyperactivation is characterized by high am-

plitude, asymmetric waveforms that are thought to facilitate detachment from oviductal
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epithelia as well as penetration of the oocyte cumulus complex. As described in Eq. (9) an

asymmetric shape can be achieved in the model flagellum by setting the preferred ampli-

tude of bending in one direction different from the other. Unlike the symmetric swimmers

considered in the previous sections, an isolated swimmer pursuing such asymmetric beat

kinematics would traverse a circular path rather than a straight line. In Fig. 11(A) a tra-

jectory for the asymmetric swimming sheet with parameters from Table I is shown, and the

trajectory of the corresponding swimming filament is shown in Fig. 11(B). Here, the head

point is tracked once per beat period, with the starting location denoted with a diamond.

We see that each swimmer traverses a counter clockwise trajectory for the given asymmetry

in amplitude, with the 2D sheet progressing further around the circle than the filament. We

now examine the interaction of pairs of such flagella, and investigate how their asymmetry

affects the dynamics of attraction and their achieved trajectories. The full fluid-structure

interaction will be studied for forty to one-hundred beat periods to give a sense of the long

term behavior.
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FIG. 12. The 2D flow field is shown at various time points for the asymmetric sheets. In this

simulation, the sperm are initialized d = 0.4 apart. The corresponding trajectories are shown in

Fig. 14(A).

We first consider a pair of sheets in pursuit of the same asymmetric waveform, initialized
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in phase (ψ = 0) and a distance of d = 0.4 apart. The flow field and corresponding

flagellar waveforms are shown at several time points in Fig. 12 (2D fluid). The corresponding

pair of asymmetric filaments are shown in Fig. 13 (3D fluid). In both the 2D and 3D

cases, Fig. 12(A)-(D) and 13(A)-(D) demonstrate flagellar attraction, even as the swimming

direction rotates. After the swimmers have attracted, they remain attracted (Fig. 12(E)-

(H) and 13(E)-(H)). The trajectories of each pair of swimmers are shown in Fig. 14(A)

and (C) for the sheets and the filaments, respectively. Again, this corresponds to tracking

the head point one time per beat period, with the starting points denoted with diamonds.

The rectangles on the trajectories denote positions of the head points at the first instant

where a repulsion force was non-zero. While the curvature of the trajectory of the attracted

swimming sheets (c2D =0.74) is largely unchanged from that of the correspoding isolated

sheet trajectory (c2D = 0.77), the curvature of the trajectory of the attracted swimming

filaments (c3D =0.97) is significantly larger than that of the the corresponding isolated

filament (c3D =0.75).

The temporal evolution of the normalized efficiencies of the swimmers are shown in

Fig. 14(B) and (D) for the sheets and the filaments, respectively. Compared to that of

a single swimmer, the efficiency is greatly enhanced when the asymmetric swimmers attract

for both the sheets and the filaments. However, the pair of filaments in 3D enjoy a sixty

percent increase in efficiency compared to only a forty five percent increase for the sheets.

In the previous example, when the flagella were initialized at a distance of d = 0.4

apart, the trajectories and process of attraction are similar for the sheets and filaments

(Figs. 12 and 13). In contrast, we have found qualitatively different dynamics between

the interacting sheets and the interacting filaments for a range of initial distances between

the asymmetric swimmers. If far enough apart, the interacting swimmers will pursue the

circular trajectories of a solo swimmer. If close enough together, the flagella attract in spite

of their asymmetric waveform. Here we choose the initial distance in an intermediate range,

and compare the behavior of sheets and filaments. The flow fields and flagellar waveforms

for sheets initialized at d = 0.5 apart in a 2D fluid are shown in Fig. 15. We see that the

swimmers are not able to fully attract before entering their circular trajectories, shown in

Fig. 16(A). After the 2D asymmetric swimmers push away from each other, they each swim

in a circular trajectory similar to the solo asymmetric swimmer in Fig. 11(A). Fig. 16(B)

shows the temporal evolution of the normalized efficiency of each of these interacting sheets.
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FIG. 13. The projected 3D flow field in the plane of the swimmers is shown at various time points

for the asymmetric filaments. In this simulation, the sperm are initialized d = 0.4 apart. The

corresponding trajectories are shown in Fig. 14(C).

Since each asymmetric swimmer settles into a circular trajectory close to that of a solo

swimmer, the normalized efficiencies go to one.

For the same initial distance of d = 0.5 apart, we see very different behavior for the 3D

filaments. Fig. 17 shows that the asymmetrically-driven filaments begin pursuing circular

trajectories, but settle into an in-tandem state as the head point of the flagellum initially

at the bottom aligns with the tail point of the flagellum initially at the top. In the 2D case

shown in Fig. 15, the flow field pushed the swimmers away from each other. In the case

of the 3D swimmers shown in Fig. 17, we observe that the filaments are able to maintain

alignment for over 60 flagellar beat periods.

The corresponding trajectories of the head points of the 3D filaments initialized d = 0.5

apart are shown in Fig. 16(C). We can see that the sperm start out on circular trajectories,

align, and then maintain an approximately straight path. This path curvature is c3D =0.06,

while that of the solo swimmer is c3D =0.75. The temporal evolution of the normalized

efficiencies for the aligned swimmers are shown in Fig. 16(D). As the asymmetric swimmers

begin to align, the normalized efficiency decreases. When the swimmers are able to align
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FIG. 14. (A) Trajectories of head points of sheets in a 2D fluid corresponding to Fig. 12. (B)

Temporal evolution of the efficiencies of the sheets normalized by the efficiency of the corresponding

solo swimmer. (C) Trajectories of head points of filaments in a 3D fluid corresponding to Fig. 13.

(D) Temporal evolution of the efficiencies of the filaments normalized by the efficiency of the

corresponding solo swimmer. Diamonds denote starting points, and rectangles denote the time at

which repulsion is first turned on.

around t = 70, the efficiency of each filament is greater than that of a single asymmetric

swimmer. The swimming speed of the aligned asymmetric swimmers is approximately the

same as that of the corresponding solo swimmer.

The alignment of two coplanar swimmers propagating asymmetric beatforms in Fig. 16(C)

and Fig. 17 is stable; the alignment occurs for more than 60 flagellar beats. In Fig. 18(A)-

(B), we summarize the results for sheets and filaments for five different initialized vertical

distances and three bending moduli. The alignment symbol is used when this behavior lasts

for more than 30 beat periods of the simulation. We examine data from simulations for 100
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FIG. 15. The 2D flow field is shown at various time points for the asymmetric sheets. In this

simulation, the sperm are initialized d = 0.5 apart. The corresponding trajectories are shown in

Fig. 16(A).

beat periods that should be representative of the long-time interaction. For 2D sheets in

18(A), we observe very different behaviors based on the stiffness. The stiffest sheets repulse

at all of the initial vertical distances (repulsion could be after a few beat periods or after

several beat periods when and circular trajectories are initiated). At the initial distance

of 0.5 and 0.6, the asymmetric 2D sheets with small bending stiffness are able to align.

However, the moderate and large bending stiffness prevent these swimmers from aligning

and they end up moving apart. The asymmetric 3D filaments exhibit similar behaviors as

the bending stiffness is varied for initial vertical distances of less than 0.4. For the case of

0.5 and 0.6, we observe that the asymmetric floppier filament aligns on a much slower time

scale than in the stiffer cases. We call this quasi alignment in 18(B) and a representative

configuration is shown in panel 18(C); the two swimmers are attracting but have not reached

a state with a small region of close overlap as in the aligned case, also depicted in panel

18(C).
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FIG. 16. (A) Trajectories of head points of sheets in a 2D fluid corresponding to Fig. 15. (B)

Temporal evolution of the efficiencies of the sheets normalized by the efficiency of the corresponding

solo swimmer. (C) Trajectories of head points of filaments in a 3D fluid corresponding to Fig. 17.

(D) Temporal evolution of the efficiencies of the filaments normalized by the efficiency of the

corresponding solo swimmer. Diamonds denote starting points, and rectangles denote the time at

which repulsion is first turned on.

IV. DISCUSSION

In this study, we have examined the synchronization and attraction of coplanar, flexible,

finite length sheets and filaments with preferred kinematics. The most important feature

of these investigations is the elastohydrodynamic coupling whereby the kinematics of the

sheets and filaments change depending upon both the fluid dynamics and their interactions.

We observed that two symmetric swimmers will synchronize within a few beats, with time

to synchronization depending upon on their initial distance apart, phase difference, and
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FIG. 17. The 3D flow field in the plane of the swimmer is shown at various time points for the

asymmetric filaments. In this simulation, the sperm are initialized d = 0.5 apart. This corresponds

to the trajectory in Fig. 16(C).
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FIG. 18. Interactions of asymmetric swimmers for different initialized vertical distance apart and

bending stiffness SB. (A) 2D sheets exhibit attraction, alignment, and repulsion. (B) Asymmetric

filaments exhibit attraction, alignment (> 30 beats), and quasi alignment (< 50) beats. All symbols

denote the behavior of the system up to 100 beat periods. (C) Representative snapshots of flagellar

arrangement in a simulation corresponding to symbols in panels (A) and (B).

bending stiffnesses. This fast time scale of synchronization has been reported in other
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computational studies10–12. We observed that in general, synchronization was stronger in

2D. Our simulation results agree with the previous theoretical results that assert the in-

phase configuration of infinite sheets and filaments is most energetically favorable1–3,8. For

the first time, we have shown that 3D filaments exhibit a time to phase locking that depends

non-monotonically on the bending stiffness. Additionally, the 2D sheets generally exhibit a

decreased synchronization time as bending stiffness is increased.

Attraction occurs on a longer time scale. In 3D, we show that sufficiently stiff finite length

filaments increase their efficiencies when attracted. These results are similar to the 2D results

of Yang et al.12, where a model using multi particle collision dynamics showed a decrease

in energy consumption as the distance between sperm decreased. Our 3D computational

results also show an enhancement in swimming speed for symmetric, attracted filaments.

This is similar to experimental results where attracted and synchronized bull sperm had an

increased swimming speed in comparison to a single sperm4. For the 2D swimmers, time to

attraction was independent of the initial separation distance (for d = 0.25, 0.5, and 0.75)

whereas time to attraction increased as separation distance increased for the 3D filaments.

It is well known that hydrodynamic interactions of two pushers will result in attraction34 and

the a finite length flagellar swimmer (with no cell body) can be considered a weak pusher.

In the future, it will be interesting to explore reduced models of swimmers in an effort to

completely characterize the attraction behavior as a function of elasticity. In this study, we

offer more detailed simulations as a touchstone for such reduced models. Future models will

also investigate how the dynamics or attraction vary with different horizontal placements of

the swimmers.

We also examined the interaction of sheets and filaments whose preferred waveforms

were asymmetric, similar to hyperactivated motility patterns of mammalian sperm14,35. In

the case of 3D filaments, we found that two coplanar swimmers could settle into a steady

aligned state where the filaments progressed in tandem. This alignment is robust for 3D

planar filaments and only occurs for floppy 2D sheets. This two-sperm “train” is reminiscent

of those found in populations of wood mice, whose sperm form “trains” of about 1 mm in

length that swim in an approximately linear trajectory36. In these configurations, mechanical

attachment of neighboring sperm was observed between the apical hook of the head of one

sperm to the flagellum or apical hook of another. In other experiments with bull sperm,

it has been observed that synchronized and attracted sperm swimming transversely have a
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rigid attachment between their heads4.

Motivated by understanding the differences between 2D and 3D hydrodynamics of actu-

ated elastic flagella, we considered the idealized case where no out of plane perturbations of

the coplanar filaments occurred. However, recent models that do consider such perturbations

demonstrate that a coplanar arrangement of filaments is an unstable configuration37,38. This

suggests that while hydrodynamic interactions may initiate the formation of sperm trains,

mechanical attachments are necessary for their persistence.

The composition of the fluid that a sperm will swim in can vary greatly. In this study, we

focused on a purely Newtonian fluid in the Stokes regime. Experiments have shown that flag-

ellar waveforms vary with fluid properties21,39. In the mammalian reproductive tract, fluid

can contain cellular debris, proteins, hormones, and ions40,41. The protein structure and

organization can greatly change the fluid properties; cervical mucus, due to large amounts

of the protein mucin can be considered a viscoelastic fluid42. Recent computational studies

have explored the effects of viscoelasticy on idealized swimmers of infinite and finite length

using an Oldroyd-B model in a 2D fluid9,16,43. Finite elastic filaments whose preferred kine-

matics reflected an increasing amplitude along their length were found to achieve enhanced

swimming speeds when the frequency of the tail beat was matched with polymer relaxation

times16. A recent study has characterized bending rigidities and preferred kinematics that

allow for such elastic enhancement in finite length swimmers43. While phase-locking of two

actuated, infinite elastic sheets has been demonstrated in a 2D Oldroyd-B fluid9, phase-

locking or attraction of finite sheets in 2D have not. In addition, the interaction of coplanar

filaments in a 3D viscoelastic fluid has not yet been described. It will be very interesting to

extend the present study of interacting sheets and filaments to one that incorporates fluid

viscoelasticity.
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