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� An integrative model couples fluid flow to internal muscle mechanics in lamprey swimming.

� The effects of non-linear force dependencies on swimming are explored.
� The nonlinear dependence of muscle force on velocity has large effect on swimming cost.
� Work-dependent deactivation reduces the occurrence and duration of co-contractions.
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a b s t r a c t

Animals move through their environments using muscles to produce force. When an animal's nervous
system activates a muscle, the muscle produces different amounts of force depending on its length, its
shortening velocity, and its time history of force production. These muscle forces interact with forces
from passive tissue properties and forces from the external environment. Using an integrative compu-
tational model that couples an elastic, actuated model of an anguilliform, lamprey-like swimmer with a
surrounding Navier–Stokes fluid, we study the effects of this coupling between the muscle force and the
body motion. Swimmers with different forms of this coupling can achieve similar motions, but use
different amounts of energy. The velocity dependence is the most important property of the ones we
considered for reducing energy costs and helping us to stabilize oscillations. These effects are strongly
influenced by how rapidly the muscle deactivates; if force decays too slowly, muscles on opposite sides of
the body end up fighting each other, increasing energy cost. Work-dependent deactivation, an effect that
causes a muscle to deactivate more rapidly if it has recently produced mechanical work, works together
with the velocity dependence to reduce the energy cost of swimming.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Locomotion is a basic behavior of animals, yet even the sim-
plest motions require the coordination of many systems, including
the nervous system, musculoskeletal system, sensory systems, and
even the external environment (Dickinson et al., 2000; Tytell et al.,
2011; Miller et al., 2012). Feedback is critical to maintaining
coordination (Cowan et al., 2014). Animals have different forms of
feedback that are important for movement. The most commonly
recognized type of feedback is when an animal senses its envir-
onment and changes its motor pattern. Another form of feedback
is purely mechanical: animals’ bodies are flexible and deform in
response to external forces before the nervous system has time to
respond (Tytell et al., 2011). Our focus is on a second form of
mechanical feedback where muscle force development depends
on muscle length, rate of contraction, and time history (McMahon,
1984). Together, these forms of mechanical feedback are some-
times called “preflexes”, because they can occur before a neural
reflex (Brown et al., 2000). These classes of responses help animals
respond rapidly, effectively, and efficiently to their environment.

Previously, we developed a computational model of the flexible
body of a swimming lamprey (Tytell et al., 2010a). This model
simulated the coupling between internal passive mechanical for-
ces, muscular forces, and the external fluid environment. We
showed that swimming motion is strongly dependent on the
coupling between the body and the environment. For example,
there is an optimal body stiffness for maximum steady swimming
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speed (Tytell et al., 2010a). This model only included mechanical
feedback but not nonlinearities that underlie muscle force
development.

These nonlinearities include the relationships between muscle
force, its length and its shortening velocity (McMahon, 1984). If a
muscle is clamped at a constant length and stimulated (an iso-
metric contraction), its active force depends on the length, with
lower force at short or long lengths and a maximum at some
optimal length in between. This effect is called the force–length
relationship (λ, Fig. 1A). If the muscle is then allowed to shorten (a
concentric contraction), the force will also depend on the short-
ening speed, decreasing as the shortening speed gets higher. If the
muscle is lengthened by some external force, even as it produces
force to resist the lengthening (an eccentric contraction), the
active force increases above the isometric value. Together, these
effects are called the force–velocity relationship of a Hill-type
model (α, Fig. 1B). We use the standard assumption that muscle
force can be modeled by a product of the length dependence, the
velocity dependence, and an activation level that captures the
amount of calcium that is bound to myosin filaments in the muscle
(Hill, 1938; Williams, 2010; Williams et al., 1998; Chen et al., 2011).

Recently, researchers have described two other effects that
influence muscle force. If the muscle produces mechanical work
while active, it deactivates more rapidly when the activation stops
(Josephson and Stokes, 1999), an effect called “work-dependent
deactivation” (WDD; Fig. 1C). Following Williams (2010), we
model WDD by integrating the muscle power (m) and increasing
the deactivation rate according to the amount of work the muscle
recently produced. “Passive” muscle stiffness also changes when
the muscle is active, due to calcium-dependent effects on the titin
molecule that links myosin filaments (Yeo et al., 2013; Monroy
et al., 2012; Nishikawa et al., 2012) (Fig. 1D). We incorporate a
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Fig. 1. Schematic of four nonlinearities. In each panel, the black curve shows the
nonlinear effect and the red curve shows the value when the effect was disabled. In
the top two panels, the dashed gray curves depict typical experimental measure-
ments. Each curve also has the letter code used to identify different simulations.
(A) Force–length relationship λðlcÞ. (B) Force–velocity relationship αðvcÞ. (C) Work-
dependent deactivation. The top panel shows m(t), the integrated muscle work and
the bottom panel shows how it speeds up decrease in muscle activation Caf.
(D) Calcium-dependent stiffness. The black curve shows the variable stiffness μðCaf Þ
and the red and blue curves show the high and low constant values. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
series elastic element with a stiffness μ that depends on the bound
calcium concentration Caf (after Williams, 2010).

In static conditions, non-linear dependencies contribute to
stabilizing both muscle length and force. For example, the stan-
dard operating length of many muscles, including lamprey muscle,
is in the rising limb of the force–length curve (Fig. 1A) (McMahon,
1984; Herzog et al., 1992; Williams et al., 1998). If a perturbation
lengthens the muscle a small amount, it produces more force
because it is longer and because the force increases when the
muscle is forcibly lengthened, both of which help it to shorten
(Brown et al., 2000). More broadly, several studies have found that
intrinsic muscle properties can stabilize standing or postural
responses (Wagner and Blickhan, 1999; Chen and Ren, 2010).

The role of intrinsic muscular properties in cyclic motions is not
well understood. Haeufle et al. (2010) studied a mathematical
model of hopping, driven by a Hill-type muscle model. They found
that the force–velocity relationship stabilized the hopping height
to perturbations, but reduced the maximum achieved hopping
height.

These intrinsic muscular properties vary across species and
different muscle fiber types, and can be altered by degree of
activation, exercise or aging. For example, Woledge (1968) found
that tortoise skeletal muscle has a much more steeply curved
force–velocity relationship than frog muscle, which he suggested
contributed to a more efficient conversion of energy into mecha-
nical work (Woledge, 1968). In some fishes, the shape of the force–
velocity relationship can change at different temperatures (John-
ston et al., 1985), although for others, the shape remains the same
over a broad temperature range (Johnston and Salamonski, 1984).
Different levels of activation can also change the shape of the
curves: for instance, the force–length curve of frog muscle
becomes narrower at a low stimulation intensity (Holt and Azizi,
2014). Finally, exercise and aging can alter the properties. The
optimal length can shift after eccentric exercise (Brughelli and
Cronin, 2007), and both elderly people and stroke victims have
altered force–length and force–velocity properties (e.g., Raj et al.,
2010; Gao and Zhang, 2008). The calcium-dependent effects of
titin in changing the muscle stiffness have been identified fairly
recently, and so there is relatively little information on how it
varies across species or muscle types. Lampreys have titin, but its
structure may be different from the mammalian form (Kawamura
et al., 1994).

We developed our model to investigate the function of the dif-
ferent forms of intrinsic muscular properties. Rather than attempting
to simulate differences, described above, we instead added or remo-
ved the properties, to better understand their overall effects, both
individually and in combination with each other.
2. Models

We developed a two-dimensional model of an anguilliform
swimmer that includes a fully nonlinear muscle model (after
Williams, 2010) coupled to a flexible body immersed in a Navier–
Stokes fluid (extending Tytell et al., 2010a). Below, we describe
(1) the muscle model, then (2) the immersed boundary framework
for fluid–structure interactions, and (3) the quantification of
energetics of the model swimmer. Fig. 2 shows the overall struc-
ture of the model, with references to the sections below.

The muscle segments produce force Pc which is applied to
the fluid–structure model that also incorporates passive mechan-
ics to produce a total force fðs; tÞ, where s parameterizes the body
whose configuration at a given time t is X(s,t). The Navier–Stokes
model allows the calculation of the fluid velocity at the body
uðXðs; tÞ; tÞ, and thus describes how body segments change length.
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Fig. 2. A schematic of the coupled muscle, body, and fluid elements in the full model.
Section numbers are given for each block and arrows are labeled with the value
connecting the different blocks in the model.

Fig. 3. A schematic of the elements of a single muscle segment (sarcomere) in the
model. The contractile element (CE), on the left with length lc, contracts when the
activation wave provides calcium to the segment. The series elastic element, on the
right with length ls consisting of a Hookean spring and a dashpot, stores and
releases energy from work done by the CE.
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The segment lengths L(t) and their velocities VðtÞ ¼ _LðtÞ are fed
back as parameters for the muscle model.

2.1. Muscle model

The muscles produce force according to a dynamical system
modified fromWilliams (2010) that couples calcium activation to a
Hill-type muscle model. A Hill-type model assumes that muscle
force can be approximated as the product of a length-dependent
term, a velocity-dependent term, and an activation term, and that
a muscle segment is comprised of a contractile element in series
with a passive elastic element, in parallel with another passive
elastic element. Since its development, the Hill model has been
modified and used as a kinematic model for muscle force devel-
opment; for example see Williams (2010). Here we choose a two-
element model of a muscle segment: a contractile element in
series with an elastic element as shown in Fig. 3. We incorporate
four nonlinearities (Fig. 1): the classical force–length and force–
velocity relationships (Hill, 1938; Williams, 2010), a work-
dependent nonlinearity (Josephson and Stokes, 1999), and a
calcium-dependent change in passive stiffness (Monroy et al.,
2012; Nishikawa et al., 2012).

The force developed by the muscle depends on the length and
velocity of the contractile element and the amount of calcium
bound to the fibers:

Pc ¼ λ lcð Þα vcð ÞCaf : ð1Þ
Here lc is the length of the contractile element normalized by the
segment rest length L0 and vc is the velocity of the contractile
element divided by L0 (with this choice of scaling, lc is dimen-
sionless and vc has dimensions of s�1). Length dependence is
given by λðlcÞ and velocity dependence is given by αðvcÞ, and Caf is
the level of activation based on the amount of calcium bound to
the muscle fibers. Note that λðlcÞ, αðvcÞ, and Caf are dimensionless,
and the contractile force Pc has also been made nondimensional by
scaling it by the maximum tetanic force P0. Eq. (1) is used to drive
a spring–mass–damper system

ms
€ls þds _ls þμ Cafð Þls ¼ Pc ð2Þ

where ls is the nondimensional length of the series elastic element
(scaled by L0) (Fig. 3), ms is the scaled mass of the sarcomere
(following He et al., 1991) with dimensions s2, ds is a damping
coefficient with dimensions s, and μðCaf Þ is the nondimensional
spring constant of the elastic element in Fig. 3. We note that the
damping term (dsa0) has been added as numerical device to
dampen out small oscillations in ls that would otherwise develop
an instability in the explicit integration of Eq. (2). However, in all
simulations presented here, the value of ds chosen is small enough
that the system remains underdamped and matches biological
data in Williams (2010). The spring constant μðCaf Þ depends on
the level of calcium binding:

μ Cafð Þ ¼ μ0þμ1Caf tð Þ: ð3Þ
We follow Williams (2010) in using the following functional forms
for force and length dependencies:

λn lcð Þ ¼ 1þλ2 lc� lc0ð Þ2 ð4Þ
αn vcð Þ ¼ 1þ
αmvc; vcr0
αpvc; vc40

(
ð5Þ

such that

λ lcð Þ ¼
λmin if λn lcð Þoλmin

λn lcð Þ if λminrλnðlcÞrλmax

λmax if λn lcð Þ4λmax

8><
>: ð6Þ

and

α vcð Þ ¼
αmin if αn vcð Þoαmin

αn vcð Þ if αminrαnðvcÞrαmax

αmax if αn vcð Þ4αmax:

8><
>: ð7Þ

The parameters lc0; λ2, and αm;αp, and the cutoff values λmin; λmax;

αmin;αmax were derived from experiments and reported in Williams
(2010) and Williams et al. (1998), where force development on
single myomeres from freshly killed lampreys were measured and
modeled.

The total length of a given segment

L tð Þ ¼ lc tð Þþ ls tð Þ ð8Þ
evolves according to the body and fluid interaction, desc-
ribed below.

We model the calcium dynamics in a single segment using the
mass action model of Williams et al. (1998). When muscle is
activated, calcium flows from the sarcoplasmic reticulum (SR) and
binds to troponin molecules which change conformation to allow
myosin to bind to actin and produce force. After the activation, the
sarcoplasmic reticulum actively takes up the calcium (McMahon,
1984; Williams et al., 1998). Calcium release, binding, and reuptake
is described by

dCa
dt

¼ k4Caf �k3Cað Þ 1�Cafð Þ

þ
k1 C�Ca�Cafð Þ stimulus on
k2 Ca C�S�Ca�Cafð Þð Þ stimulus off

(
ð9Þ

dCaf
dt

¼ � k4Caf �k3Cað Þ 1�Cafð Þ ð10Þ

where Ca and Caf are the free calcium and bound calcium on
filament sites scaled by the total number of calcium binding sites
on the thick filaments, respectively, and k1–k4 are the rate con-
stants of the reactions. S is the ratio of calcium binding sites on the
SR to the total number of calcium binding sites on the thick fila-
ments, and C is the ratio of the total amount of calcium in the
system to the number of calcium binding sites on the thick fila-
ments. Both S and C are taken to be constants. To ensure that
there is enough calcium to bind to all the muscle sites and there
are enough sites in SR to sequester all of the calcium during



Table 1
Parameters used in the muscle model.

Parameter Value Dimensions

αm 0.80 s
αmax 1.8
αmin 0
αp 2.90 s
λ2 �20
λmax 1
λmin 0
μ0 1
μ1 23
ds 0:2802 s
k1 6:7281 s�1

k2 23:2794 s�1

k30 51:3537 s�1

k40 19:3801 s�1

km1 17:5804
km2 6:0156 s�1

lc0 0.91
ms 0:0542 s2

C 2
S 6
P0 60.86 mN mm�2

Bold parameters were fitted to data provided courtesy of T.L. Williams; other
parameters are from Williams (2010) and McMillen et al. (2008).

Fig. 5. A schematic of the lamprey body. (A) Shape of the entire body. (B) Immersed
boundary points (black dots) are connected by springs (thin lines). The diagonal
springs model passive body resistance. (C) A close-up of one side showing the
position of the muscle model. A spring resisting extension but not compression is
added parallel to the muscle model simulating the effects of collagen in the skin.
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deactivation, the values C¼2 and S¼6 were chosen, following
Williams et al. (1998). Note that, although the total amount of
calcium in the system is conserved, the sum of Ca and Caf is not
constant because there is also calcium that is bound to sites on
the SR.

Following Williams (2010), to account for work dependent
deactivation in the calcium binding dynamics in (10), the values of
k3 and k4 change depending on how much work the muscle has
performed, where m is a dimensionless indicator:

k3 ¼ k30=
ffiffiffiffiffi
m

p ð11Þ

k4 ¼ k40
ffiffiffiffiffi
m

p ð12Þ

dm
dt

¼
�km1Pcvc; vco0

�km2ðm�1Þ; vcZ0

8><
>: ð13Þ

Note that m increases during muscle shortening, and when the
muscle is not shortening, m decays to its initial value of one (1).

The ordinary differential equations for the length of the series
elastic element ls (Eq. (2)), the free and fiber-bound calcium Ca;Caf
(Eqs. (9) and (10)), and the indicator of work performed m (Eq. (13))
evolve independently on each muscle segment using the initial con-
ditions lsð0Þ ¼ 0; _lsð0Þ ¼ 0;Cað0Þ ¼ 0;Caf ð0Þ ¼ 0 and mð0Þ ¼ 1. The
dynamics are driven by an imposed wave of neural activation passed
along the series of muscle segments. This activation wave determines
whether the stimulus is ‘on’ or ‘off’ in the evolution of free calcium
(Eq. (9)).

Model fitting: Williams et al. (1998) developed a model of force
development and fitted it to experimental data collected by
measuring the force developed on a sinusoidally forced lamprey
muscle segment. The segment was excised from the lamprey body,
sinusoidally stretched and shortened with a frequency 1 Hz. Dur-
ing the sinusoidal motion the muscle was stimulated for a dura-
tion of 0.36 s starting at 10 different phases, ϕ. The experimental
results for the 10 phases identified by 0rϕr1 are shown in Fig. 4
(data provided courtesy of T.L. Williams). To validate our model,
we forced a single simulated muscle segment at the same ampli-
tude, frequency and phases as the experiments in Williams (2010).
The parameters k1, k2, k30, k40, km1, km2, ms, and ds were fitted to
the experimental data using a nonlinear least squares minimiza-
tion routine in Matlab (lsqnonlin). Although this minimization
method is iterative, the final values of parameters computed were
not sensitive to initial guesses. Parameter values and their
dimensions are given in Table 1. A comparison of the model and
data is shown in Fig. 4.
Fig. 4. Comparison of the single muscle model response to experimental data. The simulatio
forced segment. The experimental data (dotted blue curve) were recorded from a sim
numerical data is shown below the force plots. The experimental values P and L have
simulations. Muscles were stimulated for 0.36 s, starting at the phase shown in each pa
2.2. Body construction and muscle activation

Using an immersed boundary framework (Peskin, 2002), we
model a lamprey body as a neutrally-buoyant, elastic, actuated
structure comprised of three segmented filaments (see Fig. 5). The
filament along the midline is stiff, and is connected by springs to the
more flexible lateral filaments. Each filament generates forces due to
passive elastic properties. The internal links are treated as Hookean
ns (black curve) were performed using parameters from Table 1 with a sinusoidally
ilarly forced isolated segment. The length of segment for the experimental and

been scaled by the corresponding P0 and L0 to match Pc and L(t) in the numerical
nel.
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springs. However, the links on the lateral edges exert elastic forces
because they resist extension, but, like collagen, do not resist com-
pression. In all simulations presented below, the passive stiffnesses of
these links are not varied, and the overall Young's modulus of the
elastic body is E¼ 0:76 MPa. Note that the lateral links also coincide
with the muscle segments, and support the contractile forces that
have been described above. As in Tytell et al. (2010a), the model
lamprey is constructed using 320 links along each lateral side, and 640
links along the midline, in a conformation that approximates an
idealized 2D lamprey of length 12.56 cm.

The activation stimulus for a single muscle segment is imposed
in this model, and is incorporated into the mass action equation
for calcium (Eq. (9)). Except for a passive head region at the first
twelve percent of the lamprey body, an activation wave along the
body is imposed as a step function with a duty cycle of 0.36, a
temporal period of 1 s, such that one-third of each lateral side is
active at any given time. Moreover, there is a period of silence
between the activation waves on the same side and on differing
sides (Tytell et al., 2010a).

2.3. Fluid–structure interaction

Each node on the three filaments comprising the lamprey body
supports forces due to the passive, elastic links and the nodes on
the lateral filaments also support the contractile forces of the
muscle segments that are connected to that node. The muscle
model is incorporated into the body structure as a sequence of
individually contracting segments on either side of the body.
Because both the passive elastic links and the contracting muscle
segments contribute equal and opposite forces to the endpoint
nodes, the model lamprey is a free-swimmer that generates zero
total force and torque at each instant. These forces F X; tð Þ at the
body position X at time t are coupled to the surrounding incom-
pressible fluid using the immersed boundary formulation:

ρ
∂u x; tð Þ

∂t
þu x; tð Þ � ∇u x; tð Þ

� �
¼ �∇p x; tð Þþμ∇2u x; tð Þþf x; tð Þ ð14Þ

∇ � u x; tð Þ ¼ 0 ð15Þ

f x; tð Þ ¼
Z
Γ
F X s; tð Þ; tð Þδ x�X s; tð Þð Þ ds ð16Þ

∂X
∂t

¼ u X s; tð Þ; tð Þ ¼
Z
Ω
u x; tð Þδ x�X s; tð Þð Þ dx ð17Þ

Eqs. (14) and (15) are the Navier–Stokes equations for a viscous,
incompressible Newtonian fluid, where u is the fluid velocity field,
p is the pressure, ρ¼ 1 g cm�3 is the density, μ¼ 1 mPa s is the
fluid viscosity, and δ is the two-dimensional Dirac delta function.
Eq. (16) transmits forces from the neutrally-buoyant lamprey body
Γ to the surrounding fluid domain Ω, and Eq. (17) states that the
points of the immersed lamprey move at the fluid velocity eval-
uated at those points (no-slip condition).

These equations are discretized using an Eulerian grid for fluid
quantities, and a Lagrangian description of the immersed bound-
ary. A grid-dependent, regularized version of the Dirac delta
function allows communication between the background finite-
difference grid and the nodes of the lamprey body (Griffith et al.,
2007; Peskin, 2002). In order to achieve high resolution near the
lamprey that allows us to capture the boundary layers generated
at physiological Reynolds numbers, we use the parallel, adaptive-
mesh implementation of the immersed boundary method devel-
oped by Griffith et al. (2007). In addition to using a finer mesh
around the lamprey body, regions in the fluid domain that exceed
a threshold level of vorticity are also tagged for refinement.

We choose a rectangular fluid domain Ω¼ X � Y that is
7.5 body lengths long and 3.0 body lengths high. The coarsest
discretization is a 32 cell grid in the x-direction over the entire
domain, and allowing 5 levels of refinement results in the finest
level of effectively a 512 cell grid in the x-direction, realized only in
the local area of refinement. No-stress boundary conditions are
imposed on the rectangular boundary. Each simulation was
allowed to run for 10 s of simulated time, the duration of 10
activation waves along the body. In each simulation the fluid
velocity field is initialized at rest and the lamprey is initialized in
the horizontal rest configuration as shown in Fig. 5.

2.4. Energy calculations

To quantify the energetics of the model swimmer, we compute
the work done by each muscle segment at each time step, separ-
ating positive and negative work:

Wi ¼ �PcVð Þ ð18Þ

W þð Þi ¼
Wi; Wi40
0; Wir0

(
ð19Þ

W �ð Þi ¼
Wi; Wio0
0; WiZ0

(
ð20Þ

Here i designates the ith segment, Pc is the contractile force at that
segment given by Eq. (1), and V ¼ _LðtÞ is the velocity of shortening
of the entire segment. The muscle work rate, P, is calculated using
weighted contributions from the positive work W þð Þi and the
negative work W �ð Þi during an integral number (k) of cycle peri-
ods of duration T after the motion has reached steady state (after n
cycles):

P ¼
Z ðnþkÞT

nT

X
i

W þ
�� ��

iþω W �j ji
� � !

dt ð21Þ

Because the metabolic cost of negative work has been shown to be
considerably less than the metabolic cost of positive work, we
approximated the metabolic cost of producing the mechanical
work by summing the positive work with a fraction of the negative
work. We varied ω from 0 to 1, and found that the proportion of
negative work added does not change the relative costs among the
simulations. In selecting a representative value for ω for the results
we chose ω¼ 0:2 as a reasonable value based on the results in
Ruina et al. (2005).

The cost of transport (CoT) and the power coefficient (CP;mus)
are defined as

CoT ¼ P= Ufmb

� 	 ð22Þ

P0 ¼
1
2
ρcU3 ð23Þ

CP;mus ¼ P=P0 ð24Þ
where P is the muscle work rate averaged over steady cycles, f ¼
1 Hz is the cycle frequency, mb is the body mass, P0 is the work rate
to overcome drag at the steady swimming speed U and the body
perimeter c. Because we assume that the immersed lamprey is
neutrally buoyant, the body density ρ is taken to be the same as
the fluid density.

2.5. Kinematic parameters

In this model, the kinematics of the swimming lamprey are not
prescribed, but emerge from the coupling of the elastic, actuated
body with the surrounding viscous fluid. For each swimmer, we
measured several emergent kinematic parameters, including tail
beat amplitude, body wavelength, body wave speed, and the
neuromechanical phase lag, according to previous methods (Tytell,
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2004). Each parameter was calculated during tail beats in which
the swimmer was moving steadily (after 6 tail beats). Tail beat
amplitude, A, was measured by taking the distance between
extreme lateral positions of the tail tip. Body wavelength and wave
speed were measured by tracking the distance between opposite
signed peaks in curvature. The neuromechanical phase lag is
defined as 1�Vmech=Vact , where Vmech is the mechanical body wave
speed (measured based on the speed of the curvature wave along
the body) and Vact is the neural activation wave speed (set as a
parameter in the simulations).

The Reynolds number (ratio of inertial to viscous forces in the
system) Re was calculated according to Re¼ UL=ν where U is the
steady swimming speed of the lamprey, L is the length of the
lamprey body, and ν is the kinematic viscosity of the fluid. The
Strouhal number (a dimensionless parameter characterizing vor-
tex shedding) St was calculated according to St¼ fA/U where f ¼ 1
Hz is the tail beat frequency, A is the tail beat amplitude, and U is
the mean steady swimming speed.
7 8 9 7 8 9

7 8 9
0

0.5
1

Pc

7 8 9
0

0.5
1

Pc opposite side

Fig. 7. Comparison of swimmers with and without nonlinearities. Results for t¼7–9 s
averaged over the middle 18% of the body for simulations 000S (black; all non-
linearities off) and VLW σ (red; all nonlinearities on). The thickened parts of the
curves indicate that the muscle is active. (A) Length of the contractile element, lc,
dimensionless having been normalized against the rest length of the segment.
(B) Dimensionless length dependence factor λðlcÞ. (C) Velocity of the contractile
element, vc, with dimensions s�1 having been normalized against the rest length of
the segment. (D) Dimensionless velocity dependence factor αðvcÞ. (E) Integrated
muscle work m. (F) Relative concentration of dimensionless calcium-bound factors
Caf. (G) Pc – Force developed which has been normalized against maximum iso-
metric force P0. (H) Force developed on the opposite side of the body.
(I) Representative waveforms of 000S (black) and VLWσ (red). (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
3. Results

We examined the effects of four nonlinearities in muscle force
production: the force–length and force–velocity relationships (Hill,
1938; Williams, 2010), a work-dependent nonlinearity (Josephson and
Stokes, 1999), and a calcium-depend change in passive stiffness
(Monroy et al., 2012; Nishikawa et al., 2012). For the first three rela-
tionships, we tested what happens when the nonlinearity is present
or absent. For the stiffness of the series elastic element, we examine
the effect when stiffness increases proportionally to the amount of
calcium bound to the myosin filaments, or when stiffness is constant
but low, or constant but high. Thus, there are twenty four combina-
tions of the nonlinearities.

Simulations are coded with zeroes (0) or uppercase letters
indicating which nonlinearities are included: “0” or “V” for velo-
city dependence off or on, “0” or “L” for length dependence off or
on, “0” or “W” for work-dependent deactivation off or on, and “0”,
“S”, or “σ” for low, high, or calcium-dependent passive stiffness
(Fig. 1). Fig. 6 summarizes the codes.

3.1. Nonlinearities reduce muscle force and stabilize oscillations

To illustrate the effect of the nonlinearities, we show here a
detailed comparison of two simulations: simulation 000S, in
which all nonlinearities are off; and simulation VLWσ, in which all
nonlinearities are on. Fig. 7 shows the parameters involved in force
development for each of the two simulations in a representative
segment at the middle of the body.

For swimmer 000S, which is closest to the one studied by Tytell
et al. (2010a), force development is only dependent on the amount
of bound calcium (Caf), which is governed by the activation wave
and a scaling factor that decreases the force closer to the tail, both
of which are pre-set. Thus, the time course of force development is
Fig. 6. Simulation coding scheme. Each simulation is designated with four (4) char-
acters indicating which nonlinear effects are present, where uppercase letters
indicate that the nonlinearity was present. See text for description.
identical everywhere along the body and is not affected by the
length or velocity of the segment.

For swimmer VLWσ, the nonlinearities largely reduce the
muscle forces (Fig. 7G), but also prevent oscillations in the force
development of each segment (compare the red and black curves
in Fig. 7C). Despite the slightly lower force in the nonlinear case
(VLWσ), the muscle segment cycles through nearly the same range
of lengths, but it does so somewhat more slowly and smoothly
than in 000S (Fig. 7A and C). In this case, length- and velocity-
dependent nonlinearities are important (Fig. 7B and D) in stabi-
lizing force production. McMillen et al. (2008), in a related lam-
prey model, observed a similar but much stronger effect: body
oscillations grew unrealistically large when length- and velocity-
dependent effects were removed.

Fig. 7 E and F shows the effect of work-dependent deactivation:
after the muscle does positive work,m increases, which causes Caf,
the muscle activation term, to decrease more rapidly. Together,
work-dependent deactivation and the length and velocity depen-
dence reduce and stabilize the muscle force (Fig. 7G), particularly
during the deactivation period.
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Fig. 8 shows the body motion and flow patterns developed by
the two swimmers (see also Supplemental Movies S1 and S2). The
basic movements of the body are similar, but the swimmer with-
out nonlinearities (000S) swims very slightly faster (gray swimmer
in Fig. 8), primarily due to the higher forces (0.51 L s�1 vs
0.50 L s�1). The wakes are also structurally similar, with a strong
primary vortex shed each time the tail changes direction and two
smaller secondary vortices shed as the tail sweeps across. There
are also differences during the acceleration period (about 0–5 s) so
that the model with no nonlinearities accelerates more quickly.
The two effects allow the lamprey without nonlinearities to pull
ahead of the nonlinear model by t ¼ 6:0 s. However the cost of the
swimming is reduced by the presence of the nonlinearities so that
it will take much less work to swim the same absolute distance.

Calcium-dependent changes in stiffness have relatively little
effect on the swimming kinematics or the energetics. Calcium rises
rapidly during activation, so that the variable stiffness case is quite
similar to the maximum stiffness case (compare cases with σ to
those with S).

3.2. Velocity dependence reduces peak forces near the tail

Fig. 9 shows how the peak normalized force changes along the
body for several simulations. Because velocities are higher near
the tail and the length changes are greater, the length and velocity
dependences tend to reduce the peak normalized force. Total force
always declines near the tail because it is proportional to the
cross-sectional area, which also decreases near the tail; the values
Fig. 8. Snapshots of the flow patterns for two overlaid simulations with and without
nonlinearities. Swimmer 000S, which has all nonlinearities off, is shown in gray
with vorticity in dark gray (clockwise) and white (counterclockwise). Swimmer
VLWσ is shown in black with vorticity in blue (clockwise) and red (counter-
clockwise). See also swimming dynamics and vorticity wakes for 10 s of simulated
time for 000S (Movie S1) and VLWσ (Movie S2) in the Supporting Information.
shown in Fig. 9 represent the force scaled by the peak isometric
force at that point along the body. The force decrease is most
pronounced for swimmers with both length and velocity depen-
dence (VLWσ, red curve), but the decrease is also present for those
with just velocity dependence (V0Wσ, blue curve; and V00σ, cyan
curve). Work-dependent deactivation decreases the peak force, but
its effect is fairly constant along the body (00Wσ, green curve; and
VLWσ, purple curve).

3.3. Velocity dependence decreases energy costs

The nonlinear velocity dependence (α) has the largest effect of the
four nonlinearities, because it reduces both the energy cost for
swimming a unit distance and the metabolic power used to overcome
drag. For each of the 24 different combinations of nonlinearities
(Fig. 6), we measured the kinematics and estimated the cost of
transport (energy required to transport a unit mass over a unit dis-
tance: Eq. (22)) and the nondimensional power coefficient (the
muscle power used relative to the power required to overcome drag:
Eq. (24)), both accounting for the lower metabolic energy required for
eccentric vs. concentric contractions (Ruina et al., 2005).

Simulations with velocity dependence (α) and work-dependent
deactivation (m) tended to have the lowest cost of transport
(Fig. 10). Power coefficients were also low for many of these
swimmers, as long as the series elastic element was sufficiently
stiff (simulations with S or σ). Swimmers with soft springs
(simulations with 0 at the end) generally swam slowly, and so
their power coefficients were much higher.

3.4. Work dependent deactivation reduces co-contraction

In our model, muscles are always activated for 36% of the tail
beat cycle. Muscle force, however, takes time to decay to zero after
activation ceases. If the force on one side remains on for too long,
it can end up resisting force development on the opposite side and
increasing energy costs. Moreover, if the muscle produces force
after the end of activation for too long, it can end up producing
force as the muscle on the opposite side forcibly lengthens it (an
effect called an “eccentric contraction”), resulting in an increase in
force due to the velocity dependence.

If WDD is not present, these eccentric contractions can produce
a substantial amount of force, which takes energy. If WDD is
present, muscle on one side of the body turns off rapidly enough
that the force from the other side does not overlap. This coupling
between WDD and velocity dependence is present in most of the
simulations, but it is most obvious when comparing simulations
VL00 and VLW0 (Fig. 11). Of all the simulations, VL00 uses the most
power relative to drag; adding WDD (simulation VLW0) reduces
the power almost 6 times. Fig. 11B shows that calcium on the left
side stays bound to the myosin filaments much longer without
WDD (VL00; black lines). When muscle on the right begins pro-
ducing force, Caf, is still sufficiently high on the left so that the left-
side muscle produces force again through an eccentric contraction,
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resulting in an extra bump in the force curve (black curve,
Fig. 11G). The extra force production is costly, both because it
requires energy itself and because it reduces the overall tail beat
amplitude.
3.5. Effective swimming kinematics are similar, even when energy
costs differ

Most of the simulations had similar swimming kinematics,
even when the energy costs were very different. As long as the
series elastic element was stiff (S) or varied in stiffness (σ),
swimmers generally reached a swimming speed of approximately
0.5 L s�1, a tail beat amplitude of about 0.12 L, Re around 8000,
and a Strouhal number of around 0.5. Wave speed and wavelength
were fairly consistent at 0.75 L/s and 0.8 L, respectively, resulting
in a neuromechanical phase lag of about 0.14. The swimmers with
the much softer spring (simulations coded with 0 at the end) had
much lower tail beat amplitudes (0.08 L on average) and swim-
ming speeds (0.30 L/s), corresponding to a much higher Strouhal
number (0.60). Body wavelength in these swimmers was shorter
(0.67 L), leading to a larger neuromechanical phase lag (0.281).

Despite the similar movements, some swimmers used drama-
tically more muscular energy to achieve these kinematics. For
example, swimmers without velocity dependence tended to use
2–3 times more energy than those with velocity dependence
(Fig. 10).
4. Discussion

We studied the effects of four different muscle nonlinearities
(Fig. 1) on the cost of transport and kinematics of a computational
swimmer, modeled after the lamprey. We examined the roles of the
length and velocity dependence of muscle force production (Hill,
1938); a history dependence, in which muscles deactivate more
rapidly after they have produced positive mechanical work (Josephson
and Stokes, 1999); and a newly described calcium dependence in the
stiffness of the passive elastic element (Nishikawa et al., 2012; Monroy
et al., 2012). Cost of transport is highest when none of the non-
linearities are present, and can decrease by almost six times when all
of the nonlinearities are included (Fig. 10).

All of the muscle nonlinearities reduced peak forces. Even the
velocity dependence, which can potentially increase force during
eccentric (lengthening) activity, does not increase the peak, because
the peak force occurs during shortening. Indeed, all of the swimmers
with nonlinearities swam at the same speed or slower than the one
with all of the nonlinearities off (000S). In a mathematical model of
hopping driven by a similar Hill-type muscle model, Haeufle et al.
(2010) made a similar observation: intrinsic muscle nonlinearities
reduced the hopping height.
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4.1. The velocity dependence and work dependent deactivation work
together to cause the largest decrease in energy cost

The reduction in forces leads to a corresponding reduction in
energy production, and the velocity dependence causes the largest
part of the reduction. Whenmuscle force does not depend on velocity,
the muscles tend to produce high forces, even when they are con-
tracting rapidly, which requires more power. They also cannot pro-
duce higher forces during active lengthening. Whenmuscle force does
depend on velocity, the power drops off at high speed and muscles
can efficiently resist lengthening. Both of these effects combine to
reduce the overall cost of transport in simulations with velocity
dependence. The velocity dependence also seems to stabilize muscle
length changes, as swimmers without velocity dependence exhibit
more oscillations in the length or velocity (see Fig. 7).

Surprisingly, swimmers with very similar kinematics can have
different energetic requirements. Most swimmers with relatively stiff
series elastic elements have similar kinematics. However, those with
the velocity dependence achieve nearly identical kinematics while
using about half the metabolic energy as those without velocity
dependence (Fig. 10). Although velocity dependence is a universal
feature of muscle, if different animals have different shapes to their
force–velocity relationships, or if those shapes change with age,
exercise or temperature, that may dramatically affect the cost of
transport even if the swimming movements are similar. Here we
chose to focus on a force–velocity relationship based on fitted data
(Williams, 2010). Because velocity dependence has a marked effect on
the energetics of swimming in this model, the effects of the functional
form of the force–velocity relationship on energetics will be explored
in future work.

Muscle deactivation is also crucial. If muscles deactivate too slowly,
the end of force development on one side of the body can overlap
with the beginning of force development on the opposite side. In
extreme cases (Fig. 11), this can lead to a second peak in force, as seen
in VL00 but not VLW0, due to the velocity dependence. When these
eccentric contractions are caused by antagonists fighting one another,
they increase energy consumption.

4.2. The neuromechanical phase lag does not cause the energy
decrease

However, in our previous work (Tytell et al., 2010a; Miller et al.,
2012), we found that eccentric contractions could reduce energy
consumption, when they do not oppose other muscles, but instead
oppose fluid dynamic forces. Specifically, when muscle forces are
relatively low compared to fluid forces, muscle near the tail ends up
being active during lengthening; this phase lag between activation
and body motion correlates with low cost of transport (Miller et al.,
2012). Similar simulations from Williams and McMillen (2015), using
the same muscle model, but a simple fluid model, found the same
effect: as muscle forces decrease, the phase lag increases. In the cur-
rent work however, energy savings do not come from this neuro-
mechanical phase lag. Indeed, nearly all of the faster swimmers have
approximately the same phase lag. Instead, energy savings in the
current work largely comes from decreases in co-contraction.

In the current model, we did not change the overall body stiffness
of the swimmer or the peak muscle forces, but we did alter the
stiffness of the series elastic element. If this element is very soft, the
swimmer is not able to move. Our tests suggest the stiffness of the
series elastic element does not greatly affect performance as long
as the maximum stiffness is not too low. If the elastic element
stiffness is too low, then most of the contraction energy is lost and
force development is greatly reduced. We suspect that the effects
of variable stiffness may be more important for the response to
perturbations or for unsteady motions. Further studies will be
necessary to clarify these effects.
4.3. Comparison to previous models

McMillen et al. (2008)examined the effects of length and
velocity dependence on a swimming lamprey driven by an earlier
version of the current muscle model (Williams et al., 1998), but
with a much simpler, resistive fluid dynamic model (after Taylor,
1952). In the current study, the organism model is fully coupled to
an incompressible, viscous fluid model in an immersed boundary
framework. It has been shown that the force interaction between
the structure and the fluid can be very different when the full fluid
equations are considered rather than the simplified resistive force
model (Tytell et al., 2010b). When they removed the non-
linearities, it was also necessary to reduce the muscle force density
to prevent the amplitude from increasing dramatically. Adding
nonlinearities back in reduced the forces, particularly near the
head, and decreased the swimming speed (McMillen et al., 2008).
We also observed that the nonlinearities decreased muscle force,
but the effect on amplitude was negligible, as long as the series
elastic element was sufficiently stiff. Differently, we found that
nonlinearities caused peak forces to decrease near the tail, not
near the head (Fig. 9).

Previous work has examined how muscle nonlinearities
affect stability, and most find that the force–velocity relation-
ship enhances stability by providing a nonlinear damping effect
(e.g., Blickhan et al., 2007; Wagner and Blickhan, 1999; Chen and
Ren, 2010; Brown et al., 2000; Haeufle et al., 2010). Antagonistic
muscles also contribute to stability, provided that they have
typical force–velocity and force–length relationships (Wagner and
Blickhan, 2003). We also find that the force–velocity relationship
damps out extra oscillations in our swimmer (see Fig. 7).

To our knowledge, no other study has directly examined how
intrinsic muscle nonlinearities contribute to mechanical energy
production and consumption during locomotion. Woledge (1968)
suggested a steeper force–velocity curve could contribute to more
effective conversion of ATP to force. We also find that the force–
velocity curve contributes to efficient swimming, though we do
not directly include metabolic energy. Many studies have shown
that running animals can benefit from elastic energy storage
in some of the tendons and muscles in their lower legs (e.g.,
Alexander, 1988; Biewener and Daley, 2007). Such leg muscles
tend to contract isometrically, using relatively little metabolic
energy to produce force (Biewener and Daley, 2007), and allowing
tendons to stretch and rebound during the running cycle. Such
effects are not well understood for fishes or other swimming
animals (Tytell et al., 2014), though they may be present in some
species like dolphins (Pabst, 1996). Our simulations are somewhat
different. We suggest that the intrinsic muscle nonlinearities,
particularly the force–velocity relationship, contribute to energy
economy by reducing the power consumed at high shortening
speeds and increasing the force during active lengthening, which
requires relatively little metabolic energy.

4.4. The determinants of muscle energy consumption

In an influential review, Josephson (1999) identified the force–
length and force–velocity effects, along with activation, as the primary
determinants of muscle power, and suggested that work-dependent
deactivationwas a secondary effect. Because we examined energy, our
results do not directly bear on the determinants of power, which is the
rate of energy production. However, for muscle energy production,
our results suggest that force–velocity dependence may be a primary
determinant, while work-dependent deactivation has an important
secondary role. The force–length effect may be a primary determinant,
but because the muscle does not change length substantially, its effect
is limited. The length changes should be close to those in actual fishes,
because the kinematics are very similar, and previous studies have
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shown that kinematics are a good predictor of muscle length changes
(Coughlin et al., 1996). The time course of activation is also likely to be
a primary determinant, as Josephson argued (Josephson, 1999), but we
did not vary it. However, our results suggest that the timing of acti-
vation, or more precisely the timing of deactivation, is very important
for reducing energy consumption. When opposing muscles deactivate
slowly, they end up fighting each other and increasing energy con-
sumption. Work-dependent deactivation causes muscles to deactivate
rapidly and fight each other less (Fig. 11), but an actual animal could
shorten the activation duration, which would have a similar effect.

Finally, Josephson pointed out the crucial importance of the cou-
pling to load (Josephson, 1999). Muscles do not operate in isometric,
isovelocity, or even work loop conditions, but rather, their shortening
velocity is determined by the inertial dynamics of other muscles, the
body, and the environment. As discussed above, the coupling to load
can reduce energy consumption. When muscle forces are relatively
low compared to fluid forces, the neuromechanical phase lag is high
(Miller et al., 2012; Williams and McMillen, 2015) and the cost of
transport is low. Recent work by Clemente and Richards (2013) has
shown that this coupling, particularly in a fluid environment, can limit
the maximum muscle power. Our fluid model is based on the full
Navier–Stokes equations, not a reduced model, and therefore should
accurately represent the dynamic load on the muscle. However, our
model is two dimensional, and represents a slice through the hor-
izontal midline of a fish with roughly constant dorso-ventral cross-
section. This simplification approximates eels and lampreys well
(Tytell et al., 2010a; Gazzola, 2014), but cannot account for more
complex body shapes of other fishes. The size and shape of the body,
peduncle, and tail fin will definitely affect the dynamic loading of the
muscle and thus the energetics. These effects will be explored in a
future three-dimensional model.

4.5. Conclusions and future directions

Our results suggest that the force–velocity relationship, and par-
ticularly the force produced during lengthening, is a crucial aspect of
energy economy for swimming animals, and probably also for legged
animals. In an eccentric contraction, a muscle opposes some external
force that lengthens it. The external force can either come from an
antagonistic muscle, in which case it increases the energy cost of
locomotion, or the force can come from interaction with the envir-
onment. In the second case, if the eccentric contraction is timed cor-
rectly, our previous results (Tytell et al., 2010a; Miller et al., 2012)
suggest that it decreases the energy cost. We found that the work-
dependent deactivation and velocity-dependence both decreased the
opportunity for co-contraction, which can divert energy to over-
coming resistance to force development on the shortening side. Since
the properties of muscles and the non-linear dependencies are similar
across most animals, these effects may be generally important for all
animal locomotion.

Finally, the current model has a fixed activation pattern and
does not take into account the effects of sensory feedback on
muscle activity, and ultimately on the kinematics and energetics of
swimming. It is well known that animals use proprioceptive sen-
sory feedback to alter neural activation signals that control force
development in muscles. These effects have been studied in
reduced preparations or by severing afferent nerves for a long time
(e.g., Liddell and Sherrington, 1924; Rossignol et al., 2006; Pro-
chazka et al., 1997; Grillner et al., 1981), but only recently have we
started to develop the computational and experimental tools to
study them in normal closed-loop behavior (see reviews in Cowan
et al., 2014; Roth et al., 2014). We expect that incorporating pro-
prioceptive information in the form of a more detailed neural
activation model will change the energetics the swimming lam-
prey model by altering the relative amounts co-contraction and
eccentric contractions opposing environmental forces. These
effects will be explored in future work.
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