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a b s t r a c t 

The macroscopic properties of polymeric fluids are inherited from the material properties of the fibers embedded in the solvent. The behavior of such passive fibers 

in flow has been of interest in a wide range of systems, including cellular mechanics, nutrient acquisition by diatom chains in the ocean, and industrial applications 

such as paper manufacturing. The rotational dynamics and shape evolution of fibers in shear depends upon the slenderness of the fiber and the non-dimensional 

“elasto-viscous ” number that measures the ratio of the fluid’s viscous forces to the fiber’s elastic forces. For a small elasto-viscous number, the nearly-rigid fiber 

rotates in the shear, but when the elasto-viscous number reaches a threshold, buckling occurs. For even larger elasto-viscous numbers, there is a transition to a 

“snaking behavior ” where the fiber remains aligned with the shear axis, but its ends curl in, in opposite directions. These experimentally-observed behaviors have 

recently been characterized computationally using slender-body theory and immersed boundary computations. However, classical experiments with nylon fibers 

and recent experiments with actin filaments have demonstrated that for even larger elasto-viscous numbers, multiple buckling sites and coiling can occur. Using a 

regularized Stokeslet framework coupled with a kernel independent fast multipole method, we present simulations that capture these complex fiber dynamics. 
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. Introduction 

The motion of flexible fibers in flow is central to many biological

ystems at the microscale. Mammalian sperm flagella propel these cells

hrough the female reproductive tract [4] , while microtubule fibers are

ngredients of the mitotic spindle in cell division [22] . While the dy-

amics of these fiber-fluid systems are actuated by molecular motors,

ther biological systems contain passive fibers that are transported and

ndergo shape deformations due to the flow. Examples of these pas-

ive fibers include microtubules transported by cytoplasmic streaming

n fungal hyphae [19] and chains of diatom cells that move with water

urrents through the ocean [9] . 

Early experiments by Forgacs and Mason [6] on synthetic fibers

n shear demonstrated a spectrum of orbits and shape deformations.

horter, stiffer fibers experienced a signature Jeffery orbit, where pe-

iodic tumbling was accompanied by little to no deformation. Longer

bers exhibited periodic orbits with shape deformations that were quali-

atively catalogued as S -turns (buckling) and snake turns. For the longest

bers, Forgacs and Mason [6] observed complex shape deformations

hat they described as coiled orbits with entanglement. Decades later,

ith the availability of microfluidic technology, these periodic shape

eformations in shear have been observed in DNA strands and actin fil-

ments [7,8,14] . Most recently, the complex coiling and entanglement

f long actin fibers was measured experimentally in [13] , where an actin

lament of length of more than sixty microns was subjected to a shear
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ow. A fiber that is initially straight and aligned with the shear direc-

ion develops the shape of a hook at the ends of the fiber during a snake

urn. Later in time, the fiber exhibits a more complex behavior, including

ultiple buckling sites in the middle of the fiber and three-dimensional

ntanglement. 

In a review article on the dynamics of flexible fibers in flow, du Roure

t al. [3] describe recent technological advances in experimentation and

ecent algorithmic advances in computational modeling that have given

ise to deeper understanding and probing of fiber-fluid systems. Exploit-

ng the inertia-free environment at the microscale, and the slender ge-

metry of the fibers, much progress has been made in using slender

ody theory [20] to describe the orbits and buckling of fibers in flow

.g., [14,16,21,24] . Kuei et al. [10] have modeled a fiber as a string of

pherical beads subjected to a shear flow, and simulations exhibit com-

lex coiling and, in some cases, production of knots. In this manuscript,

e present a mathematical model and numerical method that captures

he dynamics of short fibers as well as the complex shape deformations

f the longest fibers without asymptotic restrictions on the slenderness

hat are typical of a slender body formulation. The fibers we consider

re represented by a discretization of their surface. We use a similar

ber model as that used to examine the dynamics of diatom chains in

 non-zero Reynolds number environment [17] . However, here we as-

ume that the length and velocity scales are small enough so that the

uid dynamics is well-described by the Stokes equations, and use a reg-

larized Stokeslet formulation [1,2] of the fluid-fiber system. 

While the diatom chain model of Nguyen and Graham [17] was able

o capture complex buckling behavior of long fibers, it was based on an

daptive mesh immersed boundary method that needed fine grid reso-
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ution on the fluid domain near the fiber. In contrast, the regularized

tokeslet formulation described here, while requiring fine resolution of

he fiber surface to capture the complex behavior, is based on fundamen-

al solutions of the Stokes equations and does not require a spatial grid

n the surrounding fluid. Although one of the most attractive features

f the regularized Stokeslet framework is the ease of implementation –

he velocities at N nodes are computed based upon the forces at each

f the N nodes - the direct N 

2 evaluation becomes costly for N large.

n order to resolve the surface of a long, thin fiber using a discretiza-

ion such that the distance between nodes around a cross section is on

he order of the distance between cross sections, the number of nodes N

ecomes necessarily large. Here we demonstrate that the incorporation

f a kernel independent fast multipole method [28] to compute veloci-

ies rather than a direct evaluation allows for faster simulations of the

ongest fibers, and will be a promising tool for multi-fiber investigations.

In the following sections we will discuss the construct of the model

ber and its coupling to a Stokes fluid using the method of regularized

tokeslets. We will demonstrate the shape deformations of fibers of in-

reasing length in shear, and discuss how these results compare with

ecent studies. Moreover, we will present simulations of long fibers (at

arge elasto-viscous numbers) that capture the complex coiling and en-

anglement observed in experiments. 

. Methodology 

.1. Stokes equations 

Assuming that length and time scales are small, we model a flexible

ber coupled to a viscous fluid in three dimensions by the incompress-

ble Stokes equations: 

 = −∇ ̂𝑃 + 𝜇Δ𝐮̂ + 𝐅̂ , 
 = ∇ ⋅ 𝐮̂ , (1)

here 𝑃 is the pressure, ̂𝐮 is the fluid velocity, 𝜇 is the fluid viscosity, and
̂
 is the external force per volume exerted by the fiber on the fluid. The

orces in Eq. (1) are localized at the fiber surface, and will be described

elow. The motion of the passive fiber will be driven by an imposed

ackground shear flow 𝐮̂ 𝑏 ( ̂𝑥 , ̂𝑦 , ̂𝑧 ) = ( ̇𝛾𝑦̂ , 0 , 0) . 
We use a regularized Stokeslet framework [1] to model the elastohy-

rodynamic system. Rather than using a surface integral of Dirac delta

unction forces 𝐴 ( 𝐲 ) ̂f ( 𝐲 ) 𝛿( 𝐱 − 𝐲 ) , we consider regularized force density

 ( 𝐲 ) ̂f ( 𝐲 ) 𝜙𝜀 ( 𝐱 − 𝐲 ) supported on a patch of area A ( y ) on the surface of the

ber. The regularization (or blob) function is chosen to be: 

𝜀 ( 𝐱 − 𝐲) = 

15 𝜀 4 

8 𝜋( 𝑟 2 + 𝜀 2 ) 7∕2 
, (2)
ig. 1. Fiber model consisting of points on fiber surface connected by a network of s

he arrows indicate the background shear flow. The fiber shown here has 𝑁 𝑓 = 80 cr

74 
here 𝑟 = ‖𝐱 − 𝐲‖, and 𝜀 is the regularization parameter [1] . This leads

o the velocities due to the regularized Stokeslets as follows: 

 𝑠𝑡 ( 𝐱) = ∫Σ 𝑆 𝜀 ( 𝐱 , 𝐲 ) ̂𝐟 ( 𝐲 ) 𝑑𝑆 𝑦 

= 

1 
8 𝜋𝜇 ∫Σ

( 𝑟 2 + 2 𝜀 2 ) ̂𝐟 ( 𝐲) + ( ̂𝐟 ( 𝐲) ⋅ ( 𝐱 − 𝐲))( 𝐱 − 𝐲) 
( 𝑟 2 + 𝜀 2 ) 3∕2 

𝑑𝑆 𝑦 , (3) 

here 𝐟 ( 𝐲) is force per unit area and Σ denotes the surface of the fiber.

s the regularization parameter 𝜀 approaches zero, the kernel S 𝜀 ap-

roaches the classical singular Stokeslet S 0 . 

We nondimensionalize this coupled fluid-fiber problem by choosing

 characteristic length scale  = 𝐿̂ 0 on the order of a fiber length, a time

cale  = 𝛼𝛾̇−1 , a velocity scale  = 𝐿̂ 0 ∕  , and a force scale  = 𝜇𝐿̂ 

2 
0 ∕  .

ere 𝛼 is a non-dimensional tuning parameter for background shear flow

hat is chosen to be 𝛼 = 2 . 5 in all simulations shown below. We will use

hese non-dimensionalized quantities throughout the manuscript. 

.2. Representation of fiber 

The model fiber that we consider has a native straight shape and

quilibrium length L . We construct the discretization of the surface of

he cylindrical fiber by placing cross-sections of radius R f along the cen-

erline, perpendicular to the centerline (see Fig. 1 ). Each cross-section

s discretized by N c = 18 points, and we take N f cross-sections along the

ber so that the spacing between neighboring cross-sections is approxi-

ately equal to the spacing between adjacent points on a cross section.

Each of the 𝑁 = 𝑁 𝑐 × 𝑁 𝑓 discrete points on the surface of the fiber is

onnected to a subset of the other surface points by a Hookean spring,

iving elasticity to the structure. We define the elastic energy in the

ystem as 

 = 

1 
2 
∑

𝑗 

𝑘 𝑗 𝑙 𝑗 

( ‖𝐱 𝑗 1 − 𝐱 𝑗 2 ‖
𝑙 𝑗 

− 1 
) 2 

(4) 

here k j is the stiffness of a spring with resting length l j that connects

oints j 1 and j 2 . The sum is over all springs. The force at 𝐱 𝑗 1 is f 𝑗 1 𝐴 𝑗 1 
here 𝐴 𝑗 1 

is the area of a patch of surface centered at 𝐱 𝑗 1 in the dis-

retization. The elastic forces are derived from the energy function: 

 𝑗 1 
𝐴 𝑗 1 

= − 

𝜕 
𝜕𝐱 𝑗 1 

This network of nodes and elastic linkages will impart tensile stiff-

ess and bending rigidity to the fiber, calibrated by the connectivity

f the nodes and the stiffness constants of individual linkages. Similar

onstructs of semi-flexible filaments coupled to an incompressible fluid

ave been used to model bacterial flagella [5,11,12] and diatom chains

18] . In all simulations shown here, we choose a network connectivity

o that each point on a given cross-section is connected to every other
prings. The inset shows more detail of the spring network comprising the fiber. 

oss-sections and 𝑁 𝑐 = 18 nodes per cross section. 
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Table 1 

Geometric and material parameters of fibers and numer- 

ical parameters (all non-dimensional). 

Quantities Dimensionless 

value 

Fiber length, L 0.139–2.28 

Fiber radius, R f 0.005 

Slenderness ratio, 𝜌 = 𝑅 𝑓 ∕ 𝐿 0.0022–0.036 

Spring stiffness, k 0.0112 

Bending rigidity, EI 4 . 8 × 10 −6 

Shear scale, 𝛼 2.5 

Elasto-viscous number, 𝜇̄ 5 . 35 × 10 2 − 2 . 37 × 10 7 

Numerical Parameters 

Cross sections along fiber, N f 80–1313 

Points per fiber cross section, N c 18 

Total number of points on fiber N 1440–23634 

Spacing between fiber nodes, Δs 0.00174 

Blob size, 𝜀 0.00225 

Time step, Δt 1 . 0 × 10 −4 
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Table 2 

Nomenclature for KIFMM to compute Eq. (7) . 

S 𝜀 regularized Stokeslet kernel 

S 0 singular Stokeslet kernel 

𝐰 𝑗 = 𝐟 𝑗 𝐴 𝑗 the source strength at source point j 

𝐰 𝑒𝑞𝑢𝑖𝑣 

𝑘 
the equivalent source strength at equivalent point k 

p the number of equivalent points along each cubic box edge 

N leaf the maximum number of points per leaf box 
oint on that cross-section, as well as to every other point on the two

ross-sections adjacent to it. This means that each node is connected to

7 + 2 × 18 = 53 other nodes. In addition, in all simulations shown, the

tiffness constant 𝑘 𝑗 = 𝑘 in Eq. (4) is taken to be the same for all springs.

he resting lengths of the springs, l j in Eq. (4) do vary with j , and are

etermined by the straight fiber configuration. 

Due to the imposed background shear, the flexible fiber will depart

rom its equilibrium shape as the network springs become stretched

r compressed, causing forces at the nodes to develop. The fluid ve-

ocity due to these elastic forces is evaluated at each material point

 𝑖 , 𝑖 = 1 , … , 𝑁 of the fiber surface, using a discrete version of ( Eq. (3) ): 

 𝑠𝑡 ( 𝐱 𝑖 ) = 

𝑁 ∑
𝑗=1 

𝑆 𝜀 ( 𝐱 𝑖 , 𝐱 𝑗 ) f 𝑗 𝐴 𝑗 . 

Using the forward Euler method, this velocity, added to the back-

round shear velocity u b , is used to update the positions of the nodes of

he flexible fiber. The range of the fiber’s (non-dimensional) geometrical

nd elastic parameters used in simulations are shown in Table 1 , along

ith the numerical parameters used. An efficient alternative treatment

f the surface integration is to use boundary elements. Such an approach

as used by Smith [23] for computing flows generated by cilia and flag-

lla. 

.3. Calculation of fiber bending rigidity and non-dimensionalization 

The macroscopic bending rigidity EI of the node-spring structure de-

ends upon the individual spring constants k j and the topology of the

pring network. We assume that the fiber is an Euler-Bernoulli beam

hat is intrinsically straight. The bending energy stored in such a beam,

hose centerline is given by 𝐗 ( 𝐬 ) , is: 

 = 

𝐸𝐼 

2 ∫
𝐿 

0 

‖‖‖‖ 𝜕 2 𝑋 

𝜕𝑠 2 

‖‖‖‖
2 
𝑑𝑠. (5) 

For a fiber of length L that is bent into a circular arc with a prescribed

urvature 𝜅, the energy in Eq. (5) is: 

 = 

𝐸𝐼 

2 
𝜅2 𝐿 . (6) 

In our node-spring formulation, we can directly calculate the bend-

ng energy for a given bent configuration by using Eq. (4) which gives us

he energy in the spring network. Exploiting this, as in [12,18] , we can

recompute the bending rigidity EI of one of our computational fibers by

ending it into a circular arc of curvature 𝜅. Because this curved shape

tretches and compresses the network of springs, a non-zero elastic en-

rgy  emerges. Finally, we use Eq. (6) to solve for the bending rigidity

I . 
75 
As in other elastohydrodynamic systems where flexible fibers are

oupled to a Stokesian incompressible fluid, the dynamics are governed

y two non-dimensional parameters: the fiber aspect ratio (slender-

ess parameter) 𝜌 = 𝑅 𝑓 ∕ 𝐿, and the elasto-viscous number that mea-

ures the relative importance of flow forces to elastic forces (e.g.,

14,18,24,25,27] ). We define the elasto-viscous number: 

̄ = 

8 𝜋𝜇𝛾̇𝐿̂ 

4 

𝑐 𝐸̂ ̂𝐼 
= 

8 𝜋𝛼𝐿 

4 

𝑐𝐸𝐼 
, 

here we have indicated the ratio both in dimensional parameters and

sing our non-dimensional scaling. For a given slenderness ratio 𝜌, the

angential drag on the filament is given by the geomentric parameter

 = ln ( 4 𝑒 ∕ 𝜌2 ) . Moreover, in this work, we do not consider the effect of

hermal fluctuations. 

. Using mixed kernels in kernel independent FMM for 

egularized Stokeslet 

.1. Kernel independent FMM steps 

During the solution of the fiber dynamics, the velocity of each node

n the fiber must be evaluated at every time step. The direct evaluation

f the equation 

 ( 𝐱 𝑖 ) = 

𝑁 ∑
𝑗=1 

𝑆 𝜀 ( 𝐱 𝑖 , 𝐱 𝑗 ) 𝐰 𝑗 . (7) 

equires O ( N 

2 ) operations. The cost can be reduced to O ( N ) operations

ith the Kernel Independent Fast Multipole Method (KIFMM) [28] ,

hich builds an adaptive octree for a given set of source ( S ) points x j and

arget ( T ) points x k , 1 ≤ k ≤ N , by recursively refining the octree with no

ore than N leaf points in each leaf box. The nomenclature used in the

IFMM is summarized in Table 2 . 

The interactions between points in a leaf box and other points are di-

ided into near-field and far-field. Near-field interactions refer to points

n all adjacent leaf boxes and are summed directly. Far-field interactions

efer to points in non-adjacent leaf boxes and are approximated using

 set of equivalent points with source strength 𝐰 

𝑒𝑞𝑢𝑖𝑣 

𝑘 
on each equiva-

ent point k . In three dimensions, the equivalent points are chosen to be

n a uniform cubic surface mesh surrounding each octree box, with p

oints along each cubic edge. The total number of equivalent points is

( 𝑝 − 1) 2 + 2 . This approximation converges exponentially with increas-

ng number p . The contribution from near- and far-fields are added to-

ether to form u at each target point. 

The tradeoff between cost and accuracy is controlled by p . In general,

 = 10 gives single-precision accuracy and 𝑝 = 16 gives double precision

ccuracy. N leaf controls the depth of the octree, and thus affects the total

omputation time. In practice, N leaf is set to about 2000 to fit the current

PU architecture. 

There are two ways to invoke the KIFMM for S 𝜀 . The first choice is

o directly use 𝑆 𝜀 ∈  

3×3 as the kernel for all operations throughout the

ctree, for both near-field and far-field interactions. This approach is

traightforward to implement, but is limited to a common value of 𝜀 for

ll points. Further, if periodic boundary condition are necessary, the pe-

iodizing operator  𝑀2 𝐿 must be recalculated for each different 𝜀 [26] .

nother approach is to regard each source point in S 𝜀 as a four dimen-

ional vector ( w 1 , w 2 , w 3 , ɛ ). In this case, S 𝜀 becomes a nonlinear kernel
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ecause 𝜀 appears nonlinearly in S 𝜀 . The near-field interactions between

ource-target pairs are computed directly. For far-field interactions, the

ingular kernel S 0 is used for equivalent points, and the strength 𝐰 

𝑒𝑞𝑢𝑖𝑣 

𝑘 

s found by matching the equivalent flow field with the regularized flow

eld generated by source points. It is straightforward to find the equiv-

lent 𝐰 

𝑒𝑞𝑢𝑖𝑣 

𝑘 
and the exponential convergence of KIFMM is maintained

ecause the regularized kernel S 𝜀 is a solution to the Stokes equation.

fter 𝐰 

𝑒𝑞𝑢𝑖𝑣 

𝑘 
is found, the singular kernel S 0 is used throughout the tree

raversal. This approach allows the regularization parameter 𝜀 to vary

or different source points, and allows the direct reuse of  𝑀2 𝐿 computed

or S 0 [26] to implement various types of periodic boundary conditions.

The computation code is implemented based on the parallel KIFMM

ibrary PVFMM [15] . Both MPI and OpenMP parallelism are imple-

ented to improve parallelization efficiency. SIMD instructions are also

tilized to improve efficiency on modern CPU architectures. 

. Results and discussion 

In recent laboratory experiments that investigate the dynamics of

ctin filaments in shear [14] , the diameter and bending rigidity of the

bers are fixed by nature. The elasto-viscous number of the experiments

s varied by either adjusting the background shear or observing actin

laments of different lengths. Motivated by these experiments, here we

hoose to examine the dynamics of fibers in shear by keeping their bend-

ng rigidity and their diameter fixed, but vary their length. The shear rate

emains fixed in these simulations. As the fiber length increases, its slen-

erness ratio decreases, and the corresponding elasto-viscous number of

he system increases. 

Because we track the surface of the fiber rather than just its center-

ine, a straight fiber that is initialized with its centerline along the x -axis

eeds no perturbation to begin its orbit – spatial gradients in velocity on
ig. 2. Fibers of lengths 𝐿 = 0 . 139 , 0 . 196 , 0 . 523 with corresponding elasto-viscous num

ical tumble, S -turn, and snaking periodic orbits. These dynamics are shown in Movie

76 
ach cross section are immediately formed. In the absence of Brownian

uctuations, the dynamics of a perfectly cylindrical fiber whose center-

ine initially coincided with the x -axis in this unbounded shear flow must

ecessarily obey some symmetry constraints. In particular, the center-

ine must remain in the plane that it was initialized in and the shape

eformations with respect to the centroid of the fiber must be odd. In

he simulations presented below, we will see the effects of the small fluc-

uations that occur due to the numerical perturbations that arise from

ime integration and from the finite discretization of the fiber surface. 

Although not included here, thermal fluctations can be included in

his model by adding random forces to each node chosen from an ap-

ropriate distribution. Preliminary simulations indicate that the thermal

uctuations break the symmetry of the system, pushing all fibers out of

he plane earlier in time than do the numerical fluctuations alone. The

nset of this symmetry breaking depends upon the relative sizes of the

oise and the background flow. 

The time step Δt used for all simulations, indicated in Table 1 , was

hosen based upon experiments with short fibers. We sought a time-step

hat was small enough so that the explicit Euler integration remained

table, but one that was large enough for reasonable computational time.

dentifying this time step Δt , we simulated the motion of the short fiber

n shear flow using Δt , Δt /2, and Δt /4 to test convergence. The differ-

nce in the node locations after one periodic orbit was no larger than

 (10 −6 ) (the fiber length is 𝑂(10 −1 ) ). On the other hand, using 2 Δt was

nstable. 

Fig. 2 shows the periodic orbits of three fibers of increasing length

hat display the signature tumble, S -turn and snaking behavior reported

y [6,14,17,24] . The first column of Fig. 2 depicts the rotational orbit

f a fiber of length 𝐿 = 0 . 139 ( ̄𝜇 = 5 . 35 × 10 2 ) that exhibits little defor-

ation from its straight shape. Fig. 3 (a) shows a surface plot of the

volving (absolute value of) curvature along the arclength of the fiber
bers of 𝜇̄ = 5 . 35 × 10 2 , 1 . 97 × 10 3 , 8 . 22 × 10 4 respectively. Here we see the clas- 

 S1. 



J. LaGrone, R. Cortez and W. Yan et al. Journal of Non-Newtonian Fluid Mechanics 269 (2019) 73–81 

Fig. 3. Surface plots of the curvature as a function of time and arclength along the fiber. Note that we are not considering signed curvature for fibers of length (a) 

𝐿 = 0 . 139 ; (b) 𝐿 = 0 . 196 , (c) 𝐿 = 0 . 523 , (d) 𝐿 = 0 . 931 , (e) 𝐿 = 2 . 28 . Shown in panel (f) is the curvature along the longest fiber 𝐿 = 2 . 28 at time 𝑇 = 36 . Here multiple 

extrema in curvature appear and can be identified with the fibers shape also shown. 
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due to numerical fluctuations cause the centerline of the fiber to move 
s a function of time during approximately five orbits. We see that two

light bends occur during each rotation when the fiber is aligned with

he maximal compressive region of the shear (a forty-five degree angle

ith the negative x -axis), as in the 𝑇 = 4 . 95 snapshot in the first column

f Fig. 2 . The positions of maximal curvature do not travel along the

rclength of the fiber, but occur as standing waves that appear period-

cally in each orbit. The second column of Fig. 2 depicts the rotational

rbit of a fiber of length 𝐿 = 0 . 196 ( ̄𝜇 = 1 . 97 × 10 3 ) that clearly buck-

es into an S -shape during its orbit. Fig. 3 (b) shows the corresponding

volution of curvature. Again we see standing waves of curvature. In

ontrast, the third column of Fig. 2 shows the snaking behavior of a

ber of length 𝐿 = 0 . 523 ( ̄𝜇 = 8 . 22 × 10 4 ) . Here the ends of the fiber curl

n towards the middle of the fiber in an antisymmetric manner, and the

oints of maximal curvature travel along its arclength. These traveling

aves of maximal curvature are evident in Fig. 3 (c) during the times

t which the fiber is bent from its straight configuration. In each of the

imulations shown in Fig. 2 , the fibers exhibit periodic orbits, and dur-

ng most of the orbit the fibers remain in a nearly straight configuration

ligned with the x -axis. Note that the period of rotation increases with

he length of the fiber. 

We compare the above with the coordinated experiments and simu-

ations of actin fibers with Brownian fluctuations by Liu et al. [14] where

he values of elasto-viscous number 𝜇̄ at which transitions from tumbling

o buckling to snaking occurred were quantified. The elasto-viscous

umbers of the simulations presented in Fig. 2 fall squarely within the

anges of these different dynamical regimes. We note that because of the

mposed symmetry in our model, in the absence of a perturbed initial
77 
osition or Brownian fluctuations, we do not observe the C -buckling or

 -turns reported in [14] , but rather their counterparts with odd sym-

etry. If perturbations were added to the initial placement of the fiber,

e do observe such asymmetric shapes (not shown). 

We now examine the dynamics of longer fibers with values of elasto-

iscous number 𝜇̄ that transition from the snaking behavior shown in

he third column of Fig. 2 to more complex dynamics and shape evolu-

ion. Fig. 4 shows some time snapshots of a fiber of length 𝐿 = 0 . 931 in
hear with a corresponding elasto-viscous number ( ̄𝜇 = 7 . 51 × 10 5 ) that

s beyond those considered in [14] . At time 𝑇 = 4 . 95 we observe the

mergence of the hooks at each end that are evident in snaking behav-

or. However, it is worthwhile to compare the snapshot of the 𝐿 = 0 . 523
ber in Fig. 2 at 𝑇 = 10 . 5 to the longer fiber in Fig. 4 at 𝑇 = 16 . 25 . In the

onger fiber, we see that additional hooks have formed at the ends, giv-

ng multiple local extrema in curvature along the fiber. The evolution of

he curvature is shown in Fig. 3 (d), where we can see the propagation

f traveling waves of curvature. We remark that this fiber never did re-

ain its straight shape. Fig. 5 shows the dynamics of an even longer fiber

f length 𝐿 = 2 . 28 that exhibits even richer shape dynamics. Again, the

ooks appear at the fiber ends at 𝑇 = 10 , but the fiber is long enough

o support multiple coils as time evolves, as well as additional buckling

ites in the middle. Fig. 3 (e) shows the evolution of the curvature along

his fiber with a cross-section at time 𝑇 = 36 indicated. Fig. 3 (f) shows

he curvature plotted at 𝑇 = 36 as a function of arclength. The multi-

le peaks in curvature can be identified in the fiber configuration also

hown. In Fig. 5 we can observe that at about 𝑇 = 50 , the perturbations
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Fig. 4. Shape deformations of a fiber of length 𝐿 = 
0 . 931 with corresponding elasto-viscous number 𝜇̄ = 
7 . 51 × 10 5 . These dynamics are shown in Movie S2. 
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ut of the plane, giving rise to the entanglement seen by Forgacs and

ason [6] and in [13] . Fig. 6 shows a zoomed-in image of this entan-

lement at time 𝑇 = 110 . 
Both Harasim et al. [7] and Liu et al. [14] presented theoretical

nalysis of the dynamics of the J shape at the fiber ends that evolve

uring a snaking orbit. In particular, it was assumed that the hook de-

eloped is well-approximated by a semicircle of a fixed radius. For fibers

n our simulations that did cross the threshhold of 𝜇̄ at which snaking

ccurs, we measured the radius of such a circle using a least squares

t (see Fig. 7 (a)). Even for large values of 𝜇̄, the initiation of bend-

ng exhibits the emergence of hooks. Fig. 7 (b) shows that the emergent

adii is nearly independent of the length of the fiber and, hence, inde-

endent of 𝜇̄. Because our computations are nearly at the limit of long

laments, this agrees with the predictions of [7] . During the initiation of

he snaking in each of the simulations (even those that go on to complex

hape deformations with no periodic orbits), we can measure the speed
78 
f propagation of the maximal curvature along the fiber arclengths. This

s equivalent to the slope of the traveling waves in the curvature surface

lots in Fig. 3 (c–e). Although not immediately apparent, because the

ange of the spatial axis is the arclength of the fiber which is different

n each panel, these slopes are nearly equal. As with the hook radii, we

nd that these “snaking velocities ” are also nearly independent of 𝜇̄ (see

ig. 7 (b)). 

The transitions from tumbling to S -turns to snaking to complex coil-

ng shown in Figs. 2–5 are summaried in Fig. 8 . In this state diagram, we

atalog the shape evolution of fibers from thirteen different simulations

ith fibers of increasing length. As all other parameters such as bending

igidity, fluid viscosity and background shear rate were not varied, elon-

ating the fiber in successive simulations results in decreasing its aspect

atio and increasing the elasto-viscous number of the system. The elasto-

iscous number of a simulation is indicated along the x -axis of Fig. 8 .

or each of the simulations, we place a vertical bar above its elasto-
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Fig. 5. Shape deformations of a fiber of length 𝐿 = 2 . 28 with corresponding elasto-viscous number 𝜇̄ = 2 . 37 × 10 7 . Note that after 𝑇 = 50 the fiber centerline is no 

longer planar. Numerical fluctuations allow the fiber to exhibit a series of 3D coiled and entangled states. These dynamics are shown in Movie S3. 

Fig. 6. A zoomed-in image at 𝑇 = 110 of the 3D entangled 

state of the fiber of length 𝐿 = 2 . 28 with corresponding visco- 

elastic number 𝜇̄ = 2 . 37 × 10 7 , This entangled image may be 

viewed from different directions in Movie S4. 

Fig. 7. (a) Radius of J -turn illustrated on a fiber. (b) For elasto-viscous numbers that exhibit J -turn formations initially, the computed radius of the hook and the 

snaking velocity during the initial snaking. Note that all simulations, independent of fiber length (and, hence, visco-elastic number), result in radii and velocities 

that are nearly constant. 

79 
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Fig. 8. A state diagram that catalogs the shape evolution of 

fibers from thirteen different simulations with fibers of in- 

creasing length. The elasto-viscous number of a simulation 

is indicated along the x -axis. For each of the simulations, 

we place a vertical bar above its elasto-viscous number that 

is color-coded to indicate the number of curvature peaks 

during the course of that simulation, with time increasing 

from bottom to top. The simulations corresponding to the 

snapshots shown in Figs. 2, 4, 5 are indicated with a ∗ under 

their respective elasto-viscous numbers. 

Fig. 9. Timings for regularized Stokeslet simulations 

using direct N 

2 force evaluation and kernel indepen- 

dent fast multipole (KIFMM) evaluation as a function 

of the number of discrete points comprising the fiber 

surface. Note that the number of points increases as 

fiber length increases. The insets show a few fiber ge- 

ometries at that value of N surface points. 
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v  
iscous number that is color-coded to indicate the presence of curvature

eaks during the course of that simulation, with time increasing from

ottom to top. The simulations corresponding to the snapshots shown in

igs. 2, 4, 5 are indicated with a ⋆ under their respective elasto-viscous

umbers. For fibers of all lengths, we see that the initial peaks occur

t approximately the same time T 0 ≈5. Note that even for the shortest

ber shown in the first column of Fig. 2 , a slight S-shape bend develops

n the most compressive region, but quickly dissipates. The right-most

ertical bar in Fig. 8 shows this periodic behavior, where the black dash

ndicates the two curvature peaks along the ever-so-slightly bent fiber

ith odd symmetry. 

We placed the transition from tumbling to S-shape near this elasto-

iscous number. As the fiber lengths move from the S -turn region (where

he duration of the two curvature peaks is short), to be long enough to

ropagate a snake turn, we see that the fiber supports two curvature
80 
eaks for a longer duration of time, indicated by the height of the black

ars. This duration increases with fiber length. For the snaking fibers,

he curvature wave has to travel approximately half the length of the

ber at the approximately constant snaking speed shown in Fig. 7 . Thus,

he duration of the curvature peaks increases linearly with fiber length

n this snaking region. 

Up until an elasto-viscous number of about 10 5 , these non-Brownian

bers exhibit periodic motion and their centerlines are confined to a

lane. We do see a transition to complex behavior, indicted in Fig. 8 ,

here this periodic behavior is lost, and the fiber supports more than

wo curvature peaks. We remark that, until numerical fluctuations break

he symmetry of the system, there must be an even number of curvature

eaks along a fiber. This symmetry breaking is, indeed, observed for

arge elasto-viscous numbers. In this region of complex behavior, the

ertical bars corresponding to the fibers shown in Fig. 4 and 5 indicate
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hat the fibers evolve from a two to a four curvature peak configuration

s they develop bends in their middle (i.e., 𝑇 = 16 . 25 in Fig. 4 ) or de-

elop a second J -turn at each end (i.e., 𝑇 = 24 in Fig. 5 ). After a second

 -turn has formed at the ends, the fiber will further interact with itself,

nd more curvature peaks can develop (i.e., at 𝑇 = 60 in Fig. 5 we see

ix such peaks). The motion of these long, flexible fibers exhibit a wealth

f dynamics including symmetry-breaking and entanglements. 

.1. Computational considerations 

To capture the complex coiling and entanglement dynamics of slen-

er fibers, fine resolution of their surface and along their length is re-

uired. While the regularized Stokeslet formulation relies on fundamen-

al solutions of the Stokes equations and not a finite difference or finite

lement discretation of the surrounding three-dimensional fluid domain,

 direct N 

2 evaluation of N velocities at N nodes becomes prohibitive for

arge N . Fig. 9 presents the timings for 1000 time steps of the fiber-fluid

ystem using direct summation and KIFMM summation. We see that for

mall fiber lengths, the overhead for KIFMM outweighs its benefits, but

hat a cross-over occurs at about 𝑁 = 1 . 7 × 10 4 nodes, corresponding to

 fiber length of 𝐿 = 1 . 6 . For the longest fiber of length 𝐿 = 2 . 2 we al-

eady see a factor of 1.6 speed-up. This speed-up will be significant for

imulations of multiple fiber dynamics. 

Note that in the simulations presented above, and in the entangled

tate shown in Fig. 6 , there is no self-intersection of the fiber. Because of

nite time steps and finite regularization parameters, we cannot rule out

elf-intersection. While we have not implemented any repulsive forces

s fiber points get very close, such adjustments to the algorithm can be

ncluded. 

. Conclusions 

In summary, we have presented a computational method that cap-

ures complex shape deformations of long flexible fibers in shear. Us-

ng the method of regularized Stokeslets in conjunction with a kernel

ndependent fast multipole method we are able to simulate the dynam-

cs of fibers at elasto-viscous numbers that are a couple of orders of

agnitudes larger than those reported using slender body formulations.

ecause the fiber is represented by a spring-node system with individ-

al spring elements, it is straightforward to model fibers with inho-

ogenous material properties by altering connectivities and stiffness

onstants of the individual elements. Moreover, the implementation of

IFMM will allow us to probe the interaction of multiple fibers in an

rray of background flows beyond a simple linear shear. 
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