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Abstract

Like other animals, lampreys have a central pattern generator (CPG) circuit that activates

muscles for locomotion and also adjusts the activity to respond to sensory inputs from the

environment. Such a feedback system is crucial for responding appropriately to unexpected

perturbations, but it is also active during normal unperturbed steady swimming and influ-

ences the baseline swimming pattern. In this study, we investigate different functional forms

of body curvature-based sensory feedback and evaluate their effects on steady swimming

energetics and kinematics, since little is known experimentally about the functional form of

curvature feedback. The distributed CPG is modeled as chains of coupled oscillators. Pairs

of phase oscillators represent the left and right sides of segments along the lamprey body.

These activate muscles that flex the body and move the lamprey through a fluid environ-

ment, which is simulated using a full Navier-Stokes model. The emergent curvature of the

body then serves as an input to the CPG oscillators, closing the loop. We consider two

forms of feedback, each consistent with experimental results on lamprey proprioceptive sen-

sory receptors. The first, referred to as directional feedback, excites or inhibits the oscillators

on the same side, depending on the sign of a chosen gain parameter, and has the opposite

effect on oscillators on the opposite side. We find that directional feedback does not affect

beat frequency, but does change the duration of muscle activity. The second feedback

model, referred to as magnitude feedback, provides a symmetric excitatory or inhibitory

effect to oscillators on both sides. This model tends to increase beat frequency and reduces

the energetic cost to the lamprey when the gain is high and positive. With both types of feed-

back, the body curvature has a similar magnitude. Thus, these results indicate that the

same magnitude of curvature-based feedback on the CPG with different functional forms

can cause distinct differences in swimming performance.
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Author summary

When animals move, they receive sensory inputs, which in turn are used to modulate the

movement. Relatively little is known about how these inputs affect performance during

steady locomotion. Using a computational model of a swimming lamprey, we investigated

two different types of feedback, both consistent with experimental data. Both have strong,

but different, effects on swimming speed and energy consumption, suggesting that sen-

sory feedback is crucial not just for responding to perturbations, but also for high perfor-

mance steady locomotion.

Introduction

To move effectively, all animals must activate their muscles to move their bodies. In nearly

every animal studied, this pattern of muscle activation is produced by a relatively small neural

circuit called a central pattern generator (CPG) [1, 2], which is influenced by the mechanics of

their bodies and the physical world around them. The CPG integrates sensory information,

particularly from proprioceptors that sense body movement, and adapts the pattern of muscle

activation accordingly [3].

The lamprey has been a model organism for investigating sensorimotor integration during

locomotion because its spinal cord, which contains the CPG circuit, can easily be isolated and

stimulated to produce a pattern of muscle activity that strongly resembles the pattern in intact

swimming animals [4]. Moreover, the primary proprioceptors in lampreys are mechanosen-

sory cells, called edge cells, and are located on the spinal cord [5], in contrast to the proprio-

ceptive muscle spindles and Golgi tendon organs of mammals, which are located in the

periphery [6]. These edge cells synapse onto several different classes of ventral horn interneu-

rons that make up the CPG [7]. There are two classes of edge cells: one that inhibits contralat-

eral activity and another that excites ipsilateral activity [7]. Through these connections, edge

cells can entrain the CPG to a bending input [5, 8–10] and reset the rhythm after a brief pertur-

bation [11]. In land animals, muscle spindles have similar effects on the CPG [12].

Previous studies of edge cells, like those for many other mechanoreceptive sensory cells,

have examined their effects in open loop conditions. In these experiments, researchers record

the response to different types of mechanical stimuli (e.g., [10, 13]) or they record the effect of

edge cells on the CPG due to mechanical inputs (e.g., [8, 9, 11, 14]). However, when a lamprey

swims, the edge cells are part of a closed loop system [15]. The CPG activates the muscles,

which causes the body to bend, stimulating the edge cells, which then affect the CPG (Fig 1).

Edge cells, therefore, not only allow the animal to respond to unexpected perturbations outside

the normal pattern of activity, but they can shape the pattern itself. For example, they can

cause the rhythm to entrain to a mechanical resonance [16, 17], which may contribute to more

efficient swimming.

Here we describe a multiscale computational model of the lamprey closed-loop neurome-

chanical system. In previous work [16, 18–20], we developed a computational framework that

includes a Hill-type muscle model [21] with calcium dynamics [22–24] that drives a passive

structural model coupled to a viscous, incompressible Newtonian fluid using an immersed

boundary formulation [25–27]. These previous studies examined the effects of varying the

stiffness of the body [20], the frequency of activation [20] and the effects of muscle nonlineari-

ties [19]. We found that the same muscle dynamics result in different kinematics when body

stiffness is varied, with maximum speed and maximum acceleration occurring at different

stiffnesses. Changing the frequency of muscle activation resulted in a change in active
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lengthening, a phenomenon observed in natural fishes and thought to be related to efficient

swimming [20]. Removing non-linear dynamics known to be a part of the muscle force devel-

opment indicated that without these non-linearities, the same body kinematics can be achieved

with very different energy requirements [19]. This previous work focused on the kinematics

and effects from changing different aspects of the mechanical parts of the body. Our current

study focuses on modeling the central pattern generator and sensory feedback in an effort to

understand how information from body mechanics might be communicated to the electrical

signal driving the motion.

Other neuromechanical models of undulatory swimming have been developed (e.g., [28,

29]). Iwasaki, Chen and Friesen [30] studied how sensory feedback modulates oscillations in

the central pattern generator in leeches. They include models of the CPG, motoneurons, mus-

cle dynamics, sensory feedback and body-fluid interactions, and show robust swimming with

adaptivity from sensory input. Both leeches and lamprey exhibit sensory feedback through

stretch receptors. Iwasaki et al [30] showed that this feedback in leeches was an essential com-

ponent in leech swimming. Ekeberg and Grillner [28] used a detailed Hodgkin-Huxley model

of neural activation, but a resistive force model, while Gazzola et al. [31] used a fluid model

based on elongated body theory with a simple activation wave and proprioceptive feedback

modulation. However, because the resistive model of fluid mechanics does not accurately cap-

ture the timing or magnitude of forces on the body [20], we chose to incorporate a high-fidelity

Navier-Stokes fluid model that can resolve bending dynamics of the lamprey body along with

flow features such as the vortex wake shed by the swimmer. Although we are using a two-

dimensional fluid model, comparisons with robotic models of anguilliform swimmers and real

biological swimmers show excellent agreement in many metrics of flow [18]. The closed-loop

model presented here adds a coupled-oscillator representation of the CPG (after [32–34]) with

sensory input from stretch receptors that depend on body curvature.

We construct the CPG using chains of nonlinear phase oscillators. Some of the first models

to capture key characteristics of experimental studies of the lamprey CPG were phase oscillator

models, which define each oscillator based on a single variable, namely its phase [32]. These

types of models are simple, yet reproduce some important features of the CPG responses to

perturbations [11] along with its entrainment to bending stimuli [8, 33, 35, 36].

Fig 1. Schematic of feedback loop during locomotion. The CPG generates a signal, driving calcium dynamics that

induce muscle contractions. The contractions in turn deform the body which interacts with the surrounding fluid to

produce locomotion. Contractile muscle forces also depend upon the length and shortening-velocity of muscle

segments. The arrows in the diagram indicate the primary interactions involved in coordinating the different systems

to produce swimming behavior. The loop is closed because information on the evolving body curvature impacts the

CPG.

https://doi.org/10.1371/journal.pcbi.1006324.g001
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Although edge cells have been studied for a long time and their electrical activity is known

to be affected by bending, their response properties are only beginning to be characterized.

Current experiments indicate that they respond to both the magnitude of bending and the

bending rate [13], but their effects on the CPG are not well understood, particularly in a

closed-loop system with relatively small deviations from a steady sinusoidal oscillation. Here,

we simulate different functional forms of mechanosensory feedback, and investigate how the

choice of the feedback model affects swimming performance in the closed-loop neuromecha-

nical system.

Even without feedback, the computational model naturally approximates a subtle feature of

fish swimming. When fish are swimming steadily, anterior muscles on one side of the body

become active with a small lag after the body is already bending toward that side [37], so that

the muscles are always active while shortening and generate positive mechanical power.

Although it may sound like this effect is backwards, since muscle force produces curvature, it

occurs due to the periodic nature of the oscillation and only appears after several swimming

cycles. This phase lag emerges naturally in the computational model [20] and allows the mus-

cles to maintain the ongoing oscillation. Close to the tail, the lag becomes negative, so that

muscle activity precedes bending, starting while they are still lengthening under the pressure

of fluid forces [37]. This change in phase lag along the body has been suggested to improve the

efficiency of fish swimming by stiffening the tail so that anterior muscle power is more effec-

tively transmitted to the fluid [38, 39]. To quantify the lag, we compare the relative wave speeds

of the mechanical curvature wave and the neural activation wave. When the curvature wave is

slower than the neural activation wave, the posterior muscle ends up being active during

lengthening (see, e.g., [23]), as is seen in fishes [37].

We examined two classes of feedback based on body curvature. In the first, which we term

directional feedback, the CPG receives an input that contains the magnitude and direction of

curvature. We find that this feedback alters the relative timing of left and right side activity,

changing the duration of activity without altering the overall frequency. This type of effect is

similar to the well-known phasic effects of edge cells in lampreys [11, 40] and of muscle affer-

ents in cats and other tetrapods [3, 12]. In the second class of feedback, termed magnitude

feedback, the CPG receives an input that only contains the magnitude of the curvature, not its

direction. Depending on the sign of the feedback gain, we find that this type of feedback is

either generally excitatory or inhibitory, speeding up or slowing down the overall oscillation

without altering the left-right phasing. This feedback produces an effect that is similar to the

excitatory effect of edge cells in the lamprey [41, 42], and of proprioceptive input on vertebrate

CPGs in general [3].

In summary, we demonstrate that proprioceptive feedback to the CPG that uses both mag-

nitude and direction of body curvature alters the duty cycle of muscle activation, whereas pro-

prioceptive feedback that uses only the magnitude of body curvature alters the frequency of

the activation cycle. Below we will show that these two effects, in the full integrated model,

alter swimming kinematics and energetics in complex ways. These results show that the model

CPG is capable of generating very different responses depending on whether or not the propri-

oceptive feedback provides directional information.

Methods

In this section, we describe each model component (Fig 1) (CPG, muscle, body, fluid and

sensory edge cells) and indicate how these subsystems interact in a way that leads to

swimming.

Effects of feedback on lamprey swimming
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Body structure

As illustrated in Fig 2, the body model of the lamprey includes components that support both

passive forces that represent the mechanics of the body and active forces due to contractile

muscle segments that bend the body to enable swimming. The signal from the CPG activates

the muscles segments. The passive and active forces along the lamprey are coupled to the sur-

rounding viscous, incompressible fluid. Fig 2A shows that the body is comprised of three fila-

ments, one for each lateral side Xj(s, t), j = 1, 2 and one representing the midline X3(s, t). In all

simulations presented, the length of the midline of the lamprey was chosen to be L = 12.56 cm

in the average range of lamprey lengths used in experiments [22].

There are two forms of tapering in our model. First, the body becomes narrower toward the

tail (Fig in S2 Fig) Second, we account for the decrease in the physiological cross-sectional area

of muscle in the posterior body. Total muscle force is proportional to its cross sectional area.

Therefore, we scale muscle force accordingly in the tapered region, assuming that the 2D

representation of the lamprey has elliptical cross-sections out of the plane.

The first eighth of the body represents the passive head region with no muscular activity,

while waves of muscular contraction can act on the rest of its length to propel the animal

through the fluid. Fig 2B shows an enlarged portion of the body, and illustrates the discretiza-

tion of the segmented filaments that will be used in an immersed boundary framework. The

stiff midline filament is discretized into 640 segments and the two lateral filaments are discre-

tized into 320 segments each. Connections between the nodes along the midline and the cross-

links that connect the midline to the lateral sides are modeled as passive Hookean springs. The

use of Hookean springs rather than damped springs is possible without the danger of lateral

oscillations due to the inherent damping effects of the surrounding viscous fluid. The links

along the lateral sides, enlarged in Fig 2C, represent a model of the muscle and the skin. The

Fig 2. Schematic of lamprey body structure. A: The body of the computational lamprey is comprised of three

filaments. B: This zoomed-in portion of the body indicates the spring-connections between discrete nodes of the

filaments that will generate passive elastic forces. Springs connecting nodes along the centerline to other nodes are

standard Hookean springs. C: Force generation due to muscle segments connecting discrete nodes along lateral sides

will evolve using a Hill-type model. The oscillator below the spring-mass damper system is a spring representing the

skin of the animal, resisting extension beyond the rest length, but not compression shorter than the rest length. D: A

single oscillator, from the double chain of oscillators that represent the lamprey CPG, will determine the activation of

its corresponding muscle segment.

https://doi.org/10.1371/journal.pcbi.1006324.g002
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muscle model supports active muscle contractions and is based upon the kinetic model pre-

sented in the section “Muscle Model” below. The skin is modeled using springs that only resist

extension, but not compression, similar to collagen fibers (bottom spring in Fig 2C). Given

the individual stiffness constants of the structural springs comprising the discretized lamprey

body, its overall average macroscopic bending stiffness E can be computed [20, 43]. This

structural model was used in [20] to explore the role of body stiffness in the swimming perfor-

mance of the lamprey for a prescribed wave of muscle activation (i.e. no CPG). Note that for

the simulations presented in this manuscript, we use a fixed bending rigidity (E = 0.76 MPa)

throughout.

CPG

Muscles are activated by an electrical signal from the CPG. Our previous model of lamprey

swimming prescribed a wave of neural activation to simulate the input of the CPG, but this

neural activation was not informed by the evolving dynamics [20].

In contrast, here we simulate the full Navier-Stokes fluid dynamics, where fluid effects on

evolving body curvature are captured, along with the dynamics of the vortex shedding in the

wake of the tail movement. Although we are using a two-dimensional fluid model, compari-

sons with robotic models of anguilliform swimmers and real biological swimmers show excel-

lent agreement in many flow metrics [18].

The CPG is modeled using a double chain of sinusoidally coupled phase oscillators (one for

the left lateral side and one for the right, see Fig 3):

dyk;i
dt
¼ oþ

Xn

j¼1

ai;j sin ðyk;j � yk;i � cijÞ þ ac sin yk;i � yk�;i þ p
� �

þ Z kið Þ: ð1Þ

Here, θk,i represents the phase of the ith oscillator in the chain, on the kth side, where k = 1 rep-

resents the right side, and k = 2 represents the left side. The notation k� indicates the opposite

side, in other words, if k = 1, then k� = 2. The natural frequency of these oscillators is denoted

by ω in Eq (1), and throughout this work we choose ω = 2π rad/sec.

Fig 3. Coupling of the oscillators. To construct the phase oscillator model of the CPG, each oscillator is connected to

every other oscillator on the same lateral (“L = left” or “R = right”) side (solid green lines). Within one segment,

numbered from head to tail, the left and right oscillators are also coupled together (solid black lines). The dotted gray

lines represent curvature and its influence on the CPG oscillators. The curvature at each segment is calculated such

that positive curvature curves in the direction of the right side measured from head to tail.

https://doi.org/10.1371/journal.pcbi.1006324.g003
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The ith oscillator on the kth side is coupled to the other oscillators on the same side with

strength given by

ai;j ¼

Aa exp �
ji � jj

la

� �

i � j < 0

Ad exp �
ji � jj

ld

� �

i � j > 0;

8
>>>><

>>>>:

ð2Þ

where |i − j| is the number of segments between between oscillator i and oscillator j. As in [36],

we choose the parameters Aa = 1.0 rad/sec, Ad = 10 rad/sec, λd = 5, and λa = 40. The asymmetry

in the coupling strengths Aa and Ad is consistent with experimental data [36, 44]. We tune the

system with a constant phase shift between neighboring oscillators, so that cij ¼ ði � jÞ�c.

Because in these simulations there are 280 segments on each lateral side that comprise the

active portion of the lamprey body, we choose �c ¼ 2p

280
, which corresponds to the natural phase

shifts found experimentally in [40, 45].

The term αc sin(θk,i − θk�,i) in Eq (1) represents the observed antiphase behavior between

left and right segments which couples oscillator i on the kth side to oscillator i on the opposite

side. The coupling strength αc = 81.87 rad/sec was chosen to be ten times the strongest

descending coupling connection. We choose the connection across a segment to be stronger

than the lateral connections because it has been observed that activation waves travel in anti-

phase, and that co-contraction is not favored in undulatory swimming [36].

Finally, the term η(κi) in Eq (1) captures proprioceptive feedback to the CPG system. Here

κi is the curvature of the lamprey midline at segment i, and the choice of the functional form

of η, the feedback, will be explored below.

Muscle model

The signal that the CPG sends to activate the muscle segment is modeled based on the phase of

the oscillator on that side. If the muscle segment is sent an activation signal by the CPG, free

calcium in that muscle segment is taken up by the thick filaments, generating contractile force.

As in Williams [22], we use a mass-action kinetic model of calcium dynamics in each muscle

segment and couple it to a Hill-type model of muscle force generation, modified based upon

data from lamprey experiments. In Hamlet et al. [19], we explored the implications of muscle

nonlinearities on the swimming performance of the lamprey model (with a prescribed activa-

tion wave taken as input) by varying the dependence of muscle force generation on segment

length and shortening velocities. Here, however, we choose the same parameters in the muscle

model in each simulation. We briefly describe the elements of muscle force generation as in

Hamlet et al. [19].

Calcium dynamics. Calcium is required to activate the contractile elements in muscle

[21]. Here we adopt the model of Williams [22] that tracks both free calcium ions and calcium

ions bound to a thick filament, and includes length dependence, velocity dependence, and

work-dependent deactivation (see Fig 4). The model assumes that the sarcoplasmic reticulum

will release free calcium ions, based on a signal from the CPG. Once the calcium ions are

released, they can bind to myofibrils and induce contraction of the muscle. The reaction is

reversible, in the sense that calcium ions may unbind from the myofibrils and resequester in

the sarcoplasmic reticulum. The amount of calcium ions bound to myofibrils will impact the

force generation of the contractile element in the Hill-type model described below.

Muscle is innervated when a signal from the CPG reaches a pre-defined threshold. Fig 5

illustrates how the phase oscillator model is used to capture the experimental bursting pattern.

Effects of feedback on lamprey swimming
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Fig 5A shows a typical bursting pattern from an oscillator in the CPG and Fig 5B shows result

of taking the sine of the phase of a model oscillator of the CPG. Note that the frequency of the

bursting here corresponds to the periodicity of the sinusoidal function. Given a phase θ(t), we

define the time interval that corresponds to the segment being “active” to be those times when

sin θ(t) is above a prescribed threshold τ. Fig 5B shows how an “on-off” activation signal σ(t)
may be extracted from the phase θ(t). For the phases along the segments on the lateral sides of

the lamprey model, we then have

sikðtÞ ¼
0 sin ðyikðtÞÞ < t

1 sin ðyikðtÞÞ � t:

(

ð3Þ

The CPG signals a release of calcium ions from the sarcoplasmic reticulum, which is then

available for binding on the myofibrils. Let Cf denote the free calcium ions released from the

sarcoplasmic reticulum and Cb be the amount of calcium ions bound to the myofibrils. For

Fig 4. Fig showing calcium dynamics (as seen in [22]) during an active contraction cycle. Free calcium ions (Cf) are

stored in the sarcoplasmic reticulum (SR) until the muscle is activated. During activation, calcium ions are released

from the SR and bind to troponin (bound calcium denoted Cb) along the actin filament, inducing contractions. The

values kn and the arrows indicate the rate and equilibrium dynamics of each reaction, respectively.

https://doi.org/10.1371/journal.pcbi.1006324.g004

Fig 5. Construction of an activation wave from the CPG model. A: Bursting pattern from a typical CPG neuron in

the lamprey (after [32]). B: Generation of the activation signal σ(t) based on thresholding the CPG output θ(t).

https://doi.org/10.1371/journal.pcbi.1006324.g005
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each oscillator/muscle unit, the dynamics of these chemical populations are governed by

dCf
dt
¼ ðk4Cb � k3Cf Þð1 � CbÞ þ k1ðC � Cf � CbÞ

þ k2ðCf ðC � S � Cf � CbÞÞ
ð4Þ

dCb
dt
¼ � ðk4Cb � k3Cf Þð1 � CbÞ; ð5Þ

where S is the number of sequestering sites present in the sarcoplasmic reticulum, C is the total

amount of calcium ions, free or bound, in the entire system, and k1 − k4 are rate constants for

the binding and unbinding of calcium [23]. The values of k1, k2, k3, k4 at the i, kth segment in

Eqs (5) and (4) are given by

k1 ¼ sik
�k1

ð6Þ

k2 ¼ ð1 � sikÞ
�k2

ð7Þ

k3 ¼
�k3ffiffiffiffi
m
p ð8Þ

k4 ¼
�k4

ffiffiffiffi
m
p

ð9Þ

where �k1;
�k2;

�k3;
�k4 are all baseline constants that were fitted to match experimental data [19].

The values of Cf, Cb, C, and S have been nondimensionalized against the number of available

binding sites and are themselves taken to be unitless. The relative proportions are such that the

total number of sequester sites, S is greater than C and that the total amount of calcium, C is

greater than the number of available binding sites, ensuring that the muscle may be fully acti-

vated and the calcium may be fully sequestered during the cycle. The rate constants were then

fitted to match experimental results shown in [22]. Note that signal from the CPG feeds into

the calcium model here through the values of k1 and k2. The parameters k3 and k4 correspond

to the free calcium binding and unbinding to the myofibrils and depend onm, which measures

how much work the muscles have done during the current cycle. The variablem follows the

dynamics

dm
dt
¼

� km1Pcvc vc < 0

� km2ðm � 1Þ vc � 0

(

; ð10Þ

where km1 and km2 are parameters from [22] fitted to data, and Pc and vc are the force and the

velocity of the contracting part of the muscle segment (discussed in the next section). This

model of work-dependent deactivation hypothesizes that the amount of work a muscle unit

can do depends on how much work it has already done as well as how quickly the force devel-

oped by a muscle decays once activation has ceased [19, 22].

Force generation

Each muscle segment is modeled as a modified Hill-type muscle model that consists of a con-

tractile element (CE), that develops force by contracting in response to an activation signal,

and an elastic stretch element (SE), that stores and releases energy from force developed by the

contractile element. Here, we assume the contractile force depends upon both length and

Effects of feedback on lamprey swimming
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velocity of the stretch, as well as the amount of bound calcium in the system. The stretch ele-

ment is described by a spring-mass-damper system driven by the contractile force. To account

for tapering along the body, the magnitude of the force is scaled by the ratio of the cross-sec-

tional area of the segment and the maximum cross-sectional area of the body.

The contractile force has the form

Pc ¼ P0aðvcÞlðlcÞCb; ð11Þ

where α is a nonlinear function of vc, the velocity of shortening of the CE; λ is a nonlinear func-

tion of lc, the length of the CE; Cb is the bound calcium given by Eq (5); and P0 is a constant

scale factor indicating the maximal contractile force. For more details on this muscle model,

we refer the reader to [19]. In particular, all simulations described below assume work-depen-

dent de-activation and calcium-dependent passive stiffness of muscle elements, corresponding

to the case VLWσ in [19].

Sensory feedback

The CPG responds to sensory feedback. Here we model proprioceptive (body-sensing) feed-

back from edge cells. As discussed above, edge cells are mechanoreceptors [2, 5] that sense

stretch along the body and send signals that serve to inhibit the contralateral side of the body

and excite the ipsilateral side (relative to the edge cell’s position) with increasing stretch.

Recent results of Massarelli et al. [33] have shown that edge cells also respond to rate of change

of stretch. Here, for simplicity, we restrict our feedback model to depend only on stretch,

which is done by monitoring body curvature. Details regarding the functional form of the

input from the edge cells to CPG are not known at this time. To represent the feedback from

edge cells to the CPG, we add a feedback term in Eq (1) of the form η(κi) where κi is the curva-

ture of the lamprey midline at segment i. As a starting point, we model this as an additive

response. At each time step, curvature is calculated along the centerline of the body from head

to tail at a point (x(s), y(s)) by

k ¼
x0y00 � y0x00

ððx0Þ2 þ ðy0Þ2Þ3=2 ð12Þ

where 0 denotes derivative with respect to the spatial parameterization s, x is the longitudinal

direction and y is the transverse direction. In practice, these spatial derivatives are replaced by

finite differences, and we smooth this curvature at segment i by replacing it by the average cur-

vature of the neighboring segments from i − 5 to i + 5. The last 5 segments of the body receive

no input from the curvature of the body. The value of curvature varies both along the lamprey

body and in time as the body bends into an S-shaped swimming pattern. Positive curvature

represents bending to the right. When curvature magnitude is high, one side of the body is

stretched and the other is compressed.

We chose to compare two different functional forms of the feedback:

ZðkiÞ ¼ Zmjkij; ð13Þ

which we call magnitude feedback (denoted M), and

ZðkiÞ ¼ ð� 1Þ
k
Zdki; ð14Þ

which we call directional feedback (denoted D), and where i is the segment number, k is the

side of the body (1 is left and 2 is right), and ηm and ηd are the constant gain parameters with

units of cm rad/sec. We will discuss the implications of these feedback forms in the Results sec-

tion below.
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Fluid-structure interactions

The neutrally-buoyant lamprey body supports passive forces due to its elastic linkages as well

as active forces along the lateral sides due to muscle contractions. The strength and timing of

the contractions of individual muscle segments evolve with the CPG, the calcium dynamics,

and the Hill-type muscle model that are each coupled to the evolving body shape. We adopt an

immersed boundary framework [27] that couples the forces supported along the three fila-

ments of the lamprey body, together denoted by X(s, t), to a surrounding viscous, incompress-

ible fluid:

r
@uðx; tÞ
@t

þ u x; tð Þ � ru x; tð Þ

� �

¼ � rp x; tð Þ þ mr2u x; tð Þ þ f x; tð Þ ð15Þ

r � uðx; tÞ ¼ 0 ð16Þ

fðx; tÞ ¼
Z

G

FðXðs; tÞ; tÞdðx � Xðs; tÞÞds ð17Þ

@X
@t
¼ u X s; tð Þ; tð Þ ¼

Z

O

u x; tð Þd x � X s; tð Þð Þdx: ð18Þ

Eqs (15) and (16) are the incompressible Navier-Stokes equations, where u is the fluid

velocity field, p is the pressure, ρ = 1 g � cm−3 is the fluid density, μ = 1 mPa � s is the fluid vis-

cosity, and δ is the two-dimensional Dirac delta function. Eq (17) communicates the Lagrang-

ian forces F(X(s, t), t) supported on the lamprey (Γ) to Eulerian forces defined at any point x

in the fluid domain (O). Eq (18) enforces the no-slip condition that says the velocity of a mate-

rial point of the lamprey body is equal to the fluid velocity evaluated at that point. Note that

the forces F(X(s, t), t) contain contributions due to the deformation of the passive elastic struc-

ture as well as actuated muscle contractions.

The immersed boundary formulation in Eqs (15), (16), (17) and (18) uses a continuum

description of both the fluid domain and the immersed lamprey body. In practice, the fila-

ments of the lamprey are represented by discrete nodes, and the fluid equations are discretized

on adaptive finite-difference grids. To communicate forces and velocities between the Eulerian

fluid grid and the Lagrangian nodes of the lamprey, a grid-dependent, regularized approxima-

tion of the Dirac delta function is used [25, 27]. Because both the passive elastic linkages and

the contractile muscle segments produce equal and opposite forces at their endpoints, the neu-

trally-buoyant lamprey is a free-swimmer that generates zero total force and torque at each

instant of time. We interface our structural model with the parallelized, adaptive mesh imple-

mentation of the immersed boundary method (IBAMR) (developed by Griffith [25]) that

allows us to achieve the spatial resolution necessary to resolve boundary layers at physiologi-

cally-appropriate Reynolds numbers. The adaptive mesh refinement uses a finer fluid mesh

near the nodes of the lamprey as well as in fluid regions where a vorticity exceeds a specified

threshold. The fluid domain was defined to be 7.5 body lengths long and 3.0 body lengths

high. In the simulations presented here, we allowed five levels of refinement, with the coarsest

discretization a 32 cell grid in the x-direction over the entire domain, and the finest level effec-

tively a 512 cell grid in the x-direction. No-stress boundary conditions on the computational

domain were implemented. The simulations were run for a total of 10 seconds of simulated

time which was determined to be a sufficient amount of time for each case to achieve and

maintain a steady swimming speed. Each simulation was run on a linux cluster comprised of

8-core 2.4-2.8GHz AMD Operon processors with 128GB of RAM per core. The simulations
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were each run on 8 processors on a single node and ran on the order of a day to complete 10

seconds of simulated time. Variation in runtimes was due primarily to differences in the evolv-

ing adaptive mesh refinements in the Navier-Stokes solver. Initially, the fluid velocity was at

rest and the lamprey body was in a horizontal position, with all elastic linkages at their rest

lengths. Convergence studies of this lamprey-fluid immersed boundary model were presented

in [18].

Phase lag

Because of the coupling between the body and the fluid, the simulation naturally develops a

phase lag in which muscle activation comes after body curvature, even without feedback [20].

This effect is due to the periodic nature of the swimming oscillation and stabilizes several

swimming cycles after the simulation starts. For the current model, we computed the phase lag

between muscle activation and curvature, as shown in Fig 6. We identified the time of peaks in

curvature (tLcurve;i, t
R
curve;i) and the closest muscle activation time (tLact;i, t

R
act;i) (Fig 6A) for each

point along the body and the left and right sides, where i indicates the tail beat cycle number.

Fig 6. Schematic showing the definition of phase lag and activation and curvature wave speeds. A: Curvature (red and

blue) and activation (gray shaded regions) as a function of position on the body and time. Phase lag is defined as the time

between peak curvature (red and blue lines) and the onset of activation (solid and dashed black lines), indicated by small

black arrows. Curvature wave speed V is the average slope of the position of peak curvature with respect to time and

activation wave speed va is the slope of the body position where activation starts, with respect to time. B: Phase lag with

respect to position for the left side (red) and right side (blue). Note that it becomes negative and larger in magnitude at more

posterior positions.

https://doi.org/10.1371/journal.pcbi.1006324.g006
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The phase lag is defined as

�
L
i ¼
tLact;i � t

L
curve;i

tLact;iþ1
� tLact;i

; ð19Þ

for each side of the body, so that a positive value of the phase lag indicates that the muscle is

active while shortening and a negative value indicates that muscle is active while lengthening.

In this convention, phase runs from 0 to 1.

We then computed the activation wave speed va and the curvature wave speed V. Activation

waves travel in anti-phase down the left and right chains of oscillators, at the same speed. For

simplicity, we write the equations below for phase θ (chosen on one side) and curvature κ
defined continuously on position s and time t. In the analysis, we use central differences to

approximate the temporal and spatial derivatives. The activation wave speed is defined based

on the oscillator phase θ (Eq (1)),

vaðs; tÞ ¼
@yðs; tÞ=@t
@yðs; tÞ=@s

: ð20Þ

To compute curvature wave speed accurately, it is best to estimate a curvature phase using

the Hilbert transformH{�} [46], an operator that estimates the complex representation of a

real-valued oscillatory signal like curvature κ(s, t), such that |H{κ(s, t)}| is the curvature ampli-

tude and ϕ = ∠H{κ(s, t)} is the phase of the curvature, both at a position s. Then the curvature

wave speed is

V ¼
@�ðs; tÞ=@t
@�ðs; tÞ=@s

ð21Þ

and the wavespeed ratio is hVi/hvai, where h�i indicates a mean over time and space. Specifi-

cally, we take the mean over the region s 2 (0.5. . .0.8) and over the last 7 tail beats.

When the ratio is less than one, it indicates that the curvature wave is travelling more slowly

than the activation wave (as in Fig 6). The difference in wave speed means that the curvature

wave increasingly lags behind the activation wave as the two move down the body, with the

phase lag then becoming larger in magnitude and more negative toward the tail, the same pat-

tern seen in fishes [37] and in our previous model [20].

Results and discussion

Control case without feedback

As a baseline control case, we examined our model without feedback. The muscles in the

model are activated by a CPG, which is approximated as a set of phase oscillators that receive

input from each other and from the body’s curvature through a feedback function. When the

feedback function is zero (η(κi)� 0), there is no feedback and the phases evolve with no

dependence on body curvature. This corresponds to the gain ηm = 0 or ηd = 0 in each of the

two feedback models that we propose. For this control case, because the phases of segments i
and j on each lateral side of the lamprey body are initialized to differ by the prescribed phase

shift ψij and the phases of segments on opposite sides are initialized to differ by π, all phases

move at the constant velocity ω. The initial conditions chosen for the phase oscillators did not

affect the steady state swimming results, as long as the chains were not initialized with exactly

the same phases. To maintain consistency in the simulations, the same initial conditions were

used for each simulation.
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To produce a muscle activation signal, the phases are used to construct an on-off activation

following Eq (3). The cutoff value τ was tuned so that duration of the activation signal in the

control case matches that of freely swimming lampreys [4] and of our previous models [19,

20]. This activation signal has a temporal period of one second and a duty cycle of 0.36, mean-

ing that each segment is activated for 36% of the period. Because we tuned the neural activa-

tion signal to be the same as in our previous models, and because the body and fluid

mechanics are the same, the emergent kinematics and energetics of this control case match the

computational results in our previous work [19, 20].

Fig 7 shows a snapshot of the lamprey body and vorticity wake for this control case. The

inputs to this model system are the passive bending rigidity of the lamprey, the fluid viscosity

and density, the maximum tetanic force that each muscle could exert, the baseline frequency

and coupling parameters of the CPG, and the activation cutoff value. The outputs are the flow

patterns (shown as red and blue vorticity in Fig 7), the evolution of the CPG phase values, and

the movement of the body (black lines in Fig 7). From the body movement, as in previous

studies, we compute the swimming speed and the amplitude, wavelength, and speed of the

mechanical wave [19, 20, 39], the ratio of the wave speeds of the mechanical and activation

waves, [37, 47], and the muscular work done by swimmer. Based upon swimming velocity,

body length and the density and viscosity of water, the Reynolds number of this control swim-

mer is about Re = 8000.

In previous studies using this model, we examined how the swimming performance

depended upon body stiffness [20] and muscle nonlinearities [19]. While one could have used

shear as a body-sensing measure, in the closed-loop model presented here, we explore how dif-

ferent assumptions about feedback from body curvature on the evolving signal from the CPG

affect this swimming performance.

Case 1: Effects due to directional feedback (D)

In the lamprey, proprioceptive feedback is mediated by mechanoreceptive cells in the spinal

cord called edge cells [5]. When the spinal cord bends, one side is stretched, which activates

edge cells on that side [5, 13]. The greater the curvature, the stronger the activation [13]. The

activated edge cells then inhibit activity on the opposite side and excite activity on the same

side [7]. To approximate these effects in our model, we assume that the feedback signal is

proportional to the magnitude and direction of curvature. For these simulations, labeled D,

η(κi) = (−1)k ηd κi where k is the side of the body (1 is left, 2 is right). Thus, the natural case is

represented by ηd> 0. If κi is positive, representing bending to the right, and ηd is positive,

oscillators on the right side of the body receive a positive signal, representing excitation, while

those on the left side receive a negative signal, representing inhibition.

Fig 7. Simulation with no feedback. The body kinematics and wake structure for the control case is shown at t = 8.0 s.

The outline and midline of the computational lamprey are shown in black. Vortices shed from the tail are shown in red

(counterclockwise rotation) and blue (clockwise rotation). This model lamprey swims at a speed of 0.52 L � s−1 with a

tail beat amplitude of 0.12 L and a body wavelength of 0.75 L. Natural lampreys swim at about 0.1 L/s (body lengths per

second) during migration [48] with maximum sustained speeds of about 2.5 L/s [49].

https://doi.org/10.1371/journal.pcbi.1006324.g007
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This class of feedback affects the duty cycle during steady swimming, without affecting the

frequency. Each swimmer was initialized in a straight configuration in a still fluid near the

right of the domain. Fig 8(A) shows the computed activation signal over two seconds of simu-

lated time on each side of a representative segment of the lamprey body for gains ηd = −15 cm �

rad � s−1 (top), ηd = 0 cm � rad � s−1 (middle), and ηd = 15 cm � rad � s−1 (bottom). For instance,

for the positive gain value, the amount of time that a muscle segment is activated is less than

that for the control case. Fig 8(B) shows the corresponding force development on the opposing

segments for each of the simulations. The high duty cycle in the negative gain case lead to con-

siderable co-contraction, as seen by the overlapping blue and red curves on the top panel in

Fig 8B. The amount of co-contraction decreases as gain increases.

Fig 9 shows how these differences in force development on individual segments affect the

overall swimming kinematics and dynamics. Whether the gain is positive or negative, each

swimmer with directional curvature feedback (in black) swims more slowly than the control

Fig 8. Activation and force with directional (D) feedback. Two seconds of simulated time 44% of the way down the

body from the tail of the lamprey body at different indicated gains. The blue solid line and red dotted line are the left

and right sides of the body, respectively. A: Activation state for the segment and each feedback case. “0” indicates the

segment is inactive, “1” indicates the segments is active. B: Forces developed on the segments, scaled by the maximum

tetanic force.

https://doi.org/10.1371/journal.pcbi.1006324.g008

Fig 9. Effects of directional feedback. Body configuration and trailing wake structures for lamprey simulations after 8

s of simulated time. The control case (without feedback) is shown in gray. Panels A and B show the effects of feedback

negative and positive gains (ηd = −15 cm � s−1 and 15 cm � s−1, respectively), and the corresponding dynamics are

shown in S1 and S2 Movies.

https://doi.org/10.1371/journal.pcbi.1006324.g009
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(gray). The dynamics of the negative gain swimmer compared to the control is shown in S1

Movie, and the dynamics of the positive gain swimmer compared to the control is shown in S2

Movie. In the case of negative gain, the long duration of co-contraction of opposing segments

reduces the achieved tail-beat amplitude of the swimmer. In the case of positive gain, the short

duration of activity leads to less total force, which also reduces the achieved tail beat amplitude.

These effects are quantified in detail below.

Case 2: Effects due to magnitude feedback M

In the lamprey, activating edge cells produce a generalized excitatory effect on the CPG [41,

42] that does not depend on the direction of the curvature. To approximate this effect, we

examined feedback that depended only on the magnitude of curvature. In this case, labeled M,

the feedback advances the phase of the oscillators equally on both sides. For a fixed muscle seg-

ment, the feedback term η(κi) = ηm|κi| increases the frequency of the activation signal if ηm is

positive and decreases it if ηm is negative. Fig 10(A) shows the computed activation signal over

two seconds of simulated time on each side of a representative segment of the lamprey body

for gains ηm = −0.08 cm � rad � s−1 (top), ηm = 0 cm � rad � s−1 (middle), ηm = 0.08 cm � rad � s−1

(bottom). For each gain, we see that the activation signals on the left and right sides are in

opposite phase (when one side is on, the other is off) and the duty cycle is approximately con-

stant. Unlike the D case, we see that frequency of activation increases with gain. Fig 10(B)

shows the magnitude of the contractile force exerted by the opposing segments that results

from the activation signals shown in Fig 10(A) for each gain value. We see the maximal con-

tractile force achieved is basically unchanged in each case, but the frequency increases with

gain so that the force is maintained for a shorter period of time. This reduces the total force

developed in each cycle. Hence, in the positive gain case the total activation time is lower, so

muscles achieve peak force for less time (Fig 10B, bottom panel).

With this class of feedback, swimmers with positive gain swim faster than the control case,

while those with negative gain swim slower. Fig 11 shows the body shape and flow patterns for

two swimmers at time t = 8 s, one with gain ηm = −0.08 cm � rad � s−1 (Fig 11A) and the other

with gain ηm = 0.08 cm � rad � s−1. The dynamics of the negative gain swimmer compared to

the control is shown in S3 Movie, and the dynamics of the positive gain swimmer compared to

the control is shown in S4 Movie. While each swimmer progressed towards the left as the

Fig 10. Activation and force with magnitude only magnitude feedback. Two seconds of simulated time at 44%

down the lamprey body at different indicated gains. The blue solid line is the left side of the body, the red dotted line is

the right side of the body. A: Activation state for the segment and each feedback case. “0” indicates the segment is

inactive, “1” indicates the segment is active. B: Forces developed on the segments, scaled by the maximum tetanic

force.

https://doi.org/10.1371/journal.pcbi.1006324.g010
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waves of neural activation moved from head to tail, the swimmer with negative gain progresses

more slowly than the control because of the decreased beat frequency. Its drift upwards is due

to transient fluid effects from the strong start-up vortex that is shed during the first tail beat.

Because of the lamprey’s reduced beat frequency and the subsequent reduced swimming veloc-

ity, this vortex remained near the body, pushing it upwards. The emergent waveforms of the

three swimmers differ only slightly in amplitude and wavelength.

Effects of feedback on activation signal

In the examples shown above, we see that magnitude feedback (M) affects the frequency of the

activation signal, while directional feedback (D) alters the duty cycle. Here we examine how

these changes in activation signal depend upon the gain constants ηm or ηd. As the phase

model is heuristic, there are no direct experimental measurements that can be used to set the

values for these constants. We performed computational experiments to determine the range

of values of the gains around the control case of ηm = 0 or ηd = 0 that resulted in sustained,

periodic swimming. For instance, for large absolute values of gain, the phase velocities could

either get too large, or, in the case of directional feedback, the phase velocities could become

negative, so that realistic activation signals propagating along the left and right muscle seg-

ments could not be achieved. For the case of magnitude feedback, we found the range to be

|ηm|< 0.09 cm � rad � s−1, and for directional feedback the range was found to be |ηd|< 20 cm �

rad � s−1. To compare the effects of the different classes of feedback at a range of gains, we

scaled the gain relative to the maximum range for that class. In other words, we scaled ηm by

0.09 cm � rad � s−1 and ηd by 20 cm � rad � s−1.

The frequency of the CPG activation signal on each muscle segment directly affects the tail-

beat frequency of the computational swimmer. Fig 12A shows the tailbeat frequency as a func-

tion of the non-dimensional gain parameter. We see that in the magnitude feedback case, tail

beat frequency increases linearly with gain. However, in the directional feedback case, the fre-

quency is unchanged from 1 Hz. In contrast, Fig 12B shows the average duty cycle along the

lamprey body as a function of non-dimensional gain. While the duty cycle is nearly constant at

0.36 in the magnitude feedback case, it decreases linearly with gain in directional feedback. We

Fig 11. Effects of feedback due to curvature magnitude. Body configuration and trailing wake structures for lamprey

simulations after 8 s of simulated time. The control case (without feedback) is shown in grey. Panels A and B show the

effects of feedback with negative and positive gains (ηm = −0.08 cm � rad � s−1 and 0.08 cm � rad � s−1, respectively) and

the corresponding dynamics are shown in S3 and S4 Movies.

https://doi.org/10.1371/journal.pcbi.1006324.g011
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examine the implications of these effects on body kinematics and swimming performance

below.

In living fishes, both frequency and duty cycle vary. Nearly all fishes increase tail beat fre-

quency as they increase swimming speed while maintaining a fairly constant tail beat ampli-

tude [31, 50]. Duty cycle varies along the body and across fish species [4, 37], and a recent

study shows that, in bluegill sunfish, it decreases with increasing swimming speed [51].

Our results suggest that feedback structure may modulate frequency and duty cycle, but

fish can alter activation frequency and duty cycle in a variety of other ways. Frequency may be

modulated by changing the descending drive from the brain [52, 53]. Less is known about how

duty cycle may be modulated. Currently only the phase of the oscillators and not the amplitude

of the activation are affected by feedback. This type of model will capture changes in frequency

of activation and deactivation, but not the relative strength of those activations. In the future

we will incorporate models in which the amplitude of the CPG output may be affected by feed-

back input, which would require shifting from a phase model to a model that incorporates

neural properties (e.g. [33, 54]).

The response to sensory feedback is much more sensitive to the magnitude of curvature,

rather than the magnitude and direction. This is due to an antisymmetry in the directional sig-

nal across each segment of the body. Positive curvature feedback from one side is partially can-

celled by negative curvature feedback from the other side, or vice versa. When feedback is only

due to the magnitude of the curvature, the feedback signals from both sides tend to add, mak-

ing the overall system much more sensitive to this type of feedback.

Effects of feedback on body amplitude and wavelength

Both forms of feedback change the duration of the activation signal, either symmetrically for

both left and right sides (magnitude feedback) or asymmetrically (directional feedback).

Because the muscle model requires time to develop force, the shorter the activation duration,

the lower the average force. For example, compare the top and bottom panels in Fig 10B.

These contractile forces are coupled to the body’s passive elastic forces and to the viscous

incompressible fluid surrounding the lamprey. Together, this coupling leads to an emergent

Fig 12. Effects of feedback on tailbeat frequency and duty cycle. A: The tailbeat frequency plotted against the

percent gain.B: The average duty cycle (ratio of active cycle time to total cycle period) averaged along the body for 6

steady swimming cycles plotted against the percent gain.

https://doi.org/10.1371/journal.pcbi.1006324.g012
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swimming waveform. Fig 13 shows the tail beat amplitude and body wavelength for the

computational lamprey as a function of non-dimensional gain.

Fig 13A shows that the two types of feedback have qualitatively different effects on ampli-

tude. In the magnitude feedback case the amplitude steadily decreases as the gain increases.

The decrease in tail amplitude is due to the increase in activation frequency, which reduces the

average force developed at a segment in each cycle. In the directional feedback case, tail ampli-

tude is no longer monotonic with gain, but instead has a maximum at a slightly negative gain.

With the most negative gains, the considerable amount of co-activation offsets the increased

force development so the net force available for bending is reduced, resulting in a lower ampli-

tude. At high positive gains, the duration of muscle activity is very low, which means that the

muscle cannot produce much force, which also results in a low amplitude (see Fig 8). In

between, at gain ηd = −3 cm � rad � s−1 (−15%), the amount of co-activation is optimal, resulting

in the largest amplitude.

For both classes of feedback, wavelength follows a very similar pattern as amplitude (Fig

13B). It decreases with increasing gain for magnitude feedback, and has an optimum for direc-

tional feedback. Because the lamprey body is nearly inextensible, it may seem inconsistent for

amplitude and wavelength to follow the same pattern. For a traveling wave with a constant

amplitude along the body, wavelength should be inversely proportional to amplitude. How-

ever, here we are reporting only tail amplitude. In fact, the wave envelope as a whole depends

nonlinearly on the feedback, and inextensibility is maintained. For example, at negative gains

for magnitude feedback, as tail amplitude increases the head amplitude decreases, which allows

the wavelength also to increase even as the body length stays the same.

Effects of feedback on swimming speed

The body deformation couples with the surrounding fluid to give rise to forward movement.

Natural lampreys swim at about 0.1 L/s (body lengths per second) during migration [48]. Max-

imum sustained speeds are about 2.5 L/s [49] and they are capable of bursts up to about 5 L/s

[49]. Fig 14 shows the swimming speed of the computational lamprey as a function of non-

dimensional gain for both the directional feedback cases. The swimming speed for magnitude

Fig 13. Effects of feedback on lamprey waveform: Amplitude and wavelength. A: Tailbeat amplitude and B:

curvature wavelength as a function of the non-dimensional gain. Both amplitude and wavelength are reported in units

of the body length L. Each simulation was run for 10 s of simulated time, and the values reported are averaged over the

beat periods when steady swimming was achieved.

https://doi.org/10.1371/journal.pcbi.1006324.g013

Effects of feedback on lamprey swimming

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006324 August 17, 2018 19 / 29

https://doi.org/10.1371/journal.pcbi.1006324.g013
https://doi.org/10.1371/journal.pcbi.1006324


feedback increases as gain increases, but begins to level off at the most positive gain values.

This effect is due to the combined effects of tail beat frequency and amplitude. As gain

increases, frequency increases but amplitude decreases, both approximately linearly. In swim-

ming eels, swimming speed is best correlated with the lateral tail velocity, or fA, where f is fre-

quency and A is amplitude [39]. Thus, if U/ fA for our swimmer, the relationship should be

nonlinear, which is what is seen in Fig 14.

Fig 14 also shows that for the directional feedback case, the effects of gain on swimming

speed are similar to those on amplitude, since frequency is unchanged. However, even though

the shapes of the curves are similar, the swimming speed is not a simple function of the tail

amplitude, because the maximum swimming speed does not occur at the same gain as the

maximum amplitude. The maximum swimming speed, 0.52 L � s−1, occurs at a gain of ηd = −4

cm � rad � s−1 (−20%), corresponding to a duty cycle of 0.389, while maximum amplitude

occurs at a gain of −3 cm � rad � s−1 (−15%), corresponding to a duty cycle of 0.3831.

Effects of feedback on Strouhal number and phase lag

A measure of the effectiveness of a swimming stroke is the Strouhal number St which is the

ratio of the speed of the tail to the forward swimming motion

St ¼
2fA
U

ð22Þ

where f is the tailbeat frequency, A is the tailbeat amplitude and U is the swimming speed.

Lower St indicates a more effective swimming motion, because the tail’s side-to-side velocity is

lower relative to the forward velocity. Fig 15 shows that for both directional feedback cases, St
decreases as non-dimensional gain increases, although the total change in St is larger for the

magnitude cases than the directional cases. The swimmer is thus becoming a more effective

swimmer as gain becomes larger and positive. Even so, compared to swimming fishes, the

Strouhal number is still relatively high. Fishes tend to swim with St between 0.2 and 0.4 [55,

56], which corresponds to an efficiency optimum [56]. We note that since our model is 2D,

agreement between computed Strouhal numbers and those of natural animals is qualitative,

however the 2D model is an essential step to understanding swimming in a 3D fluid.

Another metric associated with effective swimming is the neuromechanical phase lag [37,

38, 57]. At anterior points on the body, once the swimmer reaches steady state, the bending

precedes muscle activity, so that muscle activity is always while the muscle is shortening.

When a muscle is active while shortening, it produces positive mechanical power. Closer to

the tail, the muscle becomes active earlier in the cycle, sometimes to the extent that the muscle

is active while lengthening (see Fig 6 for an illustration of this effect) [47]. When the posterior

Fig 14. Changes in swimming speed with gain. Center of mass speed in L � s−1 averaged over t = 6 s to 10 s of

simulated time.

https://doi.org/10.1371/journal.pcbi.1006324.g014
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muscles are active while lengthening, they absorb energy, producing negative mechanical

work. At the same time, these muscles also stiffen the posterior body, which helps to transmit

body forces to the fluid more effectively [20, 38]. In Fig 6, we quantify this effect by computing

the ratio of the mechanical wave speed and the activation wave speed. When this ratio is less

than one, it mean that the posterior muscle is active earlier in the cycle, similar to what is seen

in fishes.

Fig 15B shows that for the magnitude feedback case, the wavespeed ratio decreases with

increasing gain. This change is approximately in proportion to the increase in frequency (Fig

12A) and the associated decrease in body wavelength (Fig 13B). In this feedback case, the acti-

vation wave has the same wavelength, regardless of gain, which explains the decrease in the

wavespeed ratio.

In the directional feedback cases, the wavespeed ratio is not monotonically associated with

gain (Fig 15B). Instead, it comes closest to one at ηd = −20%, similar to the effect of gain on

curvature wavelength (Fig 13B). At high positive or negative gain, the ratio decreases, indicat-

ing a larger phase lag near the tail for these cases. In this case, however, the effect is not solely

due to the change in curvature wavelength. At high negative gain, the activation wave is longer

(1.24 L), while at high positive gain, the wave is shorter (0.72 L). The change in activation

wavelength accounts for the smaller decrease in the ratio at positive gains with directional

feedback (Fig 15B).

These results are partially consistent with the hypothesis we proposed for the earlier model,

that higher phase lags develop when the internal mechanical forces are low relative to the fluid

forces [20]. For the magnitude feedback case, increasing frequency results in lower average

muscle force (Fig 10), even as swimming speed increases, which suggests that the internal

forces are declining relative to the external forces. For the directional feedback case, the same

effect is seen for positive gain: duty cycle decreases, so the average muscle force decreases (Fig

8B), leading to a decrease in internal muscle forces relative to external fluid forces.

The small wavespeed ratio for negative gains in the directional case seem to follow a differ-

ent pattern. The internal muscle forces increase on average for negative ηd (see Fig 8) and

there is more co-activation, which should lead to an effectively stiffer body overall [58]. The

activation wavelength, though, gets longer at more negative gain, even as the curvature wave-

length gets shorter. This leads to a decreasing wavespeed ratio.

Fig 15. Changes in Strouhal number and phase lag with gain. A: Mean Strouhal number calculated for vortex

shedding over t = 6 s to 10 s of simulated time. B: The slopes of the phase lags calculated for each gain according to

Fig 6.

https://doi.org/10.1371/journal.pcbi.1006324.g015
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Williams et al. [47] measured the wavelengths of the mechanical and activation waves in

lampreys. Based on her published results, lampreys swim with a wavespeed ratio of approxi-

mately 0.7 [47], a value that is substantially lower than we find in any of our simulations (Fig

15B). Experimental results suggest that lampreys may respond differently to mechanical inputs

in the posterior part of the body [9, 10], a pattern that may increase the phase lag near the tail

[9]. In our simulations, sensory inputs are processed equivalently, regardless of their location.

To accurately reproduce the phase lag of living lampreys, we may need to alter the feedback

pattern along the body.

Effects of feedback on cost of transport

We approximated the cost of transport (metabolic energy per unit length per unit distance).

Muscles produce positive mechanical work when they are active and shortening, and require a

metabolic energy input that is proportional to the mechanical work. Muscles produce negative

mechanical work when they are active and shortening. This process requires much less meta-

bolic energy, but is still proportional to the amount of negative work (Ruina et al. [59]). Thus,

following Hamlet et al. [19], we compute the cost of transport by summing the positive work

and a fractional amount of the absolute value of the negative work done by the lamprey’s mus-

cles over each segment at each time step over a full cycle, and then divided the result by the

cycle period and mass of the lamprey (as in [19]). For comparison, we also normalized the

results by the cost of transport for the control case.

All of the kinematic and muscular factors described above combine to propel the swimmer

forward with a particular energy cost to go a certain distance. For both feedback cases, the cost

of transport decreases with increasing gain. Fig 16 shows the normalized cost of transport as a

function of non-dimensional gain. The effect is most pronounced for the directional feedback

case. At the highest positive gain, the swimmer uses 24% less energy to go the same distance as

the control case. For the magnitude feedback case, the effect is less linear. At the highest posi-

tive gain, the swimmer uses 8% less energy, but at the most negative gain, the swimmer uses

18% more energy.

For both feedback cases, the average muscular force decreases at higher positive gain (Figs

8B and 10B), resulting in lower average muscular work. The Strouhal number also decreases,

indicating that these swimmers are hydrodynamically more effective. Thus, the overall cost of

transport decreases as gain increases.

At negative gain, the cost increases, but the cause of the increase is different for the two

feedback cases. For magnitude feedback, the increase in cost is due to the same effect that

causes the decrease for positive gain. As gain decreases and becomes negative, the muscular

work increases and Strouhal number increases, indicating a less effective swimmer with a

higher overall energetic cost. For directional feedback, the increase in cost is due to the

increase in co-activation of the left and right side muscles. As gain becomes more negative,

Fig 16. Effects of feedback on cost of transport. The cost of transport calculated for each gain, normalized by the cost

for the control case without feedback.

https://doi.org/10.1371/journal.pcbi.1006324.g016
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more and more of a muscle’s force is used to oppose its antagonist, rather than deforming the

body and producing forward propulsion.

Wavespeed ratios less than one, which correspond to negative phase lags near the tail, have

been thought to indicate more effective swimming [38], possibly with lower cost of transport.

Our simulations suggest that this is not always true. In the directional feedback case, the wave-

speed ratio becomes smaller as gain becomes negative, but the overall cost goes up, due to the

increase in co-activation.

Cost of transport does not explicitly include speed. In both feedback cases, at high positive

gain, the swimmer uses less energy to go a unit distance. However, the swimmer with magni-

tude feedback goes 17% faster than the swimmer with directional feedback, so it takes less time

to go that distance. Animals that need to minimize energy cost may need to factor in both the

overall cost of transport and also the speed.

Comparison to other simulations

Many studies of feedback examine its role in responding to perturbations. Our simulation, in

contrast, examines the role of feedback in maintenance of a steady effective locomotor pattern.

Relatively few other studies have taken this approach. For example, Ekeberg and Grillner [28]

developed a neuromechanical model of lamprey swimming that incorporated feedback from

edge cells, proportional to curvature, similar to our directional feedback case. They found a

“slight increase” in spatial wavelength, within the range of uncertainty in the parameters, when

edge cell feedback was included [28], but they did not investigate whether the effects might be

different if the gain was higher. It seems likely that their model was in the range of low gain

feedback in which wavelength does not change substantially with gain (i.e., −20< ηd< 40 in

Fig 13B).

Gazzola et al. [31] simulated a minimal model of a flexible swimmer that included proprio-

ceptive feedback. They were interested in whether feedback alone, without a CPG, could allow

the model to swim steadily. They included passive elastic forces based on a beam model, active

muscular forces as an additional internal torque, and hydrodynamic forces based on elongated

body theory. They modeled proprioceptive feedback by adding a term to the internal torque.

This feedback term was directly proportional to local curvature, except with a time delay. With

a CPG, but without feedback, they found that the swimmer had a resonant behavior: it had

peaks in swimming speed at several activation frequencies. With feedback, but without the

CPG, they found that the swimmer tended to converge to the nearest resonant peak, as long as

they gave it some starting deformation. They found that increasing the feedback gain (χ in

their Eq [9]), tended to increase the amplitude and the swimming speed. It is difficult to com-

pare that finding to our results, because of the lack of a CPG model in their feedback case, but

their feedback term is most similar to our directional feedback model. Unlike their result, we

found that amplitude and swimming speed decreased as we increased feedback gain. This dif-

ference may be related to changes in level of co-activation in our model, a property that cannot

be simulated directly using an added torque as in Gazzola et al. [31].

Very recently, Thandiackal and Ijspeert [60] simulated a similar swimmer, using a CPG

modeled with phase oscillators and a feedback term that depended on the local fluid dynamic

pressure. Their fluid dynamic model is based on elongated body theory [61], which has been

validated, but is much simpler than our Navier-Stokes model. They modeled their feedback

approach on the lateral line sensory system in fishes, while ours is modeled on the edge cells in

lampreys. In their model, the feedback had a very strong effect on both the mechanical and

activation wavelength. In our model, without feedback, the system will have an nominal activa-

tion wavelength of 2π/ψ (see our Eq (1) and their Eqn. 2.3). In their model, as they varied ψ
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over a wide range, feedback tended to push the swimmer to have about one full wave on its

body. If the nominal wavelength was small, feedback increased the wavelength, and if the nom-

inal wavelength was large, feedback decreased the wavelength [60]. We did not examine the

effects of changing ψ, but we also found that feedback could have strong effects on wavelength.

Biological implications

Our feedback model approximates two different known effects in the lamprey’s sensorimotor

control system: first, the phasic effect of edge cells [7] that tends to enhance the ongoing loco-

motor rhythm [2], and second, the generalized excitatory effect of sensory feedback [3, 41].

Even in the absence of perturbations, we find that both effects are important during steady

locomotion.

In our model, both forms of feedback primarily affect the duration and frequency of muscle

activation along the body. Increasing the frequency of activation (through magnitude feed-

back) increases the swimming speed, as seen in fishes [39, 50]. In fishes, however, amplitude

usually remains approximately constant as frequency and speed increase [50]. In our model,

the amplitude decreases as frequency increases (Fig 13), which means that speed does not

increase linearly (Fig 14). This suggests that fish probably have to increase the overall activa-

tion strength as frequency goes up, in order to increase swimming speed.

Increasing the duration of muscle activity (through directional feedback) changes the

amount of co-activation of muscles on opposite sides of the body. This has a more complex

effect on swimming than changing frequency. In particular, the fastest swimmers have a fairly

substantial amount of co-activation (Fig 14, black curve). Co-activation can change the effec-

tive stiffness of a joint [62], and our previous results showed that there is an optimal passive

stiffness for maximum swimming speed [20]. It may be that the co-activation we see here alters

the effective stiffness to maximize swimming speed. However, co-activation also comes at a

cost. Swimming at the optimal speed requires more energy than swimming at lower speeds

with less co-activation (Fig 16, positive gains).

Conclusions

Sensory feedback may have an important ongoing effect on steady locomotion, even in the

absence of perturbations. With both forms of curvature feedback, we see that the energetic

cost of transport decreases with gain. The decrease in cost may also be aided by the decrease in

force with gain (Fig 10), which in turn decreases the muscular work at higher gains. However,

speed increases with increasing gain (Fig 14) and Strouhal number decreases, which indicate

that swimming is becoming more effective at higher gain, leading to an overall decrease in

energetic cost.

While it is well-established that the lamprey’s edge cells are stretch receptors, exactly how

this information on stretch feeds back to the CPG is not known. As a starting point to explore

the closed-loop locomotor system, here we chose a simple phase-oscillator model of the CPG

as well as simple models of feedback where curvature has an additive effect on the evolution of

the phase oscillators. In the phase oscillator model, the feedback can only affect the phase of

the CPG signal and not its amplitude. More detailed CPG models that capture the neural sys-

tem (e.g. [45, 63]) will be necessary to analyze these effects. Within the context of the simple

model presented here, future investigations will study the effect of feedback with a time delay,

as well as the effect of Reynolds number on the system where, perhaps, an animal may need to

change it’s control strategy as it grows. In addition, here we only examined the closed-loop sys-

tem during steady locomotion in the absence of perturbations. Future studies will investigate
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how the closed-loop swimmer reacts to perturbations in the fluid environment as well as how

curvature feedback affects it’s ability to actively turn.

Supporting information

S1 Fig. Figures showing the waveforms and amplitude envelope for specific cases of feed-

back discussed in the main text. The bottom plot shows the control “no feedback case”. Each

figure shows the waveforms for t = 5s to t = 6s plotted at regularly spaced intervals.

(EPS)

S2 Fig. Close up of the head (A) and the tail (B) of the lamprey. Each set of point is num-

bered head to tail. In this figure, the top set of points is referred to as the “right side” of the

body. The body is constructed with an ellipse-shaped head whose cross-section increases for

points 1-20. In this “head” region, there no muscle activation is imposed. The cross-sectional

width of the lamprey is a maximum of 10% the body length at point 20 (A), then linearly

decreases to a width of 0.1% of the body length at point 321 (B).

(EPS)

S3 Fig. Values for coupling strengths αi,j, between oscillators as calculated using parame-

ters from the Table in S1 Table in the supplemental information and Eq 2 in the main text.

The strengths of the ascending ((i − j)< 0) and descending ((i − j)> 0) connections as a func-

tion of the number of segments between the points. The blue line shows the descending

strengths, while the red line shows the ascending strengths.

(EPS)

S1 Movie. Comparison of the dynamics of a swimmer with feedback due to directional

feedback (D) with control swimmer. Here gain is negative (ηd = −15 cm � s−1). The body con-

figuration and trailing wake structures for the swimmer with feedback are shown after 8 s of

simulated time. The control case (without feedback) is shown in gray.

(MPG)

S2 Movie. Comparison of the dynamics of a swimmer with feedback due to directional

feedback (D) with control swimmer. Here gain is positive (ηd = 15 cm � s−1). The body config-

uration and trailing wake structures for the swimmer with feedback are shown after 8 s of sim-

ulated time. The control case (without feedback) is shown in gray.

(MPG)

S3 Movie. Comparison of the dynamics of a swimmer with feedback due to magnitude

feedback (M) with control swimmer. Here gain is negative (ηm = −0.08 cm � s−1). The body

configuration and trailing wake structures for the swimmer with feedback are shown after 8 s

of simulated time. The control case (without feedback) is shown in gray.

(MPG)

S4 Movie. Comparison of the dynamics of a swimmer with feedback due to magnitude

feedback (M) with control swimmer. Here gain is positive (ηm = 0.08 cm � s−1). The body con-

figuration and trailing wake structures for the swimmer with feedback are shown after 8 s of

simulated time. The control case (without feedback) is shown in gray.

(MPG)

S1 Table. Parameters used in the muscle and body models. Calcium and force parameters

were fitted to data provided courtesy of T. L. Williams; velocity and length dependence, and

muscle stiffness parameters are from Williams [22] and McMillen et al. [23].

(PDF)
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S1 Text. Equations describing the springs used to model the passive regions of the compu-

tational lamprey body.

(PDF)
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