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Animal movements result from a complex balance of many differ-
ent forces. Muscles produce force to move the body; the body
has inertial, elastic, and damping properties that may aid or oppose
the muscle force; and the environment produces reaction forces
back on the body. The actual motion is an emergent property of
these interactions. To examine the roles of body stiffness, muscle
activation, and fluid environment for swimming animals, a compu-
tational model of a lamprey was developed. The model uses an
immersed boundary framework that fully couples the Navier–
Stokes equations of fluid dynamics with an actuated, elastic body
model. This is the first model at a Reynolds number appropriate for
a swimming fish that captures the complete fluid-structure interac-
tion, in which the body deforms according to both internal muscu-
lar forces and external fluid forces. Results indicate that identical
muscle activation patterns can produce different kinematics de-
pending on body stiffness, and the optimal value of stiffness for
maximum acceleration is different from that for maximum steady
swimming speed. Additionally, negative muscle work, observed in
many fishes, emerges at higher tail beat frequencies without
sensory input and may contribute to energy efficiency. Swimming
fishes that can tune their body stiffness by appropriately timed
muscle contractions may therefore be able to optimize the passive
dynamics of their bodies to maximize peak acceleration or swim-
ming speed.
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The mechanics of fish swimming is a complex problem. The
bodies of fishes are elastic structures that deform in response

to fluid forces but also affect the fluid moving around them. Much
progress has been made in recent years understanding the fluid
motion around swimming fishes (1), along with the nonlinear
properties of muscle (2) and the elastic behavior of fish bodies
(3, 4). Computational fluid dynamics (CFD) has also become
increasingly feasible as a tool for studying fish swimming, but
in most cases, the body motion, even for flexible animals, is
prescribed (for examples, see refs. 5–8).

However, all of these previous studies examined body me-
chanics separately from fluid mechanics. No work has yet solved
the coupled fluid-structure interaction (FSI) problem for fish
swimming: the transformation from muscle activation to fluid
and body motion at high Reynolds number. The relative contri-
butions of inertial and viscous forces is described by the Reynolds
number Re ¼ ρUL∕μ, where ρ and μ are the fluid’s density and
viscosity, respectively, and U and L are the fish’s swimming speed
and body length. At high but noninfinite Re, inertial forces
dominate, but viscous interactions cannot be neglected entirely
because they are critical for vortex shedding sharp edges like
fish fins (9).

Several recent CFD models of fishes have included some FSI,
coupling center-of-mass motion to fluid dynamic forces with
otherwise prescribed body kinematics (e.g., 5, 6). Other studies
(10, 11) have used simplified fluid models to study fully coupled

models for fish swimming. Still others (12, 13) used an inverse
approach: They start with the measured kinematics, then esti-
mate the hydrodynamic forces on the body and then the muscle
forces required to generate the prescribed kinematics.

The model presented here includes an actuated, viscoelastic
body, based on that of a lamprey swimming in a 2D fluid domain.
We use an immersed boundary framework (14) with an adaptive,
parallel implementation developed by Griffith (15). The motion
of the body emerges as a balance between internal muscular force
and external fluid forces. Depending on external parameters such
as viscosity and internal parameters such as body stiffness, the
swimmer can achieve different levels of performance, including
rapid acceleration or high steady speed.

Additionally, we examine muscle activity and body bending.
We include a simple model of muscle force development (after
ref. 11). In most fishes, the phase difference between muscle
activation and body bending increases from head to tail (16, 17).
As a consequence, muscles near the tail may be active during
lengthening, absorbing energy. Muscles produce energy (positive
work) when they generate force while shortening, but they absorb
energy (negative work) when they generate force, but not enough
to resist being lengthened by an external force. Negative muscular
work near the tail is not necessarily inefficient for propulsion,
because it stiffens the tail against the fluid, allowing more ante-
rior muscles to transfer positive work through the tail to the fluid
(18). We consider the conditions under which this neuromecha-
nical phase lag can develop in the absence of sensory inputs.

Results
Simulations were performed with different values for body and
fluid properties. Table 1 shows simulation parameters and results
of all computations. Also included is a comparison to data from
eels (3, 19, 20), a fish with a similar swimming mode as lampreys.
In all figures below, simulation 1 is used as a reference and is
shown in black.

Fig. 1 shows fluid motion around the swimmer during steady
swimming (see also Movie S1). A single strong vortex is shed each
time the tail reverses direction. Multiple weak secondary vortices
are also produced. This reference swimmer, with an activation
frequency of 1 Hz, accelerates from rest to a steady-state speed
of 0.50 L·s−1 (Fig. 2A). Fluid stresses were calculated according
to the method of Williams et al. (21) (see Materials and Methods
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below). The integral of fluid stress in the swimming (axial) direc-
tion over the entire body fluctuates over time but integrates to
zero over a tail beat period (Fig. 2A). These fluctuations in force
and speed are due to the cyclic changes in body shape.

Impulse Ii was calculated by integrating the stress tensor σ
on 10 regions along the body over a cycle period T:
∫ tþT
t ∫ Σi

a · σ · n ds dt, where Σi is the ith region of the body,
and a and n are vectors in the axial direction and normal to
the body surface. Impulse is positive along most of the body (thick
line in Fig. 2B) except near the head. The tail tip also produces
net drag because of the spatial discretization. The forces applied
by the immersed boundary, even at high grid resolution, are reg-
ularized so that the tail tip, in effect, does not end in a sharp
point. Fluid separates around the slightly blunt tip, resulting in
drag. The force regularization also limits the flexibility of the thin-
nest portion of the tail region, which results in the fluctuation in
curvature and impulse along the body (Fig. 2B). Performance is
not affected by these fluctuations (see Materials and Methods
below). Tangential forces (filled gray bars), which are primarily
due to skin friction, always contribute negatively, while normal
forces (open bars), primarily an effect of pressure, are mostly
positive.

2D CFD Force Calculations Match the Reactive Model Better Than the
Resistive Model. Fluid forces as computed from the Navier–Stokes
solutions were compared to two analytical models: Lighthill’s
elongated body theory, based on reactive forces (22), and Taylor’s
resistive theory (11, 23). As inputs to the two analytical models,
we use the kinematics as derived from CFD and the instanta-
neous speed U of the center of mass.

Forces cannot be compared directly because the analytical
models produce estimates of force on a three-dimensional body,
while the current 2D CFD model produces a force per unit
height. Nevertheless, the shapes of the curves are informative.
Fig. 3 shows the estimates of lateral forces over three tail beat
cycles. Peaks in the CFD estimate (in mN·cm−1; circles, left axis)
correspond to vortex shedding (arrows). Forces from the reactive
model (in mN; dashed line, right axis) match the shape of the
curve from CFD well, including the shape of the peaks. Dividing

the reactive force estimate by the CFD calculations results in a
scale factor of 0.29 cm, equal to the average width of the body.
The resistive force estimates (dotted line, right axis) are approxi-
mately 90° out of phase with the CFD values.

Swimming Kinematics Are an Emergent Phenomenon. To examine
how the swimming movements emerge as a result of the fluid-
structure interaction, the viscosity was varied (Table 1, simula-
tions 2 and 3). All other activation parameters and mechanical
properties of the body remained the same. Fig. 4A shows outlines
of the swimmer in different viscosities. The curvature wavelength
(Fig. 4B) changes with fluid viscosity (see also Movie S2), even
though the activation wavelength is identical.

There Is an Optimal Body Stiffness for Maximum Steady Speed or for
Maximum Acceleration. Swimmers with Young’s modulus ranging
from 0.60 MPa to 1.31 MPa were simulated (Table 1, simulations
4–6). The muscle activation parameters were kept constant.
Fig. 5 A and B show swimming speed and outlines of the four
swimmers. We compared the mean acceleration sustained during
the first tail beat and mean steady swimming speed. A local opti-
mal stiffness formaximum sustained acceleration is near 0.66MPa
(green bar, Fig. 5C). The floppiest swimmer (tan line, Fig. 5A)
initially accelerates fastest but does not maintain acceleration
after the first half cycle. An optimum stiffness for maximum
sustained swimming speed is higher than that for acceleration
(Fig. 5D) and is located near 0.76 MPa. Finally, muscle power
was calculated. The muscle power coefficient CP;mus normalizes
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Fig. 1. Example flow patterns around the reference swimmer (shown in
gray). Arrows indicate flow velocity; background color shows vorticity. The
green line indicates the path of the center of mass.

Table 1. Simulation parameters and computed values

Eel* Reference Viscosity Stiffness
Stiffness +

muscle force Frequency

Parameters simulation number 1 2 3 4 5 6 7 8 9 10
dynamic viscosity μ (mPa·s) 1 1 0.5 10 1 1 1 1 1 1 1
Young’s modulus E (MPa) 0.39 0.76 0.76 0.76 0.60 0.66 1.31 0.64 0.98 0.76 0.76
muscle force scale factor 1 1 1 1 1 1 0.5 2 1 1
activation frequency f (Hz) 1.48 1 1 1 1 1 1 1 1 0.5 1.5

Computed
results

tail beat amplitude A (L) 0.07 0.16 0.16 0.13 0.24 0.21 0.08 0.12 0.16 0.20 0.10
swiming speed U (L·s−1) 0.53 0.50 0.52 0.25 0.22 0.36 0.37 0.44 0.53 0.23 0.64
inital acceleration (L·s−2) 0.30 0.32 0.16 0.30 0.31 0.12 0.14 0.48 0.12 0.20
wave speed V (L·s−1) 0.89 0.69 0.73 0.57 0.77 0.70 0.67 0.59 0.77 0.41 0.87
act. wave speed Vact (L·s−1) 1.55 0.88 0.86 0.88 0.88 0.88 0.88 0.88 0.88 0.44 1.32
wave speed/act. speed V∕Vact 0.58 0.78 0.84 0.65 0.87 0.79 0.76 0.67 0.87 0.94 0.66
St 0.37 0.62 0.63 1.03 2.13 1.15 0.41 0.53 0.62 0.86 0.46
muscle power coef. CP;mus 0.122 0.094 1.119 3.033 0.491 0.100 0.105 0.129 1.270 0.029

*Values estimated from data published in refs. 3, 19, 20.
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Fig. 2. The swimmer reaches a steady speed and produces net positive axial
impulse along most of its body. (A) Swimming speed (solid line, left axis) and
force per unit height in the axial direction (gray regions, right axis). Arrow
indicates the time of Fig. 1. (B) Axial impulse per unit height produced over a
cycle period during steady swimming. Impulse values due to normal and
tangential stresses are in open and filled gray bars, respectively. Net axial
impulse per unit height is shown with a thick line.
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muscle power according to the swimming speed (see Materials
and Methods below). The stiffest swimmer, although slower than
the reference, has the smallest power coefficient (Fig. 5E).

When peak muscle forces are kept constant, swimmers with
extremely low or high stiffness cannot move effectively (Fig. 5).
Therefore, two other swimmers were simulated: one with low
body stiffness and weak muscles that produce half the peak force
as those in the reference, and another with high body stiffness and
muscles that are twice as strong (Table 1, simulations 7 and 8).
These two swimmers reached nearly the same steady swimming
speed as the reference (0.44 and 0.53 L·s−1 vs. 0.50 L·s−1). Tail
amplitude was lower for the floppy, weak swimmer (0.12L)
and higher for the stiff, strong one (0.16L), the opposite of
the result when stiffness was changed without altering muscle
force. The stiff model with strong muscles accelerated the fastest
of any simulation, about 60% faster than the reference simula-
tion, yet its power coefficient was close to that of the reference
(0.129 vs. 0.122). The floppy model with weak muscles acceler-
ated slowly, but required relatively little power (Table 1).

Negative Work Is Produced Near the Tail When Muscle Forces Are Low
Relative to Fluid Forces.The mechanical parameters involved in the
production of a neuromechanical phase lag between activation
and curvature (16) were examined. A lag was observed in three
simulations: 1.5 Hz activation frequency (simulation 10, Table 1),
a floppy body with weak muscles (simulation 7), and in high
viscosity fluid (simulation 3). Fig. 6A shows the relative phase
of activation and curvature for these simulations and the refer-
ence. The phase lag increases so much that caudal muscles
(the last 20% of the body) were active during lengthening, pro-
ducing negative work. These three simulations were similar to
each other and different from the others because they had low
average muscle forces compared to average fluid forces (Fig. 6B).
The low muscle forces arise for different reasons. For the 1.5 Hz
swimmer, the fractional time for muscle force development was
the same as for the reference, but the cycle period was shorter, so
that muscle force never reached its peak value. For the floppy
body, weak muscle case, the peak muscle force was halved as part
of the initial simulation parameters. For the high viscosity case,
the muscle force remained the same, but the fluid forces went up,
largely due to the increased skin friction in high viscosity fluid.

Discussion
To the authors’ knowledge, this study represents a unique numer-
ical model of undulatory locomotion that accurately simulates the
fluid-structure interaction, fully coupling internal muscle me-
chanics and an elastic body to an incompressible, viscous fluid
governed by the Navier–Stokes equations at realistically high
Reynolds numbers. Researchers as early as Sir James Gray in
1933 have remarked on the importance of solving the FSI pro-
blem for animal locomotion (7, 18, 24, 26). FSI problems at
low Re have been more tractable (e.g., refs. 27, 28). Using an
adaptive Navier–Stokes solver (15), our swimmer achieves a
Reynolds number of order 104 based on body length and swim-
ming speed, comparable to that of swimming eels and lampreys
(17, 19). At these high values of Re, other studies with Navier–
Stokes fluid solvers have coupled the motion of the center of mass
to the fluid (e.g., refs. 5, 6) or linked one or two elastic joints to
the fluid (29, 30). Other models with FSI prescribe some aspects
of wave kinematics or use simplifications of the equations of fluid
motion (10, 11, 13, 31–33).

Our results suggest that one common simplification, the forces
due to Taylor’s resistive model (23) used by McMillen et al. (11)
and by Ekeberg (33) do not have the correct phase relative to the
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CFD estimates (Fig. 3). In the resistive model, flow around one
segment of the body is assumed not to affect flow around any
other segment. This assumption is clearly violated, because flow
moves along the body (see SI movies). Each segment is also
assumed to be equivalent, while our results (Figs. 1 and 2B)
and Lighthill’s elongated body theory (22) suggest that vortex
shedding at the tail tip is particularly important for determining
the timing of total force on the body. However, the quality of the
agreement between CFD and elongated body theory may have
been elevated by the 2D CFD computations. In 2D, vortices
can only be shed at the tail tip, as required by Lighthill’s approx-
imation (22). Future calculations in 3D will allow vortex shedding
along the dorsal and ventral surfaces. In fishes, such vortices re-
present a large fraction of the total vorticity (34). This additional
vortex shedding may affect the quality of the agreement with
elongated body theory.

The balance between such fluid forces and the internal muscle
and spring forces determines the motion of the body. Both the
kinematics and the swimming performance are an emergent
property of the simulation. Figs. 4 and 6 show that identical swim-
mers produce shorter curvature wavelengths, which correspond
to a larger neuromechanical phase shift, when placed in high visc-
osity fluid. A similar effect was observed in lungfish (Protopterus
annectens) swimming in high viscosity fluid (35) .

Kinematics and performance are also strongly affected by
internal parameters, particularly body stiffness. For a given set
of activation parameters, there are different optimum values of
stiffness for rapid acceleration or high steady speed (Fig. 5). Due
to the computational cost of the simulations, the stiffness para-
meters are spaced widely. Nevertheless, our results demonstrate
the existence of a stiffness value that optimizes acceleration and a
different value that optimizes swimming speed. Relatively stiff
models reach the highest swimming speed, while floppier models
accelerate most rapidly. By contrast, in living fishes, stiff-bodied
fishes generally have the highest accelerations. For instance, both
barracudas (Sphyraena) and lampreys are elongate fishes, but
barracudas accelerate faster and have much stiffer bodies (36).
These biological observations do not contradict our computa-
tional results, because we varied stiffness while keeping all other
muscle and activation parameters constant, while it is unlikely
that the muscles and activation pattern are identical for barracu-
das and lampreys. For example, barracudas may have a higher
physiological cross-sectional area of muscle, which corresponds
to higher muscle force. Supporting this idea, the highest accelera-
tions in our simulations are seen when muscle force and body
stiffness are increased together (simulation 8, Table 1).

Swimming speed was also strongly dependent on the activation
frequency. In all cases, the muscles’ twitch dynamics were kept
constant. From 0.5 to 1.5 Hz, swimming speed was approximately
proportional to activation frequency (simulations 1, 9, and 10,
Table 1), even though the body amplitude decreased by a factor
of two. The decrease in amplitude is surprising, because kine-
matic data from swimming fishes generally shows a positive cor-
relation between amplitude and swimming speed (19). However,
swimming fishes also recruit additional motor units and fast
twitch white fibers as activation frequency increases (25), features
that are not present in our simulations. Nevertheless, it is instruc-
tive to examine the differences between the 1.5 Hz swimmer and
the others.

In particular, the high swimming speed and low amplitude
of the 1.5 Hz swimmer suggests that it generates thrust more
effectively than the other swimmers. This may be a consequence
of the negative muscular work produced near the tail due to
the large phase lag between muscle activation and tail motion
(Fig. 6). This phase lag helps to determine the angle of the tail
as it moves, which is critical for thrust development (22). Support-
ing this idea, the 1.5 Hz swimmer also produces a different wake
than the other swimmers (see Movie S3).

Simulations at high viscosity or with a floppy body and weak
muscles also developed a phase lag. We suggest that the neuro-
mechanical lag arises when average muscle forces are low relative
to fluid forces (Fig. 6B). This hypothesis may also explain the
results from McMillen et al. (11), who found small phase lags
in two swimmers: (i) with no taper, and (ii) with no damping.
According to the current hypothesis, these swimmers should
have relatively high muscle forces. First, without taper, the me-
chanical advantage of the muscles near the tail is higher, whereas
the fluid forces remain roughly the same. Second, without damp-
ing, the relative muscle force should also be higher. The damping
term in (11) produces an internal force that resists changes in
curvature, while muscular force acts to change curvature. Thus,
internal damping opposes the muscles, reducing the effective
muscle force. Without damping, the muscle force that can be
applied to the fluid is higher.

Although our model is two-dimensional, the results are com-
parable to those from swimming fishes. The simulated lamprey
had a stiffness comparable to that of an eel (Table 1) (3). At
1.5 Hz activation frequency, the simulation matches data from
eels quite well: within 15% for most parameters (Table 1). Simu-
lation parameters were not optimized to match the eel. Simula-
tions were compared to eels and not lampreys, because lamprey
data (17) are not available for such a low swimming speed.
Indeed, it should be noted that eels rarely swim slower than
0.5 L·s−1 (19), whereas the fastest swimmer in this study only
reached a maximum speed of 0.6 L·s−1. Swimming speeds are
relatively low, most likely because the muscle model parameters
remained constant as activation frequency increased. Real fishes,
in contrast, recruit additional muscle and faster fibers at high
activation frequencies (25).

In addition, other model predictions are different from in vivo
data with respect to activation frequency. The model predicts that
curvature wavelength and neuromechanical phase lag (Fig. 6)
depend strongly on activation frequency (Table 1). In contrast,
results from swimming fishes indicate these parameters remain
fairly constant across frequencies (16, 17, 19). Again, increased
muscle recruitment (25) at high frequencies may explain the
differences, or sensory feedback may be necessary to maintain
the neuromechanical phase lag as activation frequency changes.

Finally, our results indicate that swimming performance is
quite sensitive to mechanical parameters. The local optimal stiff-
ness for maximum acceleration is approximately 15% smaller
than an optimum for maximum swimming speed. This has two
implications. First, neurophysiologists must be cautious in inter-
preting data from motor neurons. The model suggests that
identical motor outputs can produce substantially different
performance if the biomechanical parameters are even slightly
different. Second, fishes may be able to take advantage of this
sensitivity to biomechanics. Stiffness of the body, for example,
can be increased by 200% or more by appropriately timed muscle
activation (3). Peak muscle force can also be tuned by recruiting
different numbers of motor units. Fishes may therefore be able
to tune the passive dynamics of their bodies to maximize peak
acceleration or swimming speed.

In summary, we have shown, first, that passive mechanical
properties, particularly stiffness, are crucial for effective
swimming. Second, sensory feedback is not required for high per-
formance, provided the mechanical parameters are tuned appro-
priately. Finally, swimming performance appears to be quite
sensitive to the mechanical parameters; small changes in stiffness
can result in large changes in performance.

Future work will extend the current model to 3D so that we can
examine the role of body shape. The 3D model will produce
vorticity along its length, as has been observed experimentally
(34), which will change the distribution of forces along the body.
Simulations with different body shapes will shed vortices differ-
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ently along their lengths, ultimately resulting in different swim-
ming kinematics and performance.

We will also examine the role of sensory feedback. We have
shown that feedback is not necessary for stable, effective swim-
ming in still water. Future work will use controlled perturbations
to investigate the relative importance of passive mechanical
stability of the swimmer and stability mediated by sensory feed-
back. For example, the current swimmer is neutrally stable in
yaw (SI movies; see also ref. 33); sensory feedback is therefore
required to maintain a heading. Passive stability is likely to be
particularly important in the 3D model, which will need stability
in pitch and roll. We will therefore incorporate models of the
CPG circuit (after ref. 37) and proprioceptive sensory cells (38),
then perturb the model with realistic flows, such as cross flows,
vortex rings, and shear layers.

Materials and Methods
The immersed boundary method (14) provides a framework for coupling
elastic dynamics of flexible boundaries with a viscous, incompressible fluid.
These elastic objects are accounted for by suitable contributions to a force
term in the incompressible Navier–Stokes equations. The force of the object
on the fluid is a Dirac delta-function layer of force supported only by the
region of fluid that coincides with material points of the object. Once these
forces on the fluid are accounted for, the fluid dynamics equations are solved
on a regular, finite difference grid. At each time step, the no-slip condition at
the immersed boundary is enforced by moving its material points at the up-
dated and interpolated fluid velocity. To capture boundary layers and vortex
shedding at high Reynolds numbers, an adaptive, parallel implementation of
the immersed boundary method was used (15). Because of computational
limitations, simulations are performed on a 2D grid.

The computational lamprey, whose length is L ¼ 12.6 cm, is immersed in a
fluid domain that is five body lengths wide and three body widths high
(252 cm × 37.8 cm). Boundary conditions are no-slip on the top and bottom
and no-penetration on the sides. The adaptive immersed boundary method
(15) uses three levels of grid refinement: Regions that contain immersed
boundary points and/or vorticity above a threshold are discretized at the
highest refinement level (Δx ¼ 0.025 cm), whereas most of the domain is
discretized at the coarsest level (Δx ¼ 0.4 cm). Computations were per-
formed using a base time step of Δt ¼ 0.25 × 10−4 s. Convergence studies
were conducted at half and twice the smallest grid refinement. Results from
the finest resolutions are nearly indistinguishable from the current results.
For example, mean swimming speed changes by less than 2%. In addition,
computations were tested with larger fluid domains to ensure that the size
of the tank had little or no influence on the simulations.

Body Model.Our simulated lamprey is built out of three segmented filaments:
a stiff center line with 640 links and two lateral sides, each with 320 links
(Fig. S1). The structure of the body was chosen to reproduce, abstractly,
the geometry and mechanical properties of fish bodies. The links along
the center filament and the crosslinks that connect the center line to the
lateral sides are modeled as passive, Hookean springs with stiffness constant
S1. The links along the lateral sides are modeled as springs with stiffness con-
stant S2, but they do not resist compression (similar to collagen fibers). The
links along the lateral sides also support active muscle contractions (Fig. S1C)
that are based upon the kinetic model of lampreymuscle dynamics presented
in ref. 11. For simplicity, we do not include the nonlinear dependence of
muscle force on length or velocity. The body inherits damping properties
from the viscous fluid in which it is immersed.

The activation pattern was modeled on that of eels and lampreys
(17, 19, 20). Undulatory muscle force is produced in the posterior 88% of

the body, representing the region caudal to the gills in the lamprey. Of
the segments on either side of the body, 30% are active at any given time,
and these activated regions progress down the body with an activation wave
speed Vact of 0.88 L·cycle−1, so that one full activation wave is present on the
body (Fig. S1A). To model a free swimmer, the immersed boundary frame-
work requires that all internal muscle and spring forces sum to zero at every
point in time (14).

The macroscopic bending modulus was estimated using the procedure in
ref. 39. The body was bent at a constant curvature κ and the total potential
energy Eκ stored in all of the springs was calculated. For a homogenous elastic
beam, the stored energy is related to curvature by Eκ ¼ 1

2EIκ
2L, where EI is the

flexural stiffness, composed of the Young’s modulus E and the second
moment of area I. Because the model is 2D, the units of EI estimated through
this procedure are N·m. To estimate an approximate 3D equivalent, we
multiply by the average diameter of the body (0.29 cm). Similarly, the second
moment of area I of the cross-section was approximated by that of a circle
with diameter 0.29 cm.

Postprocessing. The center of mass of the body was determined by integrat-
ing position across the area of the swimmer, assuming constant density. Mean
center of mass speed U is calculated during steady swimming, when the
fluctuations in speed are less than 5%. Initial acceleration is the mean of
dU∕dt during the first cycle period. Body curvature κ is approximated
numerically using a quintic smoothing spline (19).

Kinematic variables including amplitude, wave speed, and wavelength
were determined according to the method described in detail in ref. 19
by tracking zero crossings in curvature (circles in Fig. S1). Amplitude A is half
the maximum lateral excursion at the tail tip. Wave speed V is estimated by a
linear fit of the position of a zero in curvature over time, while wave length is
twice the arc length between successive zeros in curvature. Strouhal number
St is 2fA∕U, where f is the activation frequency. The ratio of the curvature
wave speed V to activation wave speed Vact is a measure of the neurome-
chanical phase lag (11); when V∕Vact is less than one, the phase lag between
curvature and activation increases along the body.

The rate of muscle work per unit height Pi in a segment i is f imusðdli∕dtÞ
where f imus is the muscle force in that segment and li is its instantaneous
length. Average muscle power P̄ per cycle was determined by summing over
all points, integrating over a cycle period, and dividing by the cycle duration.
For a 2D swimmer, the power P0 required to overcome drag at a steady
forward speed U should scale as P0 ¼ 1

2ρcU
3, where c is the perimeter of

the swimmer (19). The muscle power coefficient CP;mus ¼ P̄∕P0 thus provides
a way to compare the relative muscle power required to travel at a steady
speed, even when the speeds are different.

The jump in the fluid stress tensor across the boundary was calculated
according to the method in ref. 21. The fluid stress tensor σ is −pIþ μð∇uþ
ð∇uÞT Þ, where p and u are the fluid pressure and velocity, respectively, and I is
the identity tensor. To approximate this value numerically, the fluid velocity u
and the pressure p are interpolated from the Eulerian finite difference fluid
grid onto a Lagrangian coordinate system defined by the normal and tangen-
tial vectors of the body’s boundary. In the interpolation, we are careful to
use grid points outside of the boundary (21). Gradients are evaluated using
a second-order central difference algorithm. Fluid forces were also estimated
analytically according to reactive force theory (22) and resistive force theory
as expressed in ref. 11.
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