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Peristaltic pumping by wavelike contractions is a fundamental biomechanical mechanism for fluid
and material transport and is used in the esophagus, intestine, oviduct, and ureter. While peristaltic
pumping of a Newtonian fluid is well understood, in many important settings, as in the fluid
dynamics of reproduction, the fluids have non-Newtonian responses. Here, we present a numerical
method for simulating an Oldroyd-B fluid coupled to contractile, moving walls. A marker and cell
grid-based projection method is used for the fluid equations and an immersed boundary method is
used for coupling to a Lagrangian representation of the deforming walls. We examine numerically
the peristaltic transport of a highly viscous Oldroyd-B fluid over a range of Weissenberg numbers
and peristalsis wavelengths and amplitudes. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2963530�

I. INTRODUCTION

Problems in biological fluid dynamics typically involve
the interaction of an elastic structure with a surrounding
fluid. Sperm motility in the reproductive tract and peristaltic
contractions of the ureter and oviduct are examples of such
interactions. For Newtonian fluids, there has been consider-
able progress in formulating mathematical descriptions and
numerical algorithms for the simulation of these coupled sys-
tems. However, many biological fluids are actually complex;
that is, they are not liquids or mixtures of a simple molecular
structure that yield Newtonian responses but instead have
complicated non-Newtonian mechanical responses that arise,
usually, because they have suspended microstructures. These
complex fluids bring important new physics to even classical
problems in biological fluid dynamics. In this manuscript we
describe a mathematical model and numerical method that
couples a moving boundary to a Stokes–Oldroyd-B �OB�
description of an elastic Boger fluid using an immersed
boundary framework. Other immersed boundary simulations
have captured viscoelastic effects in the fluid domain. For
instance, in Ref. 1 Fogelson tracked a concentration of inter-
platelet links within a macroscopic fluid in a continuum
model of platelet aggregation. While we will focus on the
classical fluid dynamics problem of peristaltic pumping in a
two-dimensional �2D� channel, we will also demonstrate that
the reversibility of Stokes flow is lost in this non-Newtonian
case. We will compare fundamental aspects of pumping in
the cases of Newtonian and OB peristaltic pumping. Most
notably, we will show that the optimal flow produced with
varying occlusion ratio �of the wave amplitude to the channel
separation� is fundamentally different for Newtonian and OB
model fluids. Newtonian fluids produce increasing flow as
the ratio approaches complete occlusion; however
Olrdroyd-B fluids produce decreasing flow as the occlusion
ratio goes beyond a critical value far short of complete
occlusion.

A. Peristalsis

Waves of contraction passed along a fluid bearing tube
result in net transport of the fluid in the wave direction. This
peristaltic pumping is responsible for many physiological
flows, including urodynamics in the renal pelvis2 and rapid
sperm transport from the uterus to the oviducts,3 and contrib-
utes to ovum transport in the oviduct.4 Oviductal mucosal
fluid demonstrates non-Newtonian properties.5

In some instances of peristaltic pumping, fluid transport
is also affected by an applied pressure gradient along the
channel. This gradient can act against the mechanical wave
and cause reflux, the transport of particles in the direction
opposite that of the wave. In the context of in vitro fertiliza-
tion, Eytan et al.6 asserted that this fluid mechanical phenom-
enon of reflux is the cause of unsuccessful embryo implan-
tation in women who suffer from hydrosalpinx, a tubal
pathology that causes accumulation of fluid in the oviduct.
This increases tubal pressure and results in an applied pres-
sure gradient that acts against the peristaltic wave in the
uterus that would otherwise transport the embryo to an ap-
propriate implantation site at the fundus. Surgical removal of
the oviduct with hydrosalpinx to improve implantation
chances remains a controversial issue.6

There have been many mathematical and computational
models developed to describe fluid flow in a tube undergoing
peristalsis with prescribed wall motions. In earlier analytical
studies, simplifying assumptions were made, including small
amplitude oscillations, long wavelength, as well as symmetry
of the channel �e.g., Refs. 7 and 8�. Subsequent studies have
been less restrictive and have captured features such as finite
wavelength, nonuniform channel geometry, as well as effects
of finite length channels �e.g., Refs. 9–13�. Recently, there
have been coordinated experimental, mathematical and com-
putational studies of uterine peristalsis.6,14–17
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II. THE VISCOELASTIC FLOW MODEL

We shall consider peristaltic pumping in the x-periodic
geometry illustrated in Fig. 1. Here L is the periodicity
length. The two walls �1 and �2 will move through the set of
shapes given by �x , �ywall�x+Vt��, where ywall is an
L-periodic function of its argument and V is the speed of the
left-moving wave. The velocity of the wall is then v1,2

= �Vywall� . Note that the wall does not move as an inexten-
sible surface but rather stretches and compresses as the wave
of deformation moves through it.

We have chosen the OB equations as our viscoelastic
flow model. This model arises from a simple conception of
the microscopic origin of viscoelasticity. Here, one considers
a dilute suspension of high molecular weight polymers in a
Newtonian solvent where the ceaseless collisions of solvent
molecules cause the molecule to roughly conform to a ran-
dom walk. The polymer molecules’ distortions from equilib-
rium are represented by the distribution of the end-to-end
displacement vector R. Assuming that the polymer coil re-
sponds to deformation as a linear Hookean spring, one can
show using Kirkwood’s formula that the additional or extra
stress to the solvent stress provided by the distended poly-
mers is given by

Sp = ��RRT� , �1�

where �·� represents a distributional average over a fluid
volume.18 Hence, in this case the extra stress is essentially a
sum of outer-product matrices.

This simple microscopic picture yields the OB equations

�
Du

Dt
= � · �Ss + Sp� and � · u = 0 in � ,

with �u��1,2
=v,

�Sp
� = − �Sp − GI� in � ,

where Ss is the usual Newtonian �solvent� stress tensor
Ss=−pI+2�E �E is the symmetric rate-of-strain tensor�, � is
the time scale for polymer relaxation, and GI is the addi-
tional isotropic stress in the fluid arising from thermody-

namic fluctuations of the polymer chains.18 The upper con-
vected time derivative, S�, is defined by

S� �
DS

Dt
− ��uS + S � uT� �2�

and is a natural transport operator for such a tensor.
The period length L of the pump section �see Fig. 1� is

taken as a characteristic length scale, and V as a characteris-
tic velocity, giving � f =L /V as a characteristic flow time
scale. To make the equations adimensional, we take G as the
scale of Sp and the pressure scale as P=� /� f. We then have

Re
Du

Dt
= − �p + �u + � � · Sp and � · u = 0 in � ,

with �u��1,2
=v,

WiSp
� = − �Sp − I� in � ,

where Re=�VL /� is the Reynolds number, Wi=� /� f is the
Weissenberg number, and �=G� f /� is the �adimensional�
strength of feedback of the polymer stress to the momentum
balance equation. Note that the flow time scale � f is chosen
so that the boundary velocity is order 1.

We study this system in the limit where Re is small; yet
Wi is at least order 1. This yields the Stokes-OB equations

− �p + 	u = − � � · Sp and � · u = 0 in � , �3�

with �u��1,2
=v,

Sp
� = − Wi−1�Sp − I� in � . �4�

Hence, given the gradients of polymer stress, Eq. �3� consti-
tutes a Stokes boundary value problem for the velocity u.
The polymer stress is advected and damped via the transport
equation �4�.

Since there is no scale-dependent dissipation operative
in Eq. �4�, no boundary conditions are necessary for Sp at
�1,2. This is made clearer by rewriting Eq. �4� in the La-
grangian frame,

�F−1SpF−T�t = − Wi−1�F−1SpF−T − F−1F−T� . �5�

Here F=�
 /�X is the so-called deformation tensor or the
Jacobian of the Lagrangian flow map 
. The flow map gives
the time t location of particle X of the material and its time
derivative is the material velocity. Equation �5� shows that
the evolution of S requires only local information about S
along a Lagrangian path. Because of its provenance as a sum
of tensors of the form RRT, Sp should be a symmetric posi-
tive definite �spd� tensor. Indeed one can show that if Sp is
initially spd, then Eq. �5� will preserve this property.

The Newtonian Stokes equations are recovered in the
limit Wi→0, in which case the polymer stress is uniform and
isotropic. In the formal limit Wi→� the system becomes
that for a neo-Hookean solid with a viscous stress response.

The Stokes-OB equations have a natural energy law. Let

E =
1

2
	

�

trace�Sp − I� .

Then

L

�1

�2

�

V

v

FIG. 1. Peristaltic pumps work by propagating a contractile wave with
speed V along an elastic fluid boundary. Though the wave propagates in the
direction of the bulk fluid flow, the motions of the material points in the
boundary are primarily lateral �shown moving with speed v in the figure�.
The figure depicts such a mechanisms with �1 and �2 depicting the lower
and upper elastic boundaries, respectively.
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Ė + Wi−1E = − �−1	
�

��u�2 + 	
�1+�2

v · ��−1Ss + Sp� · n̂ .

�6�

The first term on the right-hand side is the rate of viscous
energy dissipation, while the second term gives the rate of
work being done by the boundary motion upon the fluid.
Note that for fixed �, there is energy decay even in the limit
of infinite Wi owing to the viscous response of the Newton-
ian solvent.

We note that the product �Wi=G� /� is the ratio of the
polymer viscosity to solvent viscosity and thus is a material
quantity of the fluid and independent of experimental condi-
tions. As a point of comparison, from the paper of Arratia
et al.19 the solution viscosity is 1.2 Pa s, while that of the
solvent �97% glycerol/water� is 0.8 Pa s. This yields �Wi
= �1.2−0.8� /0.8=0.5. In the simulations presented here, we
set �Wi= 1

2 so as to fix the material being modeled.
Reversibility. A fundamental aspect of the Newtonian

Stokes equations is their exact reversibility under a variety of
conditions. Of relevance here is reversibility under a reversal
of boundary motion. That is, if V→−V then u→−u. There
are two related consequences to this. One is that if the fluid is
pumped forward, some number of cycles and the direction of
the peristalsis are reversed for the same number of cycles;
the fluid will return exactly to its original position. The sec-
ond is that, regardless of the wall shape, the efficiency of
pumping is unaffected by the direction of peristalsis. Neither
of these two features remain true for the Stokes-OB system.
These facts are signaled directly by the existence of an en-
ergy decay law reflecting the history dependence in the
system.

III. METHODS

We model the pumping of an OB fluid due to a peristal-
tic, traveling wave passed along the walls of a 2D, spatially
periodic channel. Following Ref. 20, we use the immersed
boundary method to capture the coupled fluid-structure inter-
actions between the moving channel walls and the surround-
ing fluid, although here the governing equations model a
complex Stokes-OB fluid in the Stokesian regime rather than
a Newtonian one at nonzero Reynolds number. In order to
model the peristaltic channel, we choose our computational
domain �� to be a square whose side length is one wave-
length of the contractile channel. The channel walls extend
from one side of the domain to the other, and periodic
boundary conditions are imposed upon the fluid dynamic
equations and wall motions. The flow domain ���� is the
region between the two walls. The flow in the region
complementary to � is also that of a peristaltic pump, but
with our choice of geometric parameters defining the walls,
the geometric shape and consequent flow in the complemen-
tary region are identical to that in �.

In the immersed boundary framework, the governing
equations are

0 = 	u − �p + � � · S + f ,

� · u = 0,

DS

Dt
= �u · S + S · �uT +

1

Wi
�I − S� ,

f�x� = 	
�

F�X��,t��
�x − X��,t��d� ,

�X

�t
= 	

��
u�x�
�x − X��,t��dx .

Here, X�� , t� is the configuration of the Lagrangian boundary
�=�1+�2 at time t, S=Sp in Eq. �4�, 
�x� is the 2D Dirac
delta function, F is the elastic force per unit length along the
channel walls, and f is the force per unit area, which is ex-
erted on the fluid domain � by the walls of the channel.
Following the immersed boundary framework,21 this force
on the fluid is a 
-function layer supported only by the region
of fluid which coincides with material points of the channel
walls; away from these points the force is zero. Our coupled
fluid-immersed boundary system is closed by requiring that
the velocity of a material point of a channel wall be equal to
the fluid velocity evaluated at that point.

In order to impose prescribed motion of the channel
walls, we choose the Lagrangian force F to be

F = − k̂�X��,t� − Z��,t�� .

These forces can be interpreted as elastic forces due to
Hookean springs with zero rest lengths connecting the wall
points X�� , t� to specified “tether” points Z�� , t�. The stiff-

ness constant k̂ is a numerical parameter that is chosen as
large as possible in order to �approximately� enforce the pre-
scribed wall motions. The prescribed wall motion, in adi-
mensional units, is Z�� , t�= 
�� ,0.5+d�� , t�� ��� �0,1��
� 
�� ,0.5−d�� , t�� ��� �0,1��. Here d is typically a sinu-
soidal wave,

d��,t� =
�

2�
�1 + � sin 2��� − t�� .

Here � measures the aspect ratio of the channel, while �
measures the wave amplitude to channel width ratio: for �
=0 the channel is straight, while for �=1 it is completely
occluded.

A. Compatibility conditions in a periodic domain

Our use of periodic boundary conditions necessitates
that all forces integrate to zero over the domain ��,

	
��

�f + � � · S�dx = 0 .

The assumption of periodicity for the elastic stress S ensures
that the polymer-based forces integrate to zero. Therefore,
we require that the tether forces integrate to zero. Periodic
boundary conditions have the additional consequence that
the velocity field is defined only up to an additive constant uc

and so we may write
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u = û + uc where 	
��

ûdx = 0 .

For Stokes flow, a constant velocity field uc can be uniquely
determined when using the immersed boundary method with
tether forces to ensure that these forces always integrate to
zero over the domain. We can use this same constant velocity
determination here for the Stokes-OB system,

uc =
− 1

��d�
	�
�	

��
û
�x − X�dx −

�Z

�t �d�� . �7�

This constant velocity is determined by requiring that the
time derivative of the integral of the tether forces is zero.
Hence, if initially the tether forces do integrate to zero, they
will continue to integrate to zero.

When discretized in time, at the beginning of the nth
time step, the state of the system is given by the configura-
tion of the immersed boundary walls Xn and the polymer
stress tensor Sn. In order to update the configuration of the
immersed boundary walls, we must compute un= ûn+uc

n

while ensuring that the tether forces at time n+1 integrate to
zero. We do this by first computing the portion of the veloc-
ity that integrates to zero ûn and its effect on the immersed

boundary X̂n+1 as

	ûn = �pn − fn + � � · Sn,

� · ûn = 0 ,

X̂n+1 = Xn + 	t	
��

ûn
�x − Xn�dx .

The velocity uc
n and immersed boundary configuration Xn+1

are then determined in a way that ensures the forces at time
n+1 integrate to zero,

uc
n =

1

��d�
�k̂	

�

Zn+1 − X̂n+1

	t
d�� ,

�8�
Xn+1 = X̂n+1 + 	tuc

n.

This velocity is a first-order approximation to the continuous
value in Eq. �7� and ensures that the forces integrate to zero
at time n+1. In the following subsections, we describe the
numerical methods used to evolve the fluid and polymer
stress equations.

B. Spatial discretization

We rewrite the Stokes equations, introducing an interme-
diate velocity u* and scalar function p̂ as

	u* = − f − � � · S , �9�

	p̂ = � · u*, �10�

û = u* − �p̂ , �11�

where the scalar p̂ satisfies p=−	p̂. In this way, for a given
stress tensor S and immersed boundary force field f, we may

solve for the fluid velocity field and pressure by solving two
Poisson equations with periodic boundary conditions on the
domain ��.

We use a marker and cell �MAC� grid structure when
solving the Poisson equations �9� and �10� for the fluid ve-
locity and pressure as in Ref. 22 �see Fig. 2�. With this struc-
ture, we decompose a uniform Eulerian grid into three sepa-
rate components with the x components of the velocity
�ui+1/2,j� defined on horizontal faces of each cell, the y com-
ponents �vi,j+1/2� on the vertical faces, and the diagonal stress
components �pi,j , p̂i,j , �S11�i,j , �S22�i,j� defined at the cell cen-
ters. � ·u* is then naturally defined at the cell centers when
solving for p̂. Using a standard five-point stencil, we get the
following system of equations:

p̂i+1,j + p̂i−1,j + p̂i,j+1 + p̂i,j−1 − 4p̂i,j

h2

=
u

i+1/2,j
* − u

i−1/2,j
*

h
+

vi,j+1/2
* − vi,j−1/2

*

h

or more compactly

Lhp̂i,j = D−
h · �u

i+1/2,j
*

vi,j+1/2
* � = �Dx−

h

Dy−
h � · �u

i+1/2,j
*

vi,j+1/2
* � ,

where h is the grid spacing in both the x and y directions. p̂
is then used to discretely project u* to the divergent free û as

ûi+1/2,j = u
i+1/2,j
* −

p̂i+1,j − p̂i,j

h
,

v̂i,j+1/2 = vi,j+1/2
* −

p̂i,j+1 − p̂i,j

h
.

The MAC based locations of the x and y components of
the velocity and their governing equations of motion natu-
rally suggest storing S11 and S22 at cell centers as with the
pressure and S12 at the grid corners �see Fig. 2�. With this
grid structure, the equations for u* are

FIG. 2. A MAC grid cell stores pressure and diagonal stress components at
cell centers, x velocity components on horizontal faces, y velocity compo-
nents on vertical faces, and off-diagonal component of the stress at the
corners.
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u
i+3/2,j
* + u

i−1/2,j
* + u

i+1/2,j−1
* + u

i+1/2,j+1
* − 4u

i+1/2,j
*

h2

= �f1�i+1/2,j + �� �S11�i+1,j − �S11�i,j
h

+
�S12�i+1/2,j+1/2 − �S12�i+1/2,j−1/2

h
�

or

Lhu
i+1/2,j
* = �f1�i+1/2,j + ��Dx+

h �S11�i,j + Dy−
h �S12�i+1/2,j+1/2� ,

where f= �f1 , f2�. Similarly, v* is given as

Lhvi,j+1/2
* = �f2�i,j+1/2 + ��Dx−

h �S12�i+1/2,j+1/2 + Dy+
h �S22�i,j� .

To solve these systems of equations, we use a conjugate
gradient solver with incomplete Chlolesky preconditioner.
The velocity field computed here, due to forces that sum to
zero, can be shown to have zero average and plays the role of
û discussed above.

C. Communication between immersed boundaries
and fluid domain

The integrals that communicate forces from the im-
mersed boundaries to the fluid domain and that interpolate
the fluid velocity field back to the immersed boundaries each
involve the Dirac delta function. The delta function is ap-
proximated by a discrete regularized function 
IB defined on
the Eulerian grid discretizing ��. There are many ways to
construct these grid-based approximations that satisfy certain
moment conditions.21 For example, it is very important for
the constant velocity calculation �uc

n� that the discrete ap-
proximate delta functions also satisfy the property that inte-
gration of a numerically “spread” Lagrangian quantity over
the Eulerian domain �� be the same as the integral of the
quantity over the Lagrangian domain �. Such conditions give
rise to a family of candidate discrete delta functions, from
which we choose a four point delta function 
4h

IB. This func-
tion has a support of four mesh widths in each spatial direc-
tion �i.e., supported over 16 cells in two-dimensions� and is
defined in terms of the function 
4

IB with 
4h
IB�x�

= �1 /h2�
4
IB�x /h�
4

IB�y /h�, where


4
IB�x� = �

1
8 �3 − 2�x� + �1 + 4�x� − 4x2� , �x� � �0,1�

1
8 �5 − 2�x� − �− 7 + 12�x� − 4x2� , �x� � �1,2�

0, �x� � 2.
�

Using this regularized delta function 
4h
IB and a standard

second-order quadrature, we can convert Lagrangian forces
defined on the immersed boundaries to their Eulerian values
on the fluid grid. In the adjoint operation, we can define
Lagrangian velocities of the immersed boundary from the
Eulerian fluid field u to couple the wall to the fluid,

fi+1/2,j+1/2 = �
k

Fk
4h
IB�xi+1/2,j+1/2 − Xk�	lk,

Vk = �
i,j

ui+1/2+1/2
4h
IB�xi+1/2,j+1/2 − Xk�h2,

where Xk are the discrete Lagrangian points that make up the
immersed boundaries, Fk are the Lagrangian forces at points
Xk, Vk are the corresponding velocities, 	lk are the distances
between immersed boundary points, and xi+1/2,j+1/2 are the
Eulerian grid node locations. We perform this operation us-
ing node based velocities �as implied by the half indexing�.
These node based velocities are determined with second-
order averaging from their incident faces. Additionally, when
solving for the intermediate velocity u*, we need the im-
mersed boundary forces defined on horizontal and vertical
faces. This is also done with second-order averaging from
the node based fi+1/2,j+1/2. This averaging can be avoided by
separately interpolating from and spreading to the horizontal
and vertical faces but requires a slightly more involved
implementation.

D. Evolution of polymer stress tensor

We adopt a method of line approach to evolving the
extra stress tensor. The evolution of the stress tensor S is
governed by the system of differential equations,

�S

�t
= g�S,u� , �12�

where g is defined as

g11�S,u� = 2
 �u

�x
S11 +

�u

�y
S12� −

�S11

�x
u −

�S11

�y
v

+
1

Wi
�1 − S11� ,

g12�S,u� =
�u

�y
S22 +

�v
�x

S11 −
�S12

�x
u −

�S12

�y
v −

S12

Wi
,

g22�S,u� = 2
 �v
�x

S12 +
�v
�y

S22� −
�S22

�x
u −

�S22

�y
v

+
1

Wi
�1 − S22� .

This definition of g is only valid for divergence-free veloci-
ties u.

We use a second-order Runge–Kutta method to evolve S
forward in time,

Ŝn+1 = Sn + 	tg�Sn,un� ,

Ŝn+2 = Ŝn+1 + 	tg�Ŝn+1,un� ,

Sn+1 =
Sn + Ŝn+2

2
.

When g is spatially discretized �see Sec. III B�, it is apparent
that g12 is naturally defined at grid nodes �as with S12� and
g11, g22 are naturally defined at cell centers �as with S11 and
S22�. Computing g is complicated by the coupling of vari-
ables defined at different locations in the grid �faces, corners,
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and centers� and second-order interpolation must be per-
formed to accurately define the respective variables where
needed.

E. Summary

The state of the system at time step n of the coupled
immersed boundary–Stokes-OB system is determined by the
stress tensor Sn and the configuration of the immersed
boundary Xn. To advance the system by one time step, we

• use the discretized delta functions to spread the tether
forces to the fluid grid to get fn;

• using Sn, we solve two Poisson problems to determine
ûn;

• we interpolate this mean-zero velocity field defined on

the fluid grid to immersed boundary points Ûn, using
the discretized delta functions, and evolve the im-
mersed boundary points to an intermediate configura-

tion X̂n+1=Xn+	tÛn;
• we determine the constant velocity field uc

n that will
assure that the tether forces at the next time step inte-
grate to zero: the fluid velocity field at time level n is

then un= ûn+uc
n and Xn+1= X̂n+1+	tuc

n;
• given un, we solve the system of ordinary differential

equations for Sn+1.

This completes a time step.
Spatial and temporal refinement studies were performed

to check the order of accuracy of the scheme. In the presence
of an applied, continuous force with no immersed boundary,
the above scheme for solving the Stokes-OB system achieves
second-order spatial accuracy and second-order temporal ac-
curacy. Inclusion of the immersed boundary reduced the spa-
tial accuracy to first order. As will be shown in the next
section, flow rates computed using our immersed boundary
Stokes model of peristaltic pumping are virtually identical to
those given by asymptotic formulas in the case of very small
amplitude pumping.23 In a related context of propulsion of a
swimming sheet in a Stokes-OB fluid, we have compared
swimming velocities computed using our immersed bound-
ary Stokes-OB results with the recent asymptotic results of
Lauga.24 Our numerical simulations showed very good
agreement with this approximation over a range of fluid and
geometric parameters; these comparisons will be reported in
a separate manuscript.

IV. RESULTS

Here we show within the comparatively simple
Stokes-OB model that complex fluidic responses can cause
flow behaviors significantly different from that of a Newton-
ian fluid. We examine how variations in the amplitude to
channel separation ratio � and Weissenberg number Wi affect
the peristaltically driven flow. The 2D Newtonian problem is
well studied both asymptotically and numerically and we
will use classical results to compare with our numerical
model, both as validation and to demonstrate the signifi-
cantly different behaviors of the complex fluid model.

A. Flow variations with amplitude ratio „�…
and Weissenberg number

The amplitude ratio � varies between 0 �wide open� and
1 �complete occlusion� and measures the severity of the con-
tractile pumping and the curvature of the domain. For a
Newtonian fluid, the mass flux induced by the pump in-
creases monotonically with �. To quantify the effect of this
parameter on the Stokes-OB fluid, we first define

Q�x,t� = 	
0.5−d�x,t�

0.5+d�x,t�

u�x,y�dy .

Hence, Q is the mass flux across the channel at a fixed sta-
tion in the laboratory frame. We average �and normalize� this
quantity over time �i.e., as waves of peristalsis pass by� and
define a dimensionless mean flow rate � as

� =
1

2���T2 − T1�	T1

T2

Q�x,t�dt ,

where �=2�h /L and h is the vertical distance between the
center of each peristaltic wave. The asymptotic analysis of
Jaffrin et al.25 for a Stokes fluid showed that to zeroth order
in ��1 �i.e., a long-wave expansion� the dimensionless
mean flow rate is

�S =
3�

2 + �2 .

Jaffrin and Shapiro later improved upon this result in Ref. 23
by including second-order effects in � to yield

�J =
15�2 + 2�2�4�1 − �2�5/2 + �7�2 − 4��1 − �2��

��5�2 + �2� + 6�2�2�1 − �2��
.

Figure 3 compares our computed dimensionless mean flow
rate with �J for varying �. Setting � to zero gives the Stokes
equations for the velocity and the figure shows excellent
agreement with Jaffrin and Shapiro’s predicted value in this
case. As has been previously noted,20 Jaffrin and Shapiro’s
second-order result does extremely well in predicting the

FIG. 3. �Color online� The dimensionless mean flow rate � as a function of
amplitude ratio � and Weissenberg number Wi. The top curve compares the
asymptotic result of Jaffrin and Shapiro �Ref. 23� with the Newtonian simu-
lation, while the remainder are for nonzero Wi. The flow rate � is measured
at long times after dependencies on the initial polymer stress distributions
have been largely lost.
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mass flux well outside of its range of formal validity as a
long-wave expansion and, indeed, our computed flow rates
and Jaffrin and Shapiro’s analytic expression are virtually
indistinguishable in Fig. 3. While for Stokes-OB the dynami-
cal evolution of the polymer stress is of central importance,
for calculating the average flux we compute to long times to
remove the effects of the initial conditions for polymer stress
�S0=I�. The Weissenberg number gives the appropriate di-
mensionless time scale for stress relaxation and we find that
setting T1=3Wi−1 and T2=3Wi is sufficient to remove the
effects of these specific initial data, with the flow thereafter
being more or less the same from period to period �see Fig.
4, discussed below�.

The large differences between Newtonian and viscoelas-
tic responses begin to emerge in Fig. 3. For sufficiently small
Wi �Wi=0.5 and 1�, the dimensionless flow rate decreases
continuously from the Newtonian case, showing a likewise
monotonic increase with increasing occlusion, at least over
the range of � that is simulated. Note that downward dis-
placement of the flow-rate curve is not just the result of
increased shear viscosity due to the presence of suspended
polymers; for the Newtonian Stokes equations the pump-
induced flow is independent of fluid viscosity. For Wi�2 the
Newtonian-like monotonic behavior with � at lower Wi is
lost, and at larger Wi the flow rates actually achieve their
maxima well before complete occlusion, with higher Wi
reaching this point earlier in �, and henceforth the flow rate
drops rapidly as occlusion is approached. Another interesting
aspect at small � is the nonmonotonicity of flux with Wi. For
smaller Wi, the flux decreases with increasing Wi, but then
increases for yet larger Wi. It appears that this behavior per-
sists to vanishing �. Monotonicity is restored beyond a cross-
over point �C�0.3.

We found it very difficult to reliably compute long-time
flows for � much larger than 0.5 at these larger Weissenberg
numbers. At larger � the fluid develops very large normal
stresses at the walls, pushing them apart. Of course, the ap-
pearance of normal stresses at walls is a characteristic and
interesting property of elastic fluids, but their growth neces-

sitates the imposition of larger spring constants in the im-
mersed boundary tether forces so as to maintain the kine-
matic specification of the wall motion. In turn, the time-step
size must be reduced to resolve the spring constant time
scale, which then limits the ability to complete the simula-
tion.

While we shall investigate the nature of velocity fields
and the stresses further below, Fig. 4 gives some indication
of how the flow develops in time by plotting Q�x=0, t� as a
function of time for Wi=5 and for varying �. Each of the
curves shows how Q increases and decreases as waves of
peristalsis pass through the channel. At early times, each
simulation behaves in an essentially Newtonian fashion as
the polymer stress is initially isotropic and uniform and so
makes no contribution to the momentum equation �3�, and
for small � �i.e., �=0.1,0.2�, the dynamics of Q remains
very close to that of the Newtonian case. To aid the eye the
envelope of the oscillating Q is also plotted for each case and
shows the generally negative average flux that corresponds
to leftward pumping. For the larger values of � �0.3–0.5�,
internal flows develop that increasingly oppose the direction
of the pump, and so the mean flux diminishes in time, an
effect that increases in magnitude with increasing �. This is
seen in Fig. 4 in the increasingly upward shift of Q with
increasing � as time increases.

As an illustrative case we consider Wi=5 and �=0.5.
Figures 5–8 show the structure of the fluid vorticity and
stresses at times t0=0.63, t1= t0+2, and t1= t0+9 �from left to
right�. Figure 5 shows the vorticity field. For a Newtonian
fluid, the vorticity contours are time invariant and closely
resemble the profile at time t0. Since for a Newtonian case
the flows are reversible, the vorticity field is left-right sym-
metric about the neck and waist centers. For Stokes-OB the
vorticity evolves out of this state, growing in magnitude and
yielding the nonsymmetric profiles seen at large O�Wi�
times.

Of course, the evolution of vorticity is driven by the
evolution of the polymer stress. These stresses change dra-
matically in magnitude and spatial distribution as time in-
creases, relaxing to near steady states on an O�Wi� time
scale, and underlie the decrease in fluid flux through the
pump. Figure 6 shows the evolution of S11. Initially uniform
�and unity�, S11 increases in magnitude and at first realizes a
singly peaked structure in the neck region. For a Newtonian
fluid �and hence for a Stokes-OB fluid at early times�, there
is a hyperbolic extensional flow that moves with the wave
speed slightly downstream of the constriction. This induces
the type of stress growth seen for a four-roll mill flow, as
most recently studied by Thomases and Shelley26 for the
Stokes-OB equations, and corresponds to the strong stretch-
ing of polymer coils along the x-axis. At later times, this
single peak bifurcates, forming a high-magnitude double
peak in the neck. Like the vorticity, S11 shows no left-right
symmetries. For the other diagonal stress component S22

�Fig. 7� the largest values instead develop in the wide part of
the channel, again asymmetrically, and in time concentrate
on the opening part of the channel, rightward of the moving
constriction, and in the center. An early time feature that
persists to later times is the large central peak that corre-

FIG. 4. �Color online� The mean velocity Q�x=0, t� for Wi=5 and for �
=0.1 �black, dashed curve�, 0.2 �yellow, almost completely covered by black
curve�, 0.3 �green, dashed and dotted curve�, 0.4 �blue, dotted curve�, and
0.5 �red, dashed curve�. The basic dynamics is one of the oscillation on the
pump period of unity. To aid the eye in discerning the temporal change in
mean value, the envelope of the oscillation is also plotted.
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FIG. 5. �Color online� The Stokes-OB fluid vorticity field at times t0=0.63, t1= t0+2, and t2= t0+9, as the peristaltic wave moves from right to left. These
times are separated by multiples of the pumping period and thus have identical boundary configurations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000

1200

FIG. 6. �Color online� Contours of the polymer stress component S11 at times t0=0.63, t1= t0+2, and t2= t0+9, as the peristaltic wave moves from right to left.
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FIG. 7. �Color online� Contours of the polymer stress component S22 at times t0=0.63, t1= t0+2, and t2= t0+9, as the peristaltic wave moves from right to left.
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FIG. 8. �Color online� Contours of the polymer stress component S12 at times t0=0.63, t1= t0+2, and t2= t0+9, as the peristaltic wave moves from right to left.
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sponds to an extensional flow across the channel. The off-
diagonal stress component S12 shares the odd symmetry of
the vorticity across the channel centerline and here increases
from being initially zero, and is concentrated along the walls
of the channel.

We note that while the stresses at the last time are nearly
steady in the wave frame, we do observe a persistent, oscil-
latory low-amplitude nonsteadiness, especially in the wide
part of the channel. There is no reason a priori that the
polymer stresses should become completely steady, and it
appears that they are not. Indeed, the periodicity of these
oscillations is not that of the peristaltic wave and presumably
reflects some other intrinsic time scale of the system.

Figure 9 shows the fluid velocity field within the channel
at the same times as above. As with the vorticity, the velocity
field shown at the earliest time, t0=0.64 �panel �a��, is essen-
tially that of the purely Newtonian problem. Though the
changes between panel �a� �time t0� and panel �b� �time t0

+2� are difficult to discern, the differences are important. In
particular, with time the stagnation point upstream of the
pump neck has shifted further upstream, reflecting a
strengthening reflux in the neck. At the latest time, time t0

+9 in panel �c�, this reflux backflow is fully developed and
has decreased the initial mass flux by nearly two-thirds �Fig.
3�. Figure 10 shows the elastic forces, �� ·Sp in Eq. �3�,
created in this flow. There are several aspects worth noting.
First, as would be expected from the stresses themselves,
these elastic forces become large with increasing pump re-
flux. At the earliest time, t= t0, they are not yet sufficiently
large to affect the mainly Stokesian velocity field. Second,
downstream �leftwards� of the pump neck these elastic forces
are well aligned with the velocity field that develops and
drives the reflux. Third, within the neck itself there is the
appearance of large elastic forces oriented toward the mov-
ing walls. It is these large forces that we believe make it
difficult to reliably simulate pumps at greater amplitude ra-

tios. Lastly, sizable elastic forces also develop asymmetri-
cally along the walls in the wide part of the channel.

Finally, the large non-Newtonian stresses and conse-
quent inhibiting reflux have a large effect on the input power
required to drive the pump. Figure 11 shows the input power

P�t� = 	
�

v · �Ss + Sp� · nds , �13�

averaged at late times after the stress growth has saturated.
For all Weissenberg numbers, the power input rises with in-
creasing amplitude ratio �, but the rate of increase increases
markedly at the larger Weissenberg number.

B. Irreversibility in Stokes-OB and its consequences

In a well-known and extraordinary scientific film, Taylor
and Friedman demonstrated the consequences of reversibility
of Stokes flow for a Newtonian fluid by marking a free fluid
surface with “R�1” in ink, and then slowly mixing the
fluid.27 Taylor and Friedman’s statement is rendered illegible
as the dye is stretched out along the surface but is returned to
its original clear statement by “unmixing” the fluid through
the exact reversal of the mixing procedure. In Fig. 12 we
provide what we hope is as convincing an example of the
irreversibility of the Stokes-OB equations. Following Taylor
and Friedman, we mix a Stokes-OB fluid with two pegs and
the track lines of material points whose positions spell out
“Re�1.” Unlike the Newtonian case, when the pegs reverse
their orbit and return to their original positions, the statement
written on the fluid remains illegible.

One interesting question is whether as the viscoelastic
stresses relax in time, the words return to their original po-
sition. While we have not done that simulation, the answer is
almost assuredly not due to the loss of memory in the sys-
tem. However, we do note that in the Wi→� case, the poly-
mer stress can be expressed exactly as

S = FFT,

where F is the deformation tensor of the flow �i.e., the Jaco-
bian of the Lagrangian flow map�. Hence, there is no loss of
memory, and the polymer stress is a displacement field stress
relative to the initial state. In this case, we conjecture that the

(a) (b) (c)

FIG. 9. The fluid velocity field in the laboratory frame at times t0=0.63,
t1= t0+2, and t2= t0+9, as the peristaltic wave moves from right to left.

(a)

max |f|=11.9

(b)

max |f|=195

(c)

max |f|=492

FIG. 10. The elastic force field at times t0=0.63, t1= t0+2, and t2= t0+9, as
the peristaltic wave moves from right to left.

FIG. 11. �Color online� The time-averaged input power for Wi=5 as a
function of amplitude ratio �.
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writing would return to its original legibility in infinite time,
with the system driven there by the remaining elastic re-
sponse of the fluid.

In the context of pumping, we provide yet another ex-
ample of Stokes-OB irreversibility by simulating a reversing
peristaltic wave. The top row of Fig. 13 shows the conse-
quences for fluid particle transport for a Newtonian fluid that
is pumped leftward for one cycle, and then backward for one
cycle. The fluid particles all return to their original positions.
The lower two rows show the result for Stokes-OB after five
such back-and-forth cycles. The particles do not return to
their original positions, and indeed the cycling appears to
induce a mixing dynamics with tongues of fluid moving
backward into the channel.

An important and interesting question is whether all non-
Newtonian fluid models are necessarily irreversible. With the
question carefully posed, the answer is no. One example is
provided by a generalized Newtonian fluid model, a simple
version of which in the Stokesian limit gives a nonlinear
boundary value problem of the form �cf. Eqs. �3� and �4��

− �p + � · ���tr E2�E� = − 0 and � · u = 0 in � ,

�14�

with �u��1,2
=v, where E is the symmetric rate-of-strain ten-

sor. Such a model arises, for example, in the modeling of
shear-thinning fluids in thin-gap flows.28 Suppose that we
solve an initial value problem on 0� t�2T and impose a
reversing boundary motion by requiring that v reverses sign
at time T, i.e., v�T+
�=−v�T−
�. It is easy to see then that
the solution to Eq. �14� satisfies �u , p�t=T+
= �−u ,−p�t=T+
,
which implies reversibility of the flow itself. However, as
pointed out by Goldstein, flow reversibility is not preserved
by this system under all boundary deformations for which
the Newtonian system preserves reversibility. For Newtonian
Stokes, it is only necessary that the boundary goes forward
and back through the same set of shapes, not that the bound-
ary velocity itself reverses; reversibility is lost for a general-
ized Newtonian fluid if, for example, the boundary moves
more quickly or slowly under reversion. This is so because
the viscosity now depends nonlinearly on the fluid velocity
gradients.

V. CONCLUSIONS

Numerical investigation of the peristaltic transport of a
highly viscous Stokes-OB fluid over a range of Weissenberg
numbers and peristalsis amplitudes demonstrates marked dif-
ferences from the much studied Newtonian Stokes case.
Most significantly, the fluidic transport of the pump shows a
substantial decrease with the amplitude to channel separation
ratio � for large Weissenberg numbers. This decrease is in
contrast to the monotonic increase with � seen in a Newton-
ian fluid. Our simulations show that complex stress and vor-
ticity patterns develop during peristalsis. The loss of revers-
ibility inherent in the Stokes-OB model is also presented in
the context of peristalsis and mixing. Even with this simple
O-B model of a non-Newtonian fluid, we observe fundamen-
tally different and complex behaviors in these classically for-
mulated problems of fluid mechanics. A novel numerical
method for viscoelastic fluid/structure interaction based on
the immersed boundary method was developed to perform
our investigation.

There are several interesting questions to consider in fu-
ture work. One would be to consider viscoelastic flows mod-
els, such as finite extensible nonlinear elastic �FENE� or its
approximation FENE-P, that limit the growth of polymer
stretching.18 Plainly, large stretching is implicated in the de-
velopment of reflux and elastic forces observed here. A sec-
ond very interesting direction would be to study the effect of
wall geometry and pumping direction on peristaltic pumping.
Here we studied only symmetric wall profiles. While wall
shape affects pumping in the Newtonian case, changing the
direction of the wave motion only reverses the sign of the

FIG. 12. �Color online� Cylindrical pegs used to mix and then unmix a
Stokes-OB fluid demonstrating the loss of reversibility. The motion of the
pegs is generated using tether forces. Color contours depict the normal stress
in the fluid.

FIG. 13. �Color online� In another example of Stokes-OB irreversibility, we
simulate a reversing peristaltic wave. The lower two rows show the result
for Stokes-OB after five back-and-forth peristaltic cycles. The particles do
not return to their original positions, and the cycling appears to induce
mixing dynamics. The reversibility of a Stokesian fluid is shown for contrast
in the top row. The Stokes-OB simulation was performed with Wi=5.
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velocity field and hence does not affect flux. This is another
aspect of Stokes reversibility. For a viscoelastic fluid, the
direction of pumping does matter, as shown by Groisman
and Quake29 for pressure driven pumping in a geometrically
anisotropic channel.
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