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Abstract. The goal of this paper is to examine the evaluation of interfacial
stresses using a standard, finite difference based, immersed boundary method
(IMBM). This calculation is not trivial for two fundamental reasons. First,
the immersed boundary is represented by a localized boundary force which is
distributed to the underlying fluid grid by a discretized delta function. Second,
this discretized delta function is used to impose a spatially averaged no-slip

condition at the immersed boundary. These approximations can cause errors
in interpolating stresses near the immersed boundary.

To identify suitable methods for evaluating stresses, we investigate three
model flow problems at very low Reynolds numbers. We compare the results of
the immersed boundary calculations to those achieved by the boundary element
method (BEM). The stress on an immersed boundary may be calculated either
by direct evaluation of the fluid stress (FS) tensor or, for the stress jump, by
direct evaluation of the locally distributed boundary force (wall stress or WS).
Our first model problem is Poiseuille channel flow. Using an analytical solution
of the immersed boundary formulation in this simple case, we demonstrate
that FS calculations should be evaluated at a distance of approximately one
grid spacing inward from the immersed boundary. For a curved immersed
boundary we present a procedure for selecting representative interfacial fluid
stresses using the concepts from the Poiseuille flow test problem. For the final
two model problems, steady state flow over a bump in a channel and unsteady
peristaltic pumping, we present an ’exclusion filtering’ technique for accurately
measuring stresses. Using this technique, these studies show that the immersed
boundary method can provide reliable approximations to interfacial stresses.

1. Introduction. Fluid dynamical stresses are important in the regulation of many
physiological phenomenon. For example, the growth of atheroscrolatic plaques in
small veins occurs in the presence of a low and oscillatory wall shear stress (Ku
et. al.) [17]. A second example is the function of epithelial cells, which line
the pulmonary airways - here potentially damaging normal and shear stresses can
arise in the reopening of airways during artificial ventilation of premature neonates
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(Gaver et. al. [13]). A characteristic feature of modeling these fluid-structure inter-
action problems is that the boundary motion is coupled to the motion of the fluid.
A numerical method which is designed for handling these complex problems is the
immersed boundary method [22, 23, 20]. The essence of the immersed boundary
method (IMBM) is to represent boundaries by local forces in the Navier-Stokes
equations, which are then solved computationally on a regular grid. This elimi-
nates the need to re-grid after every time step for time dependent geometries, and
it allows the exploitation of the superior performance of fluid solvers on regular
grids. A critical feature of the IMBM is the use of an approximate Dirac delta
function to communicate between the fluid domain and the immersed boundary. In
the discretization of the governing equations, this discrete delta function spreads
Lagrangian boundary forces onto an Eulerian fluid grid, and interpolates Eulerian
fluid velocities onto the Lagrangian boundary.

The immersed boundary method has been used for decades to simulate intrigu-
ing and complex systems in biological fluid dynamics, spanning a wide range of
Reynolds numbers (e.g. [1, 4, 7, 8, 9, 14, 24]. Throughout these works the im-
mersed boundary method has successfully modeled the large-scale motion of the
fluid and the elastic behavior of the solid, and in many cases, solutions have been
validated against experimental, analytical and other computational results. How-
ever, with the exception of the brief excursion in Arthurs et. al. [1], the issue of
how accurately the immersed boundary method can predict the stresses at elastic
interfaces remains largely unexplored. The evaluation of interfacial stresses within
the immersed boundary method is complicated by two factors: first the interface is
represented by a smeared force; second, an immersed boundary imposes a spatially
averaged no-slip boundary condition as discussed in detail in §4.2.

Our goal is to determine how to evaluate interfacial stresses accurately using the
immersed boundary method. Our approach here is to compare interfacial stresses
calculated using the immersed boundary method with results available from other
techniques for a set of representative problems. In this paper, we limit ourselves
to the investigation of low Reynolds number flows so that we can compare our
results to those provided by a clearly independent technique – the Boundary Ele-
ment Method (BEM), due to Ladyzhenskaya [18]. The boundary element method
offers a ‘gold standard’ for calculating interfacial stresses, to compare with im-
mersed boundary calculations, and has been applied to many different problems
(for example, Pozrikidis [26]). The boundary element method proceeds by reducing
the n-dimensional Stokes flow equations to a n − 1 dimensional boundary integral,
in terms of boundary stresses and velocities; it is therefore suited to interfacial
stress evaluation. Furthermore, it is only necessary to discretize the solution do-
main boundary. However, the boundary element method assumes that the flow is
inertia-free.

In §2 we describe the formulation of the immersed boundary method and the
numerical implementation using a discrete delta function. In §3 we examine the
stress balance on an immersed boundary; this shows two possible methods for stress
evaluation - one method using flow-field information, and another using boundary
information. In §4 we consider stress evaluation on a straight wall using Poiseuille
flow as an example. This motivates our subsequent algorithm for stress evaluation
on curved boundaries, as described in §5. In the next two sections, we compare
the IMBM fluid stress for two low-Reynolds number test flows with zero-Reynolds
number boundary element solutions. First, in §6, we compare the stresses for the
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steady-state flow over a bump in a channel; Gaver & Kute [12] have computed BEM
solutions for this flow. Second, in §7, we compare the stresses for the peristaltic
pumping of a fluid. These test problems do not illustrate the best or most efficient
use of the immersed boundary method. However, these caricature problems do
provide useful insight into stress evaluations at interfaces in non-zero Reynolds
number, fluid-structure interaction simulations, where the positions of the immersed
boundaries are not prescribed, but result from the coupled system.

2. The immersed boundary method.

2.1. A fluid-structure interaction problem. Consider the motion of an im-
mersed elastic boundary X(s, t), which is parameterized by s over the range 0 ≤
s ≤ L , through a viscous incompressible Newtonian fluid. Let the immersed bound-
ary exert a force density per unit length f(s, t) on the fluid. The equations of motion
governing the fluid-structure interaction are:

F(x, t) =

∫ L

0

f(s, t)δ(x − X(s, t)) ds, (1)

ρ(ut + u·∇u) = −∇p + µ∇2u + F + FD, (2)

∇ · u = 0, (3)

∂X(s, t)

∂t
=

∫ ∫

u(x, t)δ(x − X(s, t))dx, (4)

where u is the fluid velocity, x = (x, y) is a two-dimensional Cartesian coordi-
nate system, ρ is the fluid density, p(x, t) is pressure, and µ is the fluid viscosity.
Here, the force density F exerted by the immersed boundary on the fluid assumes
the boundary is the source of a continuous distribution of Dirac delta point forces
f(s, t)δ(x − X(s, t)). The incompressible Navier-Stokes equations (2-3) describe the
response of the fluid to the force exerted by the immersed boundary and any im-
posed driving-force density FD. The no-slip condition is imposed by advecting the
immersed boundary at the local Eulerian fluid velocity (4).

The force f may be due to elastic restoring forces, bending forces or other con-
stitutive properties of the boundary. For the problems tackled herein, the ideal
position of the boundary will be specified and may be time-dependent. In these
examples we impose forces due to stiff ’tether’ springs that connect the immersed
boundaries to prescribed spatial locations:

f(s, t) = −A[X(s, t) − X∗(s, t)], (5)

where X∗(s, t) is the ideal location of the immersed boundary, and A is the spring
constant. We choose this stiffness constant to be very large (A ≫ 1) so that the
immersed boundary deviates little from the ideal position.

2.2. Numerical implementation: The immersed boundary method. Here
we present the standard finite difference implementation of an immersed boundary
method, where the fluid domain is discretized by a uniform, rectangular periodic
grid with fluid quantities such as pressure and velocity defined at grid points. We
remark that there are many methodologies employing an immersed boundary frame-
work, where the fluid equations are solved using a variety of treatments, including
finite element methods [31] and grid free particle methods [6]. In the standard for-
mulation, the immersed boundary is represented by a finite collection of discrete
Lagrangian points Xn

k , where the superscript n is the time step and the subscript
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k is the particle number. These immersed boundary points, in general, do not co-
incide with fluid grid points. Therefore we distribute the local boundary force to
neighboring grid-points using a discrete approximation to the Dirac delta function.
Herein, we use the discrete delta function as in Peskin [22]:

δh(x) = D(x)D(y), with D(x) =

{
1
4h

(
1 + cos

(
πx
2h

))
|x| < 2h

0 |x| ≥ 2h.
(6)

Note that the support of the spreading is proportional to the grid spacing h.
The algorithm for the numerical solution of this coupled system may be sum-

marized as follows: at the beginning of the time step n, we have the fluid velocity
field un and the locations of the immersed boundary points Xn

k . In order to update
these values:

1. calculate the elastic force fn
k using (5);

2. spread the elastic force to determine the force-density Fn using (1);
3. solve the Navier-Stokes equations (2-3) for the flow field un+1 and pn+1;
4. interpolate using the velocity field to each immersed boundary point, and

advect each Lagrangian point using (4), to obtain Xn+1
k .

For the solution of the Navier-Stokes equations in step (3), we use the projection
method of Chorin [5] with periodic boundary conditions, which is second-order in
space and first-order in time. Herein we use the modified divergence operator, which
enhances volume conservation (Peskin & Printz [25]). Since the explicit IMBM al-
gorithm is modular, another fluid solver with higher-order accuracy may be eas-
ily substituted; for example Bell et al [2], Lai & Peskin [19], or Griffith et al. [15].
Nevertheless, our goal here is to examine how accurately the IMBM can be used to
calculate interfacial stresses at boundaries using a fluid-solver that was tradition-
ally adopted by the immersed boundary community. We expect the results to only
improve as the accuracy of the fluid solver increases.

The discrete delta function given above is used to communicate force information
from the immersed boundary to the grid (step 2), and to interpolate the fluid
velocity to the immersed boundary (step 4). In two-dimensions, the force density
acting on an immersed boundary is distributed over 16 neighbouring grid points.
Likewise, the fluid velocity at an immersed boundary point is interpolated from the
same 16 grid points. The particular delta function used herein (6) was introduced
by Peskin [22]; however, some higher-order discrete delta functions are given by
Beyer & LeVeque [3]. As mentioned above, the spreading of the boundary force
strongly influences the stress calculation near immersed boundaries. Below in §3 we
identify two approaches for calculating these stresses. In §4 we use a simple model
problem to illustrate the application of these techniques, and describe an algorithm
for the accurate prediction of stresses on the boundaries.

3. Calculation of fluid dynamical stress.

3.1. The interfacial stress balance. The tangential and normal stress balances
on the immersed boundary have previously been derived by Peskin & Printz [25];
we extend their result to include the effect of a driving-force density. We integrate
the governing equations using an arbitrary control volume Ω(t) surrounding the
immersed boundary with outward normal n and arclength dl. If the driving force
density is to reproduce the effect of an isotropic pressure we must restrict FD = ∇·
(αI), where α is a scalar quantity, i.e. we assume there is no deviatoric contribution
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as found in σ. Combining (1) into (2) and integrating over Ω(t) and applying the
divergence theorem, we obtain

d

dt

∫

Ω(t)

ρu dx =

∫

∂Ω(t)

σ · n dl +

∫

{s:X(s,t) ∈ Ω(t)}

f ds +

∫

∂Ω(t)

αn dl. (7)

Now take the limit as the region Ω(t) collapses to form an infinitesimally thin strip
surrounding the immersed boundary. It can be shown that

n · [σ] · n + [α] = − n · f
|∂X/∂s| , (8)

t · [σ] · n
︸ ︷︷ ︸

Jump in FS

= − t · f
|∂X/∂s| ,

︸ ︷︷ ︸

WS

(9)

where t is the anti-clockwise tangential vector, σ = −pI+ µ(∇u + (∇u)T ) and [ ]
denotes the jump in a quantity across the immersed boundary. The factor |∂X/∂s|
accounts for the interfacial stretching.

Equations (8-9) motivate two fundamental methods for calculating the jump in
stress across the immersed boundary. The left-hand-side involves evaluation of fluid
velocity gradients and pressures at each side of the interface. The right-hand-side
involves the evaluation of force densities on the interface. We term these methods
of evaluation the fluid-stress (FS)-calculation and the wall-stress (WS)-calculation
respectively.

3.1.1. Calculating fluid stress using wall stress f (WS). Equations (8-9) demon-
strate the wall stress is equivalent to the jump in fluid stress across the immersed
boundary. We can evaluate the force density along the immersed boundary to di-
rectly calculate this jump in stress. In the special case where the fluid stress on
one side is zero, the jump in wall stress is equivalent to the fluid stress on the other
side.

3.1.2. Calculating fluid stress using stress tensor σ (FS). Let XEk be the point
where the fluid stress is evaluated for wall particle k, which may not coincide with
the boundary point Xk. To calculate the fluid stress (FS) of wall particle k, we use
the values of pressure and velocity available at grid locations surrounding the eval-
uation point XEk. We employ finite differences to calculate derivatives of velocities
at these grid points with central differences used for x-derivatives (since boundaries
in our examples will lie mostly in the x-direction), and one-sided differences for
y-derivatives, because this uses information in the interior of the flow . We then
interpolate the velocity gradients and pressures using bicubic interpolation [27] to
obtain their values at the evaluation point XEk, from which we calculate the fluid
stress tensor σ at XEk.

Because the immersed boundary method represents the immersed boundary as
a mollified singular force distribution, the fluid stress calculated at the boundary
(XEk = Xk) may be significantly affected by the nature of the discrete delta func-
tion. In the next section, through analytical and computational investigations, we
examine the effect that representing a boundary by a locally spread force has on
the evaluation of the fluid stress (FS).
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Figure 1. A schematic of the computational domain (bounded
by the dashed lines) used by the immersed boundary method, for
computing the left-to-right pressure-driven viscous flow through a
channel of length L and height H (solid lines). In §4, we study
Poiseuille flow where R = 0, however in §6, we assume R > 0.

4. Poiseuille flow: an example of stress evaluation on a straight bound-
ary. In order to begin our investigation, we focus on the very simple problem of
Poiseuille flow in a channel. Here we examine carefully the implications of the dis-
tributed boundary forces on determining the near-wall velocities and stresses. As
such, we will study an analytical solution of the immersed boundary problem, with
a continuous smoothed delta function layer of force at the wall, equivalent to that
used in the numerical implementation (1-4). We will also compute the numerical
solution to this problem using IMBM and compare the results. The analysis sheds
light on the fundamental approximations used in the immersed boundary method,
and their implications on flow-field behavior near the boundaries, and will motivate
our stress-evaluation procedure.

To simulate Poiseuille flow, we introduce two immersed boundaries parallel to the
x-axis at y = H/2 and y = 3H/2 within the rectangular domain that is L× 2H , as
shown by setting R = 0 in Figure 1. The immersed boundaries run the entire length
L = 2H of the fluid domain. Herein, we refer to H/2 < y < 3H/2 as the interior
(or inner) channel, and 0 ≤ y < H/2 and 3H/2 < y < 2H as the exterior channel.
Periodic boundary conditions will be imposed on the fluid domain. Because of this,
we do not impose a pressure drop ∆P , but we specify an equivalent body force
to drive the flow. This driving-force density FD(x) = (∆P/L, 0) is always applied
within the interior channel. We examine two options for the driving-force density
applied to the exterior channel: one-way flow where no driving-force is applied
(FD = 0), or same-way flow where the same driving-force is applied throughout
the fluid domain, both interior and exterior to the channel.

4.1. Analytical solution of model problem. Although we will perform com-
putations for both the same-way and one-way flows, our analytical model problem
will be restricted to the case of same-way flow, where the driving force FD(x) =
(∆P/L, 0) is applied throughout the fluid domain.

In this model problem, we assume that a constant force density f , the immersed
boundary force, is distributed in a layer surrounding the channel boundaries. Also,
a spatially averaged no-slip boundary condition will be applied as in the immersed
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boundary computational algorithm. The force distribution and velocity interpola-
tion will both use the approximation to the two-dimensional delta function (2.3),
which has a support width of 2h in each coordinate direction.

We partition the velocity field u = (u(y), 0) into two regions: an interior flow
ua(y) for H/2+2h ≤ y ≤ 3H/2−2h and a near-boundary flow ub(y) for 3H/2−2h <
y ≤ 3H/2+2h. In this analytical model problem (as well as in our implementation
of IMBM), we impose the periodic boundary condition u(y) = u(y + 2H), but due
to the symmetry of this specific problem, we also have u(y) = u(y + H). The
immersed boundary force (1), Navier-Stokes equations (2) and incompressibility
condition (3), with FD = ∆P/L and dp/dx = 0, reduce to the system of ordinary
differential equations:

d2ua

dy2 = ∆P
µL for H

2 + 2h ≤ y < 3H
2

d2ub

dy2 = ∆P
µL + f

4hµ

[

1 + cos
(

π(3H/2−y)
2h

)]

for 3H
2 − 2h ≤ y < 3H

2 + 2h

}

(10)
We impose a symmetry condition dua/dy = 0 at the channel center y = H . Match-
ing conditions between the interior and near-wall flows are also imposed such that
ua(3H/2 − 2h) = ub(3H/2 − 2h) and dua/dy = dub/dy at y = 3H/2− 2h. In addi-
tion, the spatially-averaged no-slip condition (4) is given by:

y=3H/2+2h∫

y=3H/2−2h

ub(y)
1

4h

[

1 + cos

(
π(3H/2 − y)

2h

)]

dy = 0. (11)

This analytical solution is the limit of the numerical solution under grid refinement
with a fixed-width delta-function support of 2h in each direction. Solving (10,11)
for ua(y), ub(y) and f while assuming H > 2h > 0 gives:

ua(y) = −∆PH2

8µL

[

−4(y − H)2

H2
+ 1 − 4

(
4

3
− 5

π2

)
h

H
+ 16

(
1

3
− 2

π2

)
h2

H2

]

,

ub(y) =
∆P

µL

{[

1 − H

4h

]

(y − H)2 +

[
H

4h

(
H

2
− 2h

)]

(y − H)

− 1

12

[

hH

(
18

π2
− 2

)

+
3H2

4

(
H

2h
− 2

)

+ 8h2 − 48

π2

]

+
hH

π2
cos

(
(3H/2 − y)π)

2h

)}

, (12)

f = H∆P/L. (13)

Observe that the force f exerted by the immersed boundary (13) in the analytical
solution is identical to the stress jump across the interface predicted by Poiseuille
flow, which can be found from a macroscopic momentum balance. Most interest-
ingly, we note that f is independent of h so that reducing the physical width of the
delta function (4h) does not change the WS.

The expression for the velocity at the center of the channel is given by

u(H) = −∆PH2

8µL

[

1 − 4

(
4

3
− 5

π2

)
h

H
+ 16

(
1

3
− 2

π2

)
h2

H2

]

, (14)

and the velocity at the edge of the channel is given by

u(3H/2) = −∆PH2

6π2µL

[
h

H
(3 − π2) +

4h2

H2
(π2 − 6)

]

. (15)
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These equations (14–15) demonstrate that for h → 0 the classical Poiseuille flow
and a traditional point-wise no-slip boundary condition are recovered. However, for
h 6= 0 a slip velocity exists due to the no-slip condition being satisfied in only an
average sense through (4).

We now have an analytical solution to the model problem that represents the
IMBM formulation, and will examine the stress behaviour imposed near the wall
from this solution.

4.2. Comparison of analytical and numerical solutions. In all examples be-
low in this section and §6, we choose H = 0.1m; L = 0.8m;
∆p/L = −105kg · m−2 · s−2; µ = 25kg · m−1 · s−1; ρ = 1kg · m−2.

The immersed boundary equations (1 - 4) were time-stepped from a motionless
initial condition to a steady state for same-way flow using a 256 × 64 grid. The
ideal locations of the immersed boundary walls are at y = H/2 and y = 3H/2 and
extend the length of the computational domain. The stiff tether spring constant
was chosen to be A = 109kg · m−3 · s−2 .

In Figure 2, we show the velocity and shear stress profiles obtained near the
boundary at y = 3H/2. This figure shows data from classic Poiseuille flow, the
analytical solution (12) , as well as the computational solution. The IMBM solution
approximates the analytical solution, where the velocity and jump in stress across
the interface at y = 3H/2 are smoothed in comparison to the Poiseuille flow solution.
Here we see the implication of the no-slip boundary condition being applied in an
averaged sense using equation (4). This results in a reverse flow in the vicinity of
the interface.

The shear stress calculations are shown in Figure 2b. Classic Poiseuille flow
shows a linear profile, with a discontinuity at the interface. The discontinuous
behavior is smoothed by the force spreading that is imposed by the distributed
delta-function used in the analytical model problem. At the interface the smoothed
solution estimates a zero shear stress. Even if one uses a one-sided difference to
compute the shear-stress at the wall using the analytical solution, the shear stress
is τ = µdu/dy = (3u(3H/2) − 4u(3H/2 − h) + u(3H/2 − 2h))/2h = − 10000

π2 =

−1013 kg·m−1 ·s−2 which is independent of h. The correct shear stress for Poiseuille
flow is τ = −5000 kg · m−1 · s−2 . This shows that even under grid refinement FS
calculations taken precisely at the interface cannot accurately determine the stress.
In Figure 2b, we see that the same-way analytical shear stress is much closer to
the Poiseuille shear stress an O(h) away from the wall; i.e. at y/H=1.53125. This
motivates our procedure for stress calculation in the IMBM computations given in
the remainder of this paper.

In table 1 we show the shear stress computed with IMBM using fluid-stress
(FS) and wall-stress (WS) algorithms for both the same-way and one-way flows at
different grid resolutions. For the (FS) evaluations, one-sided differences are used
to calculate velocity gradients at fluid grid points, where the stencil resides entirely
within the interior channel. Interpolating these velocity gradients at the exact wall
point locations XEk = Xk gives poor stress values as discussed above. Notice that
with the same-way flow, grid-refinement does not improve the prediction of shear
stress at the immersed boundary, and gives a value of τ = −1250 kg · m−1 · s−2 an
approximation to the prediction of τ = −1013 kg · m−1 · s−2 above. Alternatively,
we find that if we interpolate the velocity gradients and pressures at virtual points a
distance h inward from the channel wall points XEk = Xk − hnk, the agreement to
Poiseuille flow stress is vastly improved. Here nk is the unit normal pointing out of
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Figure 2. The near-boundary u-velocity (m·s−1 ) and shear stress
(kg · m−1 · s−2 ) profiles for the same-way flow. The analytical
solution is compared with classical Poiseuille flow and the IMBM
solution. The position of grid points in the immersed boundary
solution is indicated. H = 1/10 and h = H/32.
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Grid Fluid shear stress t · σ · n
Wall stress
f · t/|∂X/∂s|

points X X − nh
Same-way One-way Same-way One-way Same-way One-way

Poiseuille -5000 -10000 -5000

1024 × 256 -1249.99 -3110.34 -4921.87 -4921.86 -10000.00 -5039.06

512 × 128 -1249.82 -3095.69 -4843.01 -4843.74 -10000.00 -5078.13

256 × 64 -1249.99 -3066.40 -4687.50 -4687.49 -10000.00 -5156.25

Table 1. A comparison of shear stress (kg · m−1 · s−2 ) for one-
way and same-way flows, calculated by the IMBM FS and WS using
three different grid sizes. The FS was calculated using backwards
differencing. The analytical result (Poiseuille) is also given. The
fluid shear stress (FS) is evaluated for both flows on the wall at X
and one grid point inwardly normal at X − nh.

the interior channel. In comparison, Arthurs et al. [1] evaluated fluid stresses two
grid points inwardly normal at XEk = Xk − 2hnk.

As described above, an alternative measure of the jump in stress at the immersed
boundary interface is given by the wall stress (WS). Calculations involving (WS) rely
solely upon the configuration of the Lagrangian immersed boundary and the force
density defined on that boundary. There is no need to interpolate fluid quantities
from the grid. An important observation is that this information only gives the
jump in stress across the boundary. Table 1 shows the computed values for both
the same-way and one-way flows, in comparison to the Poiseuille flow. The same-
way flow exerts equivalent stresses on each side of the channel wall, and hence the
jump in stress is twice that expected for Poiseuille flow. For one-way flow, a slight
overestimate of the jump in wall stress occurs because the immersed boundary wall
forces also drive a weak reverse flow in the exterior channel due to the averaged
no-slip condition.

5. Evaluation of stresses on curved boundaries. In the previous section we
demonstrated that evaluating the fluid stress one fluid grid-point inwardly-normal
from a straight wall, at XEk = Xk −hnk, produced a consistent and representative
result. The stress was representative because the interpolation box (which defines
the four fluid-grid stress-values used for interpolating) was not directly influenced
by the flow on the opposite side of the boundary, as illustrated in Figure 3(a). For
an arbitrarily curved immersed boundary, which can transect fluid cells, the four
fluid-grid stress-values used for the interpolation may either be on different sides
of the immersed boundary or be unrepresentative of the flow on the chosen side if
they are too close to the immersed boundary. To elucidate this idea examine Figure
3(b,c).

In case (b) the interpolation box surrounding the evaluation point XEk overlaps
the immersed boundary, hence one of the interpolation box grid points is in the
exterior flow. Consequently the stress interpolation is significantly influenced by
the exterior flow and therefore unrepresentative of the interior flow. Conversely
for case (c) in Figure 3, the interpolation box resides entirely on one side of the
boundary and sufficiently far from the immersed boundary that the stress evaluated
at XEk will be almost entirely representative of the interior flow. Therefore to
recover a stress which represent the physics of the interior flow, we must exclude
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(b) Curved wall:
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(c) Curved wall:
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Figure 3. Illustration of three cases where interpolation one grid-
point inwardly normal from the wall point k, for a two-dimensional
problem, produces a stress representative of the interior fluid flow
(a,c) and where the stress is unrepresentative (b). The shaded
area is the interpolation box, which has center XCk, it contains
the evaluation point XEk = Xk − hnk of wall particle k, where h
is the fluid grid spacing and nk is the outward normal vector of
the k’th particle. Dkr is the distance between the center of the
interpolation box surrounding evaluation point XEk and nearest
wall particle r (shown only in b and c).

the unrepresentative stresses. We undertake this ‘exclusion filtering’ for each wall
particle based on the minimum distance between the center of the interpolation box
XCk and the immersed boundary, this is given by

MDk = Min1≤r≤num|Dkr|, (16)
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where Dkr is the distance between the center of the interpolation box for particle k
and wall particle r on the same immersed boundary, as shown in Figure 3. num is
the total number of particles in the immersed boundary. A sufficient condition for
an interpolation box not to overlap an immersed boundary is

√
2h < MDk ≤ 3h/2.

Physically, MDk is a measure of how much the interpolation box has been influenced
by the force spreading. For MDk close to 3h/2, the influence is minimized.

Our exclusion principle is based on three criteria for accepting interpolated results
as physically representative of the interior flow:

1. if MDk is at a local maximum, the interpolation box is locally at its furthest
possible distance from the immersed boundary and therefore under the least
influence from the locally distributed force;

2. if MDk and MDk+1 are identical for consecutive wall points, accept both
values. This keeps all points which are on a straight line parallel with one of
the orthogonal axis used by the fluid solver (x or y axis).

3. if the interpolation box has been used previously for the evaluation of an
interfacial stress, we reject the stress. This keeps the resolution equivalent to
the finite-difference fluid solver.

A comparison of representative and unrepresentative stresses is shown in §7 jus-
tifying the necessity of this exclusion filtering. In the next two sections we apply
the above procedures to two test problems.

6. Flow over a bump on a channel wall. This test problem is the steady-
state pressure-driven flow of a fluid of viscosity µ and density ρ through a channel
with a bump on the lower wall (see Figure 1). Boundary element solutions were
previously reported by Gaver & Kute [12], hereinafter referred to as GK. The exact
bump geometry used by GK consists of a semi-circle, radius 9R/10, centered at
(L/2, H/2 + R/10) with two quarter-circle fillets, each radius R/10, centered at
(L/2 ± R, H/2 + R/10); to leading-order, the bump behaves like a semi-circle of
radius R. The purpose of the fillets in their work was to ensure the domain had a
continuous normal vector. They solved the zero Reynolds number Stokes equations

∇p = µ∇2u and ∇ · u = 0, (1)

with no-slip and no-penetration conditions on the upper and lower (including the
bump) walls u(x, y = ywall) = 0. A pressure drop was imposed across the ends of
the channel by setting p(0, y) = ∆P and p(L, y) = 0.

Using the immersed boundary method, the channel walls (and bump), shown
in Figure 1, are forced to behave rigidly by choosing A = 109kg · m−3 · s−2 and
X∗ = (x, y = ywall). The immersed boundaries consist of three parts (two parallel
walls and the bump with fillets, as shown in Figure 1). This combination of walls
prevented the driving force-density (described above) acting inside the bump from
generating a fluid flow in the exterior channel. Here we use the equivalent one-
way forcing, as in §4, FD(x) = (FD, 0). There is negligible flow in the exterior
channel and inside the bump at high resolution (512× 128); therefore the jump
in fluid stress is virtually identical to the wall stress. The channel length was set
to be L = 0.8m. A Reynolds number based on the channel height and Poiseuille
centerline velocity U = ∆pH2/8µL is Re = ρ∆H3/8µ2L = 0.02. Therefore, inertial
effects are small and the immersed boundary solutions may be compared with the
Re = 0 BEM solutions found by GK. This was justified by repeating the calculation
with a reduced Reynolds number. In our simulations the time step is chosen using
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∆t = 4ρh2/25µ s. Criteria governing the time step size in IMBM calculations are
discussed in Stockie & Wetton [29]. Despite choosing very small time steps it was
not possible to completely eliminate high-frequency small-scale instabilities in the
wall behaviour. It was necessary to smooth the wall stresses in the post-processing
stage using nearest neighbour averaging to remove this noise. We remark that in
these test problems, rigid walls are modeled using very stiff tether springs and this,
in turn, makes the problems numerically stiff. We expect that these small-scale
instabilities will be less prevalent in simulations where the immersed boundary is
elastic and flexible.

In Figure 4, for R/H = 1/2, we compare the immersed boundary FS (left column)
and WS (right column) with boundary element results for the: x-stress (x̂ · σ · n);
y-stress (ŷ · σ · n); shear stress (t · σ · n); and normal stress (n · σ · n). In general,
there is good agreement between FS and BEM calculations for x- and y-stresses,
and the shear stress. Away from the bump there is excellent agreement between the
immersed boundary FS and WS, and the boundary element stress. WS calculations
show local oscillations where the bump joins the wall at x = L/2 ± R as seen in
Figures 4f-h. The relative magnitudes of these oscillations decreased by half when
the flat section of immersed boundary between x = L/2 − R and x = L/2 + R
was removed. However, this section of wall was necessary to prevent the one-way
driving force density from creating a circulation inside the bump. Without this
section, however, the entrained recirculation modifies WS throughout the bump by
introducing a fluid stress inside the bump.

Close to the top of the bump, the WS in Figure 4g shows spatial oscillations.
These oscillations occur where the fluid velocity has reached steady-state but the
wall particles continue to diverge slightly from their steady-state displacements.
This induces noise that may be due to a combination of numerical stiffness from large
spring constants and explicit time-stepping of the wall-particle positions. This might
be remedied by using a semi-implicit or fully-implicit implementation of the im-
mersed boundary method, as described by: Tu & Peskin [30], Fauci & Fogelson [10],
Stockie & Wetton [29], and more recently by Newren et al. [21].

An additional explanation of the oscillations in the WS computation of stresses
may come from the following observation. Suppose we can write the immersed
boundary force f(s, t) = f0(s, t) + f1(s, t) where f0(s, t) is the physically realistic
component and f1(s, t) is an unsteady perturbation (not necessarily small). Then,

F(x) =

∫ L

0

[f0(s) + f1(s, t)]δ(x − X(s, t)) ds. (2)

Any unsteady perturbation f1(s, t) which satisfies the constraint

0 =

∫ L

0

f1(s, t)δ(x − X(s, t)) ds, (3)

will also give rise to the spread force field. Functions f1 that are highly oscillatory
(with period less than 2h) may be found that satisfy this constraint. The lack
of uniqueness in f shows that computing stresses using the WS technique should
first filter out these unphysical, oscillatory forces. This will be the focus of future
analysis. Nevertheless, as Figure 4 shows, the general behavior of WS is in good
agreement with FS and BEM calculations.

Above, we have identified the small-scale behavior of this system. We now assess
the large-scale responses induced by the flow. We examine the non-dimensional
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Figure 4. Comparison of dimensionless fluid stresses on the lower
channel wall for R/H = 1/2 and H/L = 1/8 computed using the
immersed boundary fluid stress (FS) and the immersed boundary
wall stress (WS). The solid line in each figure is the BEM solution.
For the IMBM, a 512 × 128 grid with one-way flow was used, with
the FS evaluated one grid-point inwardly normal from the wall at
X − nh.



COMPUTING STRESSES ON IMMERSED BOUNDARIES 533

R/H

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FS
WS

BEM

x
-f
o
rc

e
F

(d)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FS
WS

BEMT
o
rq

u
e

T

(c)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FS
WS

BEM

sh
ea

r
st

re
ss

τ m
a
x

(b)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

IBM
BEM

V
o
lu

m
e

fl
u
x

Q

(a)

Figure 5. Comparisons of four quantities: x-force, torque, max-
imum shear stress and volume flux using the IMBM and BEM,
in non-dimensional units. For (b-d) the IMBM has two results ob-
tained by using the fluid stresses (FS) and the wall stress (WS). The
calculations were performed on a 512 × 128 grid with H/L = 1/8.
The fluid stress was evaluated one grid-point inwardly normal from
the wall at X − nh.
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Grid x-force (F) Torque (T ) Volume flux (Q)
Max Shear
stress (τmax)

points FS WS FS WS FS WS

BEM 5.563 1.338 0.584 2.964

512 × 128 5.617 6.546 1.045 1.419 0.554 2.639 3.013
256 × 64 5.722 6.653 0.993 1.519 0.523 2.376 3.192
128 × 32 5.817 6.877 0.801 1.723 0.458 1.951 3.819

Table 2. For steady-state flow over a bump with R/H = 1/2,
we compare FS and WS calculations of the x-force, torque and
maximum shear stress under grid refinement with BEM predictions
(all in non-dimensional variables). Also shown is the volume flux
in comparison to the BEM prediction. In the FS calculations the
stress tensor is evaluated at X − nh.

fluid-exerted x-component of force F and fluid-exerted torque (T ) on the bump,
and volume flux and maximum shear stress, defined by GK, respectively as

F = L
R∆PH

∫

Γ

τx ds, T =
2

πRβ∆P

∫

Γ

τs ds,

Q =
12µL

H3∆P

y=3H/2∫

y=H/2

u dy, τmax =
2L

H
· Max ( t · [σ] · n) ,

where Γ(x(s), y(s)) is the immersed boundary and Max returns the maximum value.
In table 3, the evaluation of x-force F , torque T and maximum shear stress τmax

on the bump using FS and WS is compared, under grid refinement, with BEM
results. This table shows that in all cases WS > BEM > FS calculations. Note
that in all cases the maximum WS predictions for maximum shear stress occurred
at the top of the bump. The shear stress at the wall predicted by WS exceeds
that predicted by FS and BEM because WS represents the jump in shear stress.
A small retrograde recirculation appears within the bump due to the spread force,
which induces the increase in WS. The volume flux (Q) using IMBM is also lower
than expected, which correlates with the reduction in FS. This reduced Q arises
because the spreading of the immersed boundary forces ‘thickens’ the boundaries
and actually simulates a narrower channel.

In Figure 5 we assess the accuracy of the IMBM predictions of volume flux,
maximum shear stress, torque and x-force in comparison to the BEM over a range
of R/H . Figure 5a shows that the IMBM volume flux is always smaller than the
BEM value. Figures 5(b-d) show that, in general the WS estimate is always greater
than the FS estimate, while for the maximum shear stress and torque we again find
the boundary element result is intermediate.

7. Peristaltic pumping flow. The last test problem is the peristaltic pumping
of a viscous fluid by two moving walls. Solutions using the immersed boundary
method were previously presented by Fauci [9]. However, fluid dynamical stresses
on the moving walls were not calculated. Here we compare the fluid dynamical
stresses calculated by the immersed boundary method with those computed by
the boundary element method. The boundary element formulation makes use of
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Figure 6. A velocity vector field, in the laboratory frame of ref-
erence, of a peristaltic pumping flow generated using the IMBM at
t = 7.5s, after two complete cycles. The computational domain is
periodic in both orthogonal directions.

the fact that for a symmetric peristaltic channel, a steady-state formulation may
be obtained by moving to the wave frame of reference. The immersed boundary
solutions were computed by prescribing the motion of the top and bottom walls
using

ytop(x, t) =
H

4
+ Φ cos(2πx/λ − ωt), (7.1a)

ybot(x, t) =
3H

4
+ Φ cos(2πx/λ − ωt + π), (7.1b)

where the wave amplitude is Φ; wavelength λ; and wave speed c = ωλ/2π. Here we
do not impose a driving-pressure gradient so FD = 0. Again we use stiff ’tether’
springs to prescribe the motion of the immersed boundary channel walls. Now, the
positions of the ideal points which the immersed boundary points are tethered to
are functions of time as in Equation (5).

We choose the same parameters used by Fauci [9]: spring constant A = 104

kg · m−3 · s−2 ; kinematic viscosity µ = 0.01 kg · m−1 · s−1 ; mean channel width
H/2 = 0.1 m; channel length L = 0.2 m; wave speed c = 0.08 m · s−1; wave ampli-
tude Φ = 0.008 m; and wavelength of peristaltic wave λ = L. A Reynolds number
(defined in Shapiroet al. [28]) for this flow is given by Re = cH2/4νλ = 1.0. To
ensure that Reynolds-number effects were sufficiently small the calculations were
repeated with Re = 0.5. The results presented in this section were computed on a
256 × 256 grid with time step ∆t = 0.16∆x2.

Unlike the prior test problems, the boundary drives the motion and there are
comparable strength fluid flows on both sides, as illustrated in Figure 6. Because
the flow is periodic in all directions, peristaltic pumping occurs in both the interior
and exterior. Finally, because the amplitude of the boundary wave is small, we shall
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only compare the shear and normal stresses, the x- and y-stresses are respectively
very similar.

In Figure 7a,b the tangential and normal fluid stresses (FS) for the interior side
of the bottom wall are shown to be in good agreement with the BEM predictions. In
Figure 7c,d the jump in FS across the immersed boundary is compared to WS (this
is a consistency check of 8-9). Figure 7e demonstrates that the WS overestimates the
BEM prediction of the jump in shear stress across the interface. This overestimation
was also observed in the problems studied in §4 and §6. Figure 7f compares the WS
and BEM predictions of the normal stress jump.

Figure 8 illustrates the effect of exclusion-filtering. The normal stress (a) and
shear stress (b) on the top side of the bottom wall are shown for all wall points
(unfiltered) and for the filtered points. In both cases exclusion-filtering retains the
dominant features of the stress but discards the high frequency oscillations. The
wavelength of the oscillations was observed to be proportional to the fluid grid size.

8. Discussion. While the evaluation of interfacial stresses in immersed boundary
calculations is conceptually simple, we have demonstrated that good results are not
achieved by direct interpolation of the fluid stress tensor to immersed boundary
locations. This is because:

• the point forces that represent the immersed boundary are distributed to the
underlying fluid solver grid, which ’smears’ the representation of the wall, and
modifies the flow-field that is local to the wall;

• the immersed boundary velocity is calculated using the discretized delta func-
tion to perform a weighted average of the local flow field in the vicinity of the
wall.

To investigate the importance of these two effects, we first examined simple
Poiseuille channel flow. We demonstrate with both analytical and numerical solu-
tions of the immersed boundary formulation that with only internal driving forces,
the discretized delta function induces a weak external flow. In addition, the weighted-
average velocity near the wall satisfies the no-slip condition, while the velocity pre-
cisely at the wall location only satisfies the classical no-slip condition as the fluid
grid spacing becomes infinitesimal. We furthermore show that the discrete delta
function causes the jump in the shear stress across the boundary to be smoothed.
Using the results of this model problem, we demonstrate that accurate predictions
of the stresses at the boundary can be calculated using the fluid stress tensor (FS)
information approximately one grid point inward of the boundary to negate the
smoothing of the stress-field near the boundary. Furthermore, if the external stress
field is insignificant, then the wall stress (WS) information can be derived simply
from forces imposed by the wall.

To identify appropriate protocols for calculating stresses on more complex prob-
lems, we examined two additional test problems with curved boundaries - channel
flow over an immersed semi-circular bump, and peristaltic pumping. Here we cal-
culated the interfacial stresses using the immersed boundary method and compared
the results to those from the boundary element method. While the WS technique
was the simplest method for finding stresses, it can only be used when external flows
were insignificant, since it provides the ’jump’ in stress across the boundary, and
does exhibit unphysical oscillations. Future work will address the filtering out of
small scale forces that are unresolved at the scale of the discretized delta function,
as discussed previously in §6.
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Figure 7. A comparison for each of the two orthogonol compo-
nents of stress (kg ·m−1 · s−2 ) calculated using the IBM at t = 7.5s
(after two complete cycles) with results from the BEM on the lower
boundary. In (a,b) the fluid stress evaluated on the interior side of
the immersed boundary is compared with the BEM prediction. In
(c,d) the IMBM prediction of fluid stress jump across the wall is
compared with the WS prediction. In (e,f) the BEM prediction of
the fluid stress jump is compared with the WS. The IMBM results
were computed using a 256 × 256 grid.
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Figure 8. For the peristaltic flow fluid stresses (kg · m−1 · s−2 ),
FS calculation, shown in figure 7, we demonstrate the effect of ex-
clusion filtering.

We confirmed that the calculation of interfacial stress by direct evaluation of the
fluid stress tensor (FS) one grid point inward of the boundary produces good results.
However, post-processing is necessary for this procedure. First, an exclusion filter
is implemented to decide which immersed boundary points yield a representative
stress. Then for these representative immersed boundary particles, the stress tensor
is calculated one grid point inwardly normal using bicubic interpolation, as described
in §3.

In conclusion, we have demonstrated by use of these simple test problems that
interfacial stresses may be evaluated as part of an immersed boundary simulation.
We hope that these test problems provide insight, and a good starting point, to-
wards a complete robust methodology for computing interfacial stresses in fully 3D
immersed boundary simulations that capture fluid-structure interactions. This will
be of vital importance in the modeling and understanding of physiological systems,
where the spatial distributions of stresses are central to the system’s response.
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