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Spaces of Homomorphisms

Let G be a Lie group and π be a finitely generated discrete group.
Consider the set of homomorphisms Hom(π,G ).

Topology: If π has n generators x1, . . . , xn, then Hom(π,G ) can be identified as a
subset of G n as follows:

f ∈ Hom(π,G ) ↪→ G n

f ∼ f (x1, . . . , xn) = (g1, . . . , gn).

This can also be seen from the inclusion induced by a quotient Fn → π.

Therefore, we can endow Hom(π,G ) with the subspace topology.
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Examples

1 Let π = Fn be the free group on n letters. Then Hom(Fn,G ) = G n. (π = Fn

has no relations)

2 Let π = Zn. Hom(Zn,G ) can be identified with the set of elements in G n

whose coordinates pairwise commute:

f ∈ Hom(Zn,G ) ⊆ G n

f ∼ f (x1, ..., xn) = (g1, ..., gn), such that gigj = gjgi , all i , j .

We call Hom(Zn,G ) the space of ordered pairwise commuting n–tuples
in G .

3 If π = Zn and G is abelian, then Hom(Zn,G ) = G n.

Remark: G acts by conjugation on Hom(π,G ). The space
Hom(π,G )/G = R(π,G ) is also widely studied (not considered here). R(π,G ) is
called the representation space.
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Remarks

• The spaces Hom(Zn,G ) “appear in physics”:

• Hom(Zn,G)/G is the moduli space of flat G−bundles over the compact
n−torus (S1)n.

• These moduli spaces form critical level sets of Lagrangians for important
quantum-field theories such as the Chern-Simons and Yang-Mills theories.

• Connections to work of E. Witten in quantum-field theory.

• The study of the spaces Hom(Zn,G ) for finite groups G , leads to problems
as hard as the Feit-Thompson theorem.
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Some known results

• (Goldman) If π is finitely generated, then Hom(π,G ) is a real algebraic
variety.

• (Adem & Cohen) If G is a closed subgroup of GLn(C), then there is a
homotopy equivalence

ΣHom(Zn,G )→
∨

1≤k≤n

Σ

(n
k)∨

Hom(Zk ,G )/Sk(G ).

• (G. H. Rojo) Computes the number of connected components of
Hom(Zk ,O(n)) and Hom(Zk ,SO(n)) (formulas upon request).
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Some known results (cnt’d)

• (Sjerve & Torres-Giese) The homotopy type of Hom(Zk ,SO(3)) is given by

Hom(Zk ,SO(3))→ Hom(Zk ,SO(3))1

⊔
(
⊔

#<∞

S3/Q8).

• (Pettet & Souto) If G is a reductive algebraic group and K ⊂ G is a maximal
compact subgroup, then Hom(Zk ,K ) is a strong deformation retract of
Hom(Zk ,G ).

• There is a homotopy equivalence Hom(Zk ,O(n)) ' Hom(Zk ,GLn(R)).
• There is an isomorphism π1(Hom(Zk ,G)) = π1(G)k .

• (Bergeron) If Γ is a finitely generated nilpotent group, then there is a strong
deformation retract of Hom(Γ,G ) onto Hom(Γ,K ).

• (Adem & Gomez) The space B(2,G ) is an infinite loop space.
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Connectedness

Recall the following classical definitions:

The group T ⊂ G is a maximal torus of G if it is a compact, connected torus of
maximal rank.

For some special Lie groups G , T has the additional property that “every abelian
subgroup of G is conjugate to a subgroup of T ”. Such groups include
U(n),SU(n),Sp(n).
Groups that do not have this property include SO(2n + 1),G2 etc.

Theorem (Adem & Cohen)

If G has a maximal torus T with the property that every abelian subgroup of G is
conjugate to a subgroup of T , then Hom(Zn,G ) is path connected for all n.

For any f ∈ Hom(Zn,G ) we can apply the classifying space functor to obtain
Bf ∈ Map∗(BZn,BG ). If we pass to the path components we obtain

B0 : π0(Hom(Zn,G ))→ [(S1)n,BG ],

where [(S1)n,BG ] classifies principal G -bundles over the n-torus (S1)n.
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A classical method for studying Hom(Zn,G )

For A an abelian subgroup of G , there is a map

Θ : G × An −→ Hom(Zn,G )

(g , t1, ..., tn) 7→ (tg1 , ..., t
g
n )

Θ is A−invariant, so it factors through G ×A An, where A acts by conjugation, i.e.
trivially, on An and acts by left multiplication on G .
We get a map Θ̂ : G ×A An −→ Hom(Zn,G ).

Definition

Let T be a maximal torus of G . Then the Weyl group of G is the group
W = NT/T , where NT is the normalizer of T in G .

Then W acts on G ×T T n = G/T × T n by conjugation on T n and by left

multiplication on the cosets G/T . Θ̂ is W -invariant, so it factors through
G/T ×W T n = G ×NT T n and we get

Θ̃ : G ×NT T n −→ Hom(Zn,G ).
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The space Comm(G )

• Problems involving Hom(Zk ,G ) are delicate, in general.

• Instead we construct a space called Comm(G ) that assembles all the spaces
Hom(Zk ,G ) into a single one.

• Comm(G ) is more tractable.

• There is a decomposition of Comm(G ) which tells that this space is the
smallest space containing all spaces Hom(Zn,G ).
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The space Comm(G ) (cnt’d)

From now on G is a compact and connected Lie group.

Recall the James reduced product on a pointed CW -complex, denoted by J(X ).
The space J(X ) is given by

J(X ) :=
⊔
n≥1

X n/ ∼,

where ∼ is generated by (x1, ..., ∗, ..., xn) ∼ (x1, ..., ∗̂, ..., xn).

Definition

Let G be a Lie group. Then Comm(G ) is defined by

Comm(G ) :=
⊔
n≥1

Hom(Zn,G )/ ∼,

where ∼ is generated by the same relation.
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We now obtain a map

G ×NT J(T ) −→ Comm(G ).

Let
Comm(G )1 =

⊔
n≥1

Hom(Zn,G )1/ ∼,

where Hom(Zn,G )1 is the path component of (1, ..., 1).
Then the following is a surjection

Θ̃ : G ×NT T n −→ Hom(Zn,G )1,

which gives a surjection

G ×NT J(T ) −−� Comm(G )1.

In the special case where G has the property that every abelian subgroup can be
conjugated to T , it follows that Comm(G ) = Comm(G )1 and we have a surjection

G ×NT J(T ) −−� Comm(G ).
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Stable decompositions

Theorem
Let G be a compact Lie group with maximal torus T and NT acting on T by
conjugation. There is a homotopy equivalence

Σ(G ×NT J(T )) ' Σ(G/NT ∨ (
∨
n≥1

G ×NT T̂ n/G ×NT {1})).

Theorem
Let G be a compact and connected Lie group. There is a stable homotopy
equivalence

ΣComm(G ) ' Σ
∨
n≥1

Ĥom(Zn,G ),

where Ĥom(Zn,G ) = Hom(Zn,G )/S(Hom(Zn,G )).
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The homology of Comm(G )

Recall the map Θ : G × T n −→ Hom(Zn,G ).
Now, let R = Z[|W |−1]. (For simplicity one can also work over Q).

Lemma

The reduced homology of Θ−1(g1, ..., gn) with coefficients in R is trivial, i.e.

H̃k(Θ−1(g1, ..., gn); R) = 0.

Theorem
Let G be compact and connected with maximal torus T and Weyl group W .
Then there is an isomorphism

H∗(G ×NT J(T ); R) ∼= H∗(Comm(G )1; R).
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Homological computations

There is a short exact sequence of groups

1 −→ T −→ NT −→W −→ 1

and thus a fibration

(G × J(T ))/T −→ (G × J(T ))/NT = G ×NT J(T ) −→ BW .

There is a spectral sequence

E 2
p,q = Hp(BW ; Hq(G/T × J(T ); R))

which converges to H∗(G ×NT J(T ); R).
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If p > 0 then E 2
p>0,q = 0 and

E 2
0,q = E∞0,q = Hq(G/T × J(T ); R)W

Therefore,
H∗(G ×NT J(T ); R)) ∼= H∗(G/T × J(T ); R)W

and

H∗(G/T × J(T ); R)W
∼=
(
H∗(G/T ; R)⊗ H∗(J(T ); R)

)
W

∼=
(
H∗(G/T ; R)⊗ T [V ]

)
W
,

where V is the reduced homology of T as a W−module, and T [V ] is the tensor
algebra of V .
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Therefore the we have the following:

Theorem
Let G be a compact and connected Lie group with maximal torus T and Weyl
group W . Then the homology of Comm(G )1 with coefficients in R is given by

H∗(Comm(G )1; R) ∼=
(
H∗(G/T ; R)⊗ T [V ]

)
W

As a corollary we have:

Theorem
If G has a maximal torus T with the property that every abelian subgroup of G is
conjugate to a subgroup of T , then the homology of Comm(G ) with coefficients
in R is given by

H∗(Comm(G ); R) ∼=
(
H∗(G/T ; R)⊗ T [V ]

)
W
.
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Remarks

• This theorem works for any compact and connected Lie group G , including
the exceptional groups G2,F4,E6,E7,E8.

• The representation theory of W gives the homology for these spaces
(Classical representation theory).

• The same construction does not inform on finite groups G .
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Ungraded homology

Let HU
∗ denote ungraded homology and TU [V ] denote the ungraded tensor

algebra of V . Then the following theorem holds:

Theorem
Let G be a compact and connected Lie group with maximal torus T and Weyl
group W . Then the ungraded homology of Comm(G )1 with coefficients in R is
given by

HU
∗ (Comm(G ); R) ∼= TU [V ].
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Example 1: SO(3)

E. Torres Giese and D. Sjerve prove that

Hom(Zn; SO(3)) = Hom(Zn; SO(3))1

⊔( ⊔
m<∞

S3/Q8

)
.

Therefore,

Proposition

There is a homeomorphism

Comm(SO(3)) = Comm(SO(3))1

⊔(⊔
∞

S3/Q8

)
,

where Comm(SO(3))1 =
⊔

n≥1 Hom(Zn; SO(3))1/ ∼.

The homology of Comm(SO(3))1 is given by

H∗(Comm(SO(3));Z[2−1]) ∼=
(
H∗(SO(3)/S1;Z[2−1])⊗ T [V ]

)
Σ2
.
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Example 2: U(2)

If G = U(2), then T = S1 × S1 and every abelian subgroup of U(2) is conjugate
to a subgroup of T .
Therefore,

H∗(Comm(U(2));Z[2−1]) ∼=
(
H∗(U(2)/S1 × S1;Z[2−1])⊗ T [V ]

)
Σ2
,

where H∗(U(2)/S1 × S1;Z[2−1]) = Z[2−1]Σ2, the group ring (ungraded).
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Hilbert-Poincaré series

Assume there is a tri-graded series
∑

i,j,k A(i , j , k)qi s j tk , where A(i , j , k) is the
rank of the sub-module in H∗(Comm(G )1; R) equal to the tensor product of the
i-th homology in G/T , and k-th homology in J(T ) which is given by j-tensors. If
we consider cohomology, A(i , j , k) is the rank of∑

k=r1+···+rj
rq>0

(H i (G/T )⊗ ∧r1Qn ⊗ · · · ⊗ ∧rjQn).

Using methods in algebra V. Reiner proved the following in an appendix:

Theorem
If G is a compact, connected Lie group with maximal torus T , and Weyl group
W , then

Hilb

((
H∗(G/T ; R)⊗ T ∗[Ẽ ]

)W
, q, s, t

)
=

∏n
i=1(1− q2di )

|W |
∑
w∈W

1

det(1− q2w) (1− t(det(1 + sw)− 1))
.
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Example

Let G = U(2):

1 The Weyl group W is Σ2 with elements 1, and w 6= 1.

2 The homology of the space G/T = U(2)/T = S2 is R in degrees zero and
two, and is {0} otherwise.

3 The degrees (d1, d2) in the theorem are given by (d1, d2) = (1, 2).

Then using the formula

Hilb

((
C∗ ⊗ T ∗[Ẽ ]

)W
, q, s, t

)
=

(1− q2)(1− q4)

2
(A1 + Aw ),

where

A1 =
1

(1− q2)2(1− t[(1 + s)2 − 1])

and

Aw =
1

(1− q2)(1 + q2)(1− t[(1 + s)(1− s)− 1])
.
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Example (cnt’d)

Thus

(1− q2)(1− q4)

2
(A1) =

1 + q2

2(1− t(s2 + 2s))
, and

(1− q2)(1− q4)

2
(Aw ) =

1− q2

2(1 + s2t)
.

The Hilbert-Poincaré series is then given by

Hilb

((
C∗ ⊗ T ∗[Ẽ ]

)W
, q, s, t

)
=

1 + q2

2(1− t(s2 + 2s))
+

1− q2

2(1 + s2t)
.

From this information, it follows that the coefficient of tm,m > 0, is

1

2

[
(1 + q2)(s2 + 2s)m + (1− q2)(−s2)m

]
=
∑

1≤j≤m

2j−1

(
m

j

)
s2m−j +

{
s2m if m is even, and
q2s2m if m is odd.
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Corollary

Then there are additive isomorphisms

H̃d(Hom(Zm,G );R)→
∑

1≤s≤m

∑
i+j=d

( ∑
j=k1+···+ks

i≥0

⊕(m
s )

(M(i,j,s))
W

)
.
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Right-angled Artin groups

A right-angle Artin group can be described as the fundamental group of a
polyhedral product

π(K ) := π1

(
ZK (S1, ∗)

)
,

where K is a simplicial complex with n vertices. We can study the space of
homomorphisms

Hom(π(K ),G ).

Theorem

There is a homotopy equivalence

ΣHom(π(K ),G )→ ΣX ∨
∨
σ∈M

Σ(Hom(Zm(σ),G ))

for the space X = Hom(π(K ),G )/
(∨

σ∈M(Hom(Zm(σ),G ))
)
.
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Right-angled Artin groups (cnt’d)

Define the space

G [σ] = {(g1, . . . , gn) ∈ G n : [gi , gi ] = 1 if (ij) ∈ σ}.

Then
Hom(π(K ),G ) =

⋂
σ∈K

G [σ],

and
Gm − Hom(π(K ),G ) ≈

⋃
σ∈K

(Gm − G [σ]).

gives a Mayer-Vietoris spectral sequence abutting to the homology of
Gm − Hom(π(K ),G ).
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Problems

• Analogous approaches for finitely generated discrete groups π, other than Zn.

• Further decompositions of Hom(Zn,G ).

• The integer homology of the spaces Hom(Zn,G ).

• The number of path components π0(Hom(Zn,G )) for compact and
connected G .

• Prove the equivalent form of the Feit-Thompson theorem.
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