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Polyhedral Products

Ingredients:

I a simplicial complex K

I a sequence of pairs of spaces (X1, A1), . . . , (Xn, An) denoted by (X,A)

I a functor D : K → Top, where D(σ) = Y1 × · · · × Yn, with Yi = Ai if i /∈ σ
and Yi = Xi if i ∈ σ.

Definition

The polyhedral product denoted ZK(X,A) is the topological space defined by
the colimit

ZK(X,A) = colim
σ∈K

D(σ) =
⋃
σ∈K

D(σ) ⊆
n∏
i=1

Xi,

where the maps are the inclusions and the topology is the subspace topology.

Hence, polyhedral products are a generalized version of moment-angle
complexesgiven by ZK(D2, S1).
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Example

Some classical examples of polyhedral products are the following:

1. Let K = {{1}, . . . , {n}}, Xi = X and Ai be the basepoint ∗ ∈ X. Then

ZK(X,A) = X ∨ · · · ∨X,

the n-fold wedge sum of the space X.

2. Let K = 2[n], then ZK(X,A) = X1 × · · · ×Xn.

3. Let K = {{1}, {2}} and (X,A) = (Dn, Sn−1). Then

ZK(X,A) = Dn × Sn−1 ∪ Sn−1 ×Dn = ∂D2n = S2n−1.

4. If |K| is the boundary of the simplex ∆[n− 1], then ZK(X) is the fat
wedge of the spaces X1, . . . , Xn.
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Some facts about polyhedral products:

1. (Denham-Suciu) The polyhedral product ZK(X,A) depends only on the
relative homotopy type of the pair (X,A).
E.g. if G is finite, then (EG,G) 'rel ([0, 1], F ), where F is a finite subset
of the unit interval with |G| elements. Hence,

ZK(EG,G) ' ZK([0, 1], F )

for any K.

2. (Bahri-Bendersky-Cohen-Gitler) If (X,A) is a sequence of pointed and
connected CW-pairs, then there is a homotopy equivalence

Σ(ZK(X,A))→ Σ

 ∨
I≤[n]

ẐKI
(XI , AI)

 .

3. (Wedge Lemma) When applied to polyhedral products, follows from the
decomposition above; i.e. if Ai ⊂ Xi is null-homotopic, then

Σ(ZK(X,A))→ Σ

(∨
I

(
∨
σ∈KI

|∆(KI)<σ| ∗ D̂(σ))

)
.
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A fibration

Consider the circle S1 and its classifying space BS1 ' CP∞.

There is an inclusion map

BS1 ∨ · · · ∨BS1 ↪→ BS1 × · · · ×BS1,

with homotopy fibre proved by V. Buchstaber and T. Panov to be the
polyhedral product

ZK(ES1, S1),

where K is a set of n vertices and ES1 is the universal cover of BS1, hence
there is a fibration

ZK(ES1, S1)→ BS1 ∨ · · · ∨BS1 ↪→ BS1 × · · · ×BS1.
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Denham-Suciu fibrations

G. Denham and A. Suciu gave a generalization to this fibration:

Let G be a topological group with BG its classifying space and EG the
universal cover of BG. Then the inclusion map

ZK(BG, ∗) ↪→
∏
n

BG

has homotopy fibre ZK(EG,G), where K is any simplicial complex with n
vertices.

Definition
The fibrations

ZK(EG,G)→ ZK(BG, ∗) ↪→
∏
n

BG

will be called Denham-Suciu fibrations.
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The fundamental group

Theorem

Let G be a finite group. The fundamental group of ZK(BG, ∗) is is given by

π1(ZK(BG, ∗)) ∼=
∏
K1

G,

where K1 is the 1-skeleton of K and the product is the graph product of groups.

This theorem holds also if we change (BG, ∗) by (BG, ∗) and G1, . . . , Gn are
countable discrete groups:

π1(ZK(BG, ∗)) ∼=
∏
K1

Gi.
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Eilenberg-MacLane spaces

Recall that an Eilenberg-Maclane space X has the property that all but
one homotopy groups are zero. If πn(X) = A 6= 0, then the space is denoted
by K(A,n) since it is unique up to homotopy.

The simplicial complex K is called a flag complex if any finite set of vertices,
which are pairwise connected by edges, spans a simplex in K.

M. Davis showed the following:

Theorem (M. Davis)

If K is a flag complex and G is a finite group then ZK(BG, ∗) is a K(A, 1)
with

∏
K1
G.

The converse is also true:

Theorem

If G is finite and ZK(BG, ∗) is a K(A, 1), then K is a flag complex
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Short Exact Sequence

Let K be a flag complex and G1, . . . , Gn be finite groups.
Then the fibration

ZK(EG,G)→ ZK(BG, ∗) ↪→
n∏
i=1

BGi

gives a short exact sequence of groups

π1(ZK(EG,G))→
∏
K1

Gi →
n∏
i=1

Gi.

Note that if K is only the set of n vertices, then the short exact sequence
becomes

1→ FNn
→ G1 ∗ · · ·Gn →

∏
Gi → 1.
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The followings are true:

I If K is a set of vertices, then ZK(EG,G) is homotopy equivalent to a
graph

I The fundamental group is a free group FNn
with

Nn = (n− 1)

n∏
i=1

mi −
n∑
i=1

(
∏
j 6=i

mj) + 1.

I Finding the algebraic monodromy amounts to finding the action of the
fundamental group on a graph.
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Monodromy action

For any locally trivial fibration F → E → B the fundamental group of the
base acts on the fibre.

For the free group Fn and n ≥ 2, there is a short exact sequence of groups

1 −→ Inn(Fn) −→ Aut(Fn) −→ Out(Fn) −→ 1

and hence, a commutative diagram

1 −−−−→ FNn −−−−→ G1 ∗ · · · ∗Gn −−−−→ G1 × · · · ×Gn −−−−→ 1y yΨ

yΘ

yΘ̃

1 −−−−→ Inn(FNn
) −−−−→ Aut(FNn

) −−−−→ Out(FNn
) −−−−→ 1.

where G1, . . . , Gn are finite discrete groups. So the map

Θ : G1 ∗ · · · ∗Gn → Aut(FNn
)

induces a map
Θ̃ : G1 × · · · ×Gn → Out(FNn),

which is the representation we are interested in.
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Monodromy

Consider the fibration

ZK(EG,G)→ ZK(BG, ∗) ↪→
n∏
i=1

BGi

Then the fundamental group π1(
∏n
i=1BGi) =

∏n
i=1Gi acts on the fibre

ZK(EG,G); hence acts on the fundamental group π1(ZK(EG,G)) and on the
homology H1 = π1/[π1, π1]. (note n ≥ 2)

If K is a flag complex, then ZK(EG,G) is a K(π, 1).

Initially we consider K to be the zero skeleton of a finite simplicial complex.
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Monodromy, n = 2

Let G1 and G2 be finite cyclic groups with order m and n, respectively, such
that G1 = {1, x1, x

2
1, . . . , x

m−1
1 } and G2 = {1, x2, x

2
2, . . . , x

n−1
2 }.

The zero simplicial complex with two vertices is K0 = {{1}, {2}}.

Assume there are bijections of finite sets G1 ≈ F1 and G2 ≈ F2 given by

G1 = {1, x1, x
2
1, . . . , x

m−1
1 } ≈ F1 = {0 = t1,0 < t1,1 < · · · < t1,m−1 = 1} ⊂ I,

G2 = {1, x2, x
2
2, . . . , x

n−1
2 } ≈ F2 = {0 = t2,0 < t2,1 < · · · < t2,n−1 = 1} ⊂ I,

identifying xki with ti,k.
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Monodromy, n = 2

Then we have

ZK0
(EG,G) ' ZK0

(I, F ) = D({1}) ∪D({2}) = I × F2 ∪ F1 × I,

•
(0, 0) t1,5

t2,6

where 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1.
Consider the cycles γω starting at the basepoint ∗ = (0, 0), given by the words

ω = [xi1, x
j
2] = xi1x

j
2x
−i
1 x−j2 .
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The set of words W = {ωij = [xi1, x
j
2]|1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1} is a

minimal generating set for all the cycles γω ∈ ZK0
(I, F ); i.e.

I Every cycle can be represented by a product of elements in W.
I |W| equals the rank of FN2

.

In general, for any g ∈ G1 ∗ · · · ∗Gn, denote Θ(g) = ϕg ∈ Aut(FNn
).

•
(0, 0)

g

G1 × · · · ×Gn acts on the loops in the fiber by conjugation, that is,

g · γω = γgwg−1 ,

hence

x1ωijx
−1
1 = x1[xi1, x

j
2]x−1

1 = [xi+1
1 , xj2][xj2, x1] = ωi+1,jω1j

−1.
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Looking at the induced map of ϕx1 onto the abelianization⊕
(r−1)(m−1)

Z ∼= F(r−1)(m−1)/[F(r−1)(m−1), F(r−1)(m−1)]

then

ϕ̃x1
(ω11, . . . , ω(r−1)(m−1)) = (ω2,1 − ω1,1, ω2,2 − ω1,2, . . . ,−ω(r−1),(m−1))

which is given by the matrix

[ϕ̃x1 ] =



−Im−1 Im−1 0 0 · · · 0
0 −Im−1 Im−1 0 · · · 0
0 0 −Im−1 Im−1 · · · 0
...

...
...

. . .
. . .

...
0 · · · 0 0 −Im−1 Im−1

0 · · · 0 0 0 · · · −Im−1


(1)

with respect to the basis W2, where Im−1 is the (m− 1)× (m− 1) identity
matrix. Hence, clearly ϕx1

is not an element of IAk.
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For ϕx2 ∈ Aut(Fk):

x2ωijx
−1
2 = x2[xi1, x

j
2]x−1

2 = [x2, x
i
1][xi1, x

j+1
2 ] = ωi,1

−1ωi,j+1.

Similarly, looking at the induced map of ϕx2
onto the abelianization of Fk we

get

ϕ̃x2
(ω11, . . . , ω(r−1)(m−1)) = (−ω1,1 + ω1,2 − ω1,1 + ω1,3, . . . ,−ω(r−1),(m−1)),

which is given by the matrix

ϕ̃x2
] =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ar−1

 , Ai =



−1 1 0 0 · · · 0
−1 0 1 0 · · · 0
−1 0 0 1 · · · 0

−1 0 0 0
. . . 0

...
...

...
... · · · 1

−1 0 0 0 · · · 0


for all i.

with respect to the basis W. Hence, ϕx2
is not an element of IAk.

18 / 24



Monodromy for any K0

Recall that for a group G, there is a sequence of subgroups called the
descending central series of G given by

G = Γ1(G) D Γ2(G) D · · ·D Γn(G) D · · · ,

where the second stage is Γ2(G) = [G,G] and the (n+ 1)–st stage is given
inductively by Γn+1(G) = [Γn(G), G]. The Lie algebra of G associated to the
descending central series is given by

gr∗(G) =
⊕
i≥1

Γi(G)/Γi+1(G)

with grp(G) = Γp(G)/Γp+1(G).
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Monodromy for any K0

Lemma

Let {Gi}ni=1 be a collection of finite discrete groups and K0 be the 0–simplicial
complex on n vertices. Let ρ :

∏n
i=1Gi → Out(FN ) be the monodromy

representation where FN is isomorphic to the kernel of the projection
p : G1 ∗ · · · ∗Gn →

∏n
i=1Gi. Then the following hold:

1. There is a choice of a generating set for FNn
that consists of elements of

the form

f = [gi1 , [gi2 , [. . . , [gik−1
, gik ] . . . ]]] ∈ Γk(G1 ∗ · · · ∗Gn)

such that gij ∈ Gij , for all ij.

2. For any g ∈ G1 ∗ · · · ∗Gn, the map ρ(g) ∈ Aut(FN ) satisfies
ρ(g)(f) = ∆ · f , where ∆ ∈ Γk+1(G1 ∗ · · · ∗Gn). That is, ∆ is trivial in
grp(G1 ∗ · · · ∗Gn) for p ≤ k.
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Remark:

The part of the problem that makes it algebraically inaccessible is that, even
though we know the rank of the free group, we do not have an explicit list of
elements that forms a set of generators for this free group.

Hence, using the polyhedral product model of the fibre, we get a geometric
description of the monodromy action.
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General K

It would be interesting to determine whether the representations for various
choices of K are related.

If π = π1(ZK(EG,G)), then we are interested in the following diagram:

Out(FN )

?

��

G1 × · · · ×Gn

ρK0

77

ρK ''
Out(π)

Open questions:

I determine the algebraic interpretation of monodromy for a finite number
of cyclic groups.

I determine whether the monodromy for K0 informs about the monodromy
for other K.
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An extension problem

Assume {G1, . . . , Gn} is a family of subgroups of a finite discrete group G.
Then there is a natural map

G1 ∗ · · · ∗Gn
ϕ−→ G.

It is natural to ask the following: for what abstract simplicial complexes K on

[n] does the map BG1 ∨ · · · ∨BGn
Bϕ−−→ BG extend to ZK(BG), i.e following

diagram commutes:

BG1 ∨ · · · ∨BGn

i

��

Bϕ // BG

ZK(BG)

77

If the map in question extends, then we detect commuting elements in G.
Algebraically, determine K s.t. the following diagram commutes:

G1 ∗ · · · ∗Gn

i#

��

Bϕ // G

∏
SK1

Gi

99
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Thank you for your attention...

References:
arXiv:1402.3270
arXiv:1310.3504

24 / 24


	Polyhedral Products
	Denham-Suciu fibrations
	Monodromy action
	An extension problem

