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Abstract

This thesis consists of two parts. The first part concentrates on polyhedral prod-

ucts. Certain homotopy theoretic properties of polyhedral products, such as the

fundamental group, are investigated, and the results are used to compute certain

monodromy representations. Partial topological characterizations of transitively

commutative groups are also obtained using polyhedral products. The second part

concentrates on the spaces of commuting n−tuples in compact and connected Lie

groups. A new space is introduced, called X(2, G). The homology of the space

X(2, G) is computed with integer coefficients with the order of the Weyl group

inverted, and connections with classical representation theory are explored.
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1 Introduction

1.1 Structure

The mathematics developed in this dissertation is separated into two main parts.

The first part addresses various problems related to polyhedral products of topo-

logical spaces. The polyhedral product of topological spaces is a combinatorial

way of constructing a topological space out of a given collection of topological

spaces. The process of construction or gluing is described by a simplicial com-

plex, see [Bahri et al., 2010; Buchstaber and Panov, 2000]. In this dissertation,

basic homotopy theoretic problems are addressed, together with applications in

representation theory.

The second part of the dissertation concerns the spaces of commuting n–tuples

in a compact Lie group G. A new space is constructed to study the invariants of

these spaces, such as homology and cohomology.

These two subjects, polyhedral products and commuting elements, are intro-

duced in the next 2 sections.

1.2 Polyhedral products

The topological spaces called polyhedral products or generalized moment–angle

complexes, have been studied since the 60’s, if not earlier. Not surprisingly, at the

time, there was no general name associated to these spaces. They merely occurred
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naturally in different problems that were being studied at the time. One of the

early examples appears in a paper by Gerald J. Porter [Porter, 1966]. In his paper

G. J. Porter studied properties of the spaces

Ti(X1, ..., Xn)

which are the subspaces of the product X1 × · · · × Xn, that consist of elements

with at least i coordinates being the basepoint. In the language of polyhedral

products (see Chapter 2), these spaces are exactly the spaces

Ti(X1, ..., Xn) = ZK(Xi),

where K is the (n − i − 1)–skeleton of the (n − 1)–simplex ∆[n − 1]. G. J.

Porter finds a homotopy equivalent space for ΩTn−i(ΣX1, ...,ΣXn), which in turn

classifies certain i−ary homotopy operations on n variables.

An important example of polyhedral products appears in seminal work of Mike

Davis and Tadeusz Januszkiewicz [Davis and Januszkiewicz, 1991]. In one of the

constructions, they introduce a space BP n and they prove that the cohomology

ring of BP n is the Stanley-Reisner face ring of a simplicial complex K, denoted

Z[K], and the space BP n is now called the Davis-Januszkiewicz space, denoted

DJ (K). It also follows from their work that any toric manifold M2n can be

realized as the quotient of an (m+n)–dimensional moment–angle complex by the

action of a real (m− n)–torus Tm−n.

It was proved later by Victor Buchstaber and Taras Panov [Buchstaber and

Panov, 2000] that there is a space ZK = ZK(D2, S1), called the moment–angle

complex, such that

DJ (K) = E(S1)n ×(S1)n ZK(D2, S1) ∼= ZK(CP∞, ∗)

which fits into a fibration

ZK −→ DJ (K) −→ (CP∞)n.
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This also gives a cellular model for the ring Z[K]. It is to be emphasized that the

spaces DJ (K) and ZK are key objects in the study of toric topology, an emerging

field of algebraic topology, brought to prominence by work of V. Buchstaber and

T. Panov [Buchstaber and Panov, 2000].

Work of T. Bahri, M. Bandersky, F. Cohen and S. Gitler [Bahri et al., 2010]

made it possible that polyhedral products be studied systematically. The im-

portance of polyhedral products was emphasized strongly when many classical

theorems followed from studying these spaces. A stable decomposition of these

spaces was given in [Bahri et al., 2010], that is, there is a homotopy equivalence

ΣZK(X,A) ' Σ
∨
I⊆[n]

ẐKI (X,A),

where I runs over all subsequences of [n] = {1, ..., n}, KI = K ∩ I and (X,A, ∗i)

is a sequence of CW triples. This decomposition implies the homological de-

composition in Goresky-MacPherson [Goresky and MacPherson, 1988], Hochster

[Hochster, 1977], Baskakov [Baskakov, 2002], Panov [Panov, 2008], and Buchstaber-

Panov [Buchstaber and Panov, 2000] and also implies certain homotopy theoretic

results of Porter [Porter, 1966] and Ganea [Ganea, 1965].

The study of the homotopy theory of polyhedral products has important im-

plications also within ring theory, and homological algebra, see for instance [Grbić

et al., 2012].

Another example is the connection with the complement of a complex hyper-

plane subspace arrangement U(K)

U(K) = Cn \
⋃
I /∈K

{z ∈ Cn|zi = 0 for i ∈ I}.

This space turns out to be the moment–angle complex ZK(C,C∗) ' ZK , where

ZK is a T n–equivariant retraction of U(K) = ZK(C,C∗), see [Buchstaber and

Panov, 2000].
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It is now evident that polyhedral products play an important role in a number

of fields in mathematics. They give a combinatorial way to deal with different

problems, topological, algebraic or geometric. In this thesis, one central problem

concerns the computation of the monodromy representation of the fibration

ZK(EGi, Gi) −→ ZK(BGi) −→
m∏
i=1

BGi,

where Gi are finite groups. A partial result leads to a full understanding of the

case of two cyclic groups G1 and G2. To compute the monodromy action for three

or more groups, one runs into problems very quickly. There is no natural choice

of basis for the fundamental group of the fibre ZK(EGi, Gi), in cases where the

fundamental group is free.

1.3 Spaces of commuting n–tuples in a Lie group

Let G be a Lie group. For a positive integer n, let Hom(Zn, G) denote the set of

group homomorphisms from a free abelian group of rank n to G. Every element

f ∈ Hom(Zn, G) is determined by the image of 1 ∈ Z, for each copy of Z. That

is, f(1, ..., 1) = (g1, ..., gn) determines f . Moreover, since Zn is commutative, the

image of f should commute as well, hence, Hom(Zn, G) can be seen as the set

of pairwise commuting n−tuples in G. Hom(Zn, G) can be naturally topologized

with the subspace topology of Gn, making it a topological space. This space was

first studied by E. Witten where he considers this space for n = 3, see [Witten,

1982; Witten, 1998].

More generally, the free abelian group Zn can be replaced by a finitely gen-

erated discrete group on n generators, π. Then similarly, if π has n generators,

the space Hom(π,G) is a subspace of Gn. A classical result of W. M. Goldman

[Goldman, 1988] shows that these spaces are real algebraic varieties.

Now let K be a closed subgroup of G that lies in the center and let H =

G/K. Then one also considers n–tuples (h1, ..., hn) ∈ Hn which do not necessarily
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commute. But they lift to n–tuples (h̃1, ..., h̃n) such that [h̃i, h̃j] ∈ K. The set

of all such n–tuples in H forms a space called the space of K-almost commuting

elements in G, denoted by Bn(G,K). The work of E. Witten was followed by

work of A. Borel, R. S. Friedman and J. W. Morgan [Borel et al., 2002], where

they study the spaces of almost commuting pairs and triples in G.

The space of commuting n−tuples was first studied in this generality by Adem

and Cohen in [Adem and Cohen, 2007], where they also give a stable decomposi-

tion of the spaces Hom(Zn, G) for all n and any closed subgroups G ⊆ GL(n,C).

Theorem 1.1 (Adem & Cohen). If G is a closed subgroup G ⊆ GLn(C), then

there are homotopy equivalences

Σ(Hom(Zn, G)) '
∨

1≤k≤n

Σ(

(nk)∨
Hom(Zk, G)/Sk(G)).

They also work out explicitly the cohomology of Hom(Z3, G) with coefficients

in Z for G = SU(2). Following their paper, many other papers by various mathe-

maticians appeared on the same subject. The case of SU(2) has also been studied

by Baird, Jeffrey and Selick in [T. Baird, 2010], where they work out the co-

homology of Hom(Zn, SU(2)) for all n. Cohomology computations have been

carried out by Baird in [Baird, 2007] and the fundamental group of Hom(Zn, G)

has been computed by Torres Giese and Sjerve in [Torres Giese and Sjerve, 2008]

for G = SU(2), U(2), SO(3), and by Gómez, Pettet and Souto in [Gómez et al.,

2012] for any compact and connected Lie group. A corollary in [Gómez et al.,

2012] shows the following isomorphism

H∗(Hom(Zn, G)1;F ) ∼= H∗(G/T × T n;F )W ,

where F is a field with characteristic relatively prime to the order of the Weyl

group W .

In this thesis a new space, called X(2, G), is introduced. This space assembles

all the spaces of commuting elements in G, into a single space. One of the main
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results is the computation of the homology groups of the space X(2, G) with

coefficients in the ring of integers with the inverse of |W | adjoined. Other results

also include stable decompositions of the spaces X(2, G) and G×NT J(G), where

J(G) is the James reduced product on G.

A computation of the homology of X(2, G) reduces to understanding tensor

products of representations of the Weyl group W , and these assemble to give all

of the homology of Hom(Zn, G) at once by a description in terms of partitions.

If ungraded homology is considered throughout, then the homology of X(2, G) is

given explicitly and is well–understood.

1.4 Background

The two topics that have been developed in this thesis seem unrelated at first.

However, as shown by the application in Section 2.9 and Section 3.3, the study of

polyhedral products and spaces of commuting elements was motivated by studying

the sets of homomorphisms Hom(Fn/Γ
k(Fn), G), where Fn is a free group on n

letters, Γk(Fn) is the k–th stage in the descending central series of Fn (see Section

2.7.3) and G is a topological group.

If G is a finite discrete group, the spaces Hom(Fn/Γ
k(Fn), G) are used to

construct simplicial spaces, resulting in a filtration of the classifying space BG,

given by

B(2, G) ⊂ B(3, G) ⊂ · · · ⊂ B(,∞, G) = BG,

where the space B(q,G) for q ≥ 2, is the geometric realization of the semi–

simplicial complex formed by the simplicial spaces Hom(Fn/Γ
q(Fn), G) for varying

n, see [Adem et al., 2011]. In Section 2.9, we mention that for certain classes of

finite discrete groups G, the space B(2, G) is a polyhedral product. This fact

together with the other properties of polyhedral products are used to study the

structure of the space B(2, G).
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If G is a classical Lie group, then the sets of homomorphisms form topological

spaces Hom(Fn/Γ
k(Fn), G). In particular, the spaces Hom(Zn, G) are the spaces

of pairwise commuting n-tuples in G, which are studied in Chapter 3.
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2 Polyhedral Products

2.1 Introduction

In this chapter the term moment–angle complex will mean the polyhedral product

for the pair (D2, S1) and polyhedral product will be used for other pairs. This

construction will be defined in the next section, and it gives a way to obtain new

topological spaces from a finite set of pointed CW -pairs. The gluing process of

the pairs is described by a simplicial set K.

The first main result of this chapter gives a necessary and sufficient condi-

tion for when the polyhedral products ZK(BGi, ∗i) are of the homotopy type of

Eilenberg–Mac Lane spaces.

Theorem 2.1. Let Gi be non–trivial groups with 2 ≤ |Gi| ≤ ℵ0 and endowed with

the discrete topology, for all i. Let K be a simplicial complex on a finite set of

vertices. Then ZK(BGi, ∗i) is an Eilenberg–Mac Lane space if and only if K is a

flag complex.

The fundamental group of the polyhedral products ZK(X, ∗) is also investi-

gated for a 1–connected space X. Let CY denote the cone on the topological

space Y .

Theorem 2.2. Let X be a 1–connected CW–complex. Then the polyhedral product

ZK(CΩX,ΩX) is 1–connected.
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It turns out that if the homotopy types of the pairs (X,A) and (Y,A) are

known in relation to each other then the following lemma holds

Lemma 2.3. If A ⊂ X ⊂ Y with A discrete, X and Y path–connected, such that

the induced map πi(X)
i∗→ πi(Y ) is an isomorphism for i = 0, 1, then

π1(ZK(X,A)) ∼= π1(ZK(Y,A)).

The content of these theorems is essential to applications, especially the case

when the pairs (X,A) are of the form (EGi, Gi) and when K is the 0–simplicial

complex.

The organization of this chapter is as follows. First, introductory material

is given, such as definitions and examples of polyhedral products. Then in Sec-

tion 2.3 following definitions, homotopy theoretic properties of these spaces are

investigated for a finite sequence of classifying spaces of topological groups. The

invariants studied are the fundamental group, and sometimes the higher homo-

topy groups. The main result of the section is Theorem 2.23 which is mentioned

above. The discussion of the same invariants is continued in Section 2.4. The

results from Section 2.3 are used in Section 2.5 to compute the monodromy repre-

sentation corresponding to a certain fibration, which is given in Section 2.3. The

importance of this monodromy representation is that it gives some information

about the outer automorphism group Out(Fn) for a free group Fn and for certain

values of n. Other representations obtained from this monodromy representation

are discussed in Section 2.8.

In Section 2.9, transitively commutative groups are studied in relation to poly-

hedral products. The main goal, yet to be achieved, is a topological character-

ization of these groups via extension properties involving polyhedral products.

Transitively commutative groups were studied intensively before the proof of the

well-known Feit–Thompson theorem, which states that every finite group of odd

order is solvable, see [Feit and Thompson, 1963].
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2.2 Definitions and examples

Polyhedral products can be regarded as functors from abstract simplicial com-

plexes with values in the category of topological spaces. These spaces were given

the name “polyhedral products” or “polyhedral product functors”, names which

were suggested by W. Browder. Alternatively, for fixed K, they can be seen as

functors from the category of topological spaces to the category of topological

spaces. Here the discussion is confined to pointed CW–pairs (X,A).

Let [n] denote the set of integers 1 through n, {1, 2, ..., n}, and let 2[n] denote

the power set of [n].

Definition 2.4. An abstract simplicial complex K on n vertices is a subset of the

power set 2[n] such that, if σ ∈ K and τ ⊆ σ then τ ∈ K.

Hence, any element σ ∈ K, called a simplex, is given by a sequence of integers

σ = {i1, i2, ..., iq} where 1 ≤ i1 < i2 < · · · < iq ≤ n. In particular, the empty

subset of [n] is an element of K. The geometric realization |K| of K is a simplicial

complex inside ∆[n− 1].

Now let (X,A) denote the sequence of triples of CW−complexes {Xi, Ai, xi}ni=1,

where xi are the basepoints of Xi. Define a functor D from an abstract simpli-

cial complex K to the category of pointed CW–complexes, D : K −→ CW∗, as

follows: For any σ ∈ K let

D(σ) =
n∏
i=1

Yi = Y1 × · · · × Yn where Yi =

Ai : i /∈ σ,

Xi : i ∈ σ.
The polyhedral product or generalized moment-angle complex, denoted by ZK(X,A),

is defined as follows:

Definition 2.5. The polyhedral product or generalized moment-angle complex

ZK(X,A) is the space

ZK(X,A) = colim
σ∈K

D(σ) =
⋃
σ∈K

D(σ).
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That means the polyhedral product is the colimit of the diagram of spaces

D(σ). Note that if K is an abstract simplicial complex on n vertices, then

ZK(X,A) ⊆ X1 × · · · × Xn. Different notations are used in the literature to

denote the polyhedral products, such as ZK(Xi, Ai), Z(K; (X,A)) and (X,A)K .

Whenever Ai is the basepoint xi, the notation will be slightly simplified and in-

stead of writing ZK(X, x) we will write ZK(Xi).

In our discussion, we will drop the expression “generalized moment–angle com-

plex” and refer to these spaces as polyhedral products.

Example 2.6. Some examples of polyhedral products are the following

1. Let K = {{1}, ..., {n}} and Xi = X,Ai = xi. Then ZK(X,A) = X ∨ ... ∨X,

the n–fold wedge sum of the space X.

2. Let K = 2[n], then ZK(X,A) = X1 × · · · ×Xn.

3. Let K = {{1}, {2}} and (X,A) = (Dn, Sn−1). Then

ZK(X,A) = Dn × Sn−1 ∪ Sn−1 ×Dn = ∂D2n = S2n−1.

Definition 2.7. Given a simplicial graph Γ with vertex set S and a family of

groups {Gs}s∈S, their graph product ∏
Γ

Gs

is the quotient of the free product of the Gs by the relations that elements of Gs

and Gt commute whenever {s, t} is an edge of Γ.

Definition 2.8. |K| is a flag complex if any finite set of vertices, which are

pairwise connected by edges, spans a simplex in |K|.

There are many non–trivial examples that arise from polyhedral products. A

few examples are mentioned below.

Example 2.9. As mentioned in the introduction, the Davis-Januszkiewicz space

DJ (K) can be realized as the space ETm ×Tm ZK(D2, S1), which is homotopy

equivalent to ZK(CP∞, ∗), see [Buchstaber and Panov, 2000].
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Example 2.10. The fundamental group of ZK(S1, ∗) is the right-angled Artin

group (RAAG) given by the graph product
∏

SK1
Z, where SK1 is the 1-skeleton

of K. If K is a flag complex, then ZK(S1, ∗) is the classifying space of the right-

angled Artin group, see [Davis and Okun, 2012].

Example 2.11. If K is the boundary complex of a simplicial polytope, then

ZK([0, 1], 1) is the dual polytope of K, see [Buchstaber and Panov, 2000].

Before proceeding to the next sections let us establish some notation. From

now on assume that the homotopy category of pointed CW–complexes is the

underlying category, unless otherwise stated. That means that all topological

spaces considered are CW–complexes with non–degenerate basepoints and maps

between them are homotopy classes of basepoint preserving continuous maps. For

any topological group G, BG and EG will stand for its classifying space and

the universal cover of the classifying space, respectively. In the case of a discrete

group G, BG and EG can be thought of as the Eilenberg–Mac Lane space K(G, 1)

and its universal cover, respectively. Hence, EG is a contractible space. In the

following sections, K will frequently stand for the geometric realization of K,

but it will be clarified wherever ambiguity might occur, since formally K is the

abstract simplicial complex. It is easier to think of K geometrically, instead of

thinking of a collection of subsets of [n] as defined above.

The exposition in this chapter is not self–contained and some acquaintance

with notions of algebra, topology and algebraic topology are required. Specific

references will be given where necessary. The necessary preliminary background in

algebra can be found in [Lang, 2002], point–set topology can be found in [Munkres,

2000] and algebraic topology in [Hatcher, 2002].
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2.3 Homotopy groups of ZK(BGi)

A natural problem is the study of homotopy groups of the polyhedral products

ZK(X,A). In this section the problem is restricted to the study of the homotopy

groups of ZK(BGi), where Gi are finite discrete groups.

In general, for G a topological group and K a simplicial complex on n ver-

tices, there is a fibration due to G. Denham and A. Suciu [Denham and Suciu,

2007]. Their theorem will be referred to extensively in this chapter, especially in

applications, so it is stated next.

Theorem 2.12 (Denham & Suciu). Let G be a topological group and K a sim-

plicial complex on n vertices. Then the following hold:

1. EGn ×Gn ZK(EG,G) ' ZK(BG).

2. The homotopy fiber of the inclusion ZK(BG) ↪→ BGn is ZK(EG,G).

Their theorem is a result of studying the bundle

ZK(EG,G) −→ EGn ×Gn ZK(EG,G) −→ BGn,

where EGn×Gn ZK(EG,G) is the quotient of EGn×ZK(EG,G) by the diagonal

action of Gn, and proving that the total space EGn ×Gn ZK(EG,G) is homotopy

equivalent to ZK(BG). This theorem can be extended directly to the sequence of

CW–pairs {(BGi, ∗i)}ni=1, where Gi are topological groups for all i. Hence, there

is a fibration

ZK(EGi, Gi) −→ ZK(BGi) −→ BG1 × · · · ×BGn,

where similarly, the total space in this fibration is homotopy equivalent to the

twisted product of spaces

(EG1 × · · · × EGn)×G1×···×Gn ZK(EGi, Gi).
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Now consider the sequence of CW–pairs {(BGi, ∗i)}ni=1, where Gi are finite

discrete groups for all i. Let K be a simplicial complex on n vertices and let SKq

denote the q-skeleton of K. Consider the Denham and Suciu fibration

ZK(EGi, Gi) −→ ZK(BGi) −→ BGi × · · · ×BGn. (2.1)

Lemma 2.13. Assume that Gi are finite discrete groups for all i and K is a

simplicial complex on n vertices. The following hold:

1. ZK(BGi) is path connected for any K.

2. πq(ZK(EGi, Gi)) ∼= πq(ZK(BGi)) for q ≥ 2.

3. There is a short exact sequence of groups

1→ π1(ZK(EGi, Gi))→ π1(ZK(BGi))→ π1(BG1 × · · · ×BGn)→ 1.

Proof. Run the long exact sequence in homotopy for the Denham and Suciu fi-

bration (2.1) to get

· · · → πq(ZK(EGi, Gi))→ πq(ZK(BGi))→ πq(BG1 × · · · ×BGn)→

→ πq−1(ZK(EGi, Gi))→ · · · → π2(BG1 × · · · ×BGn)→

→ π1(ZK(EGi, Gi))→ π1(ZK(BGi))→ π1(BG1×· · ·×BGn)→ π0(ZK(EGi, Gi))

The space BG1 × · · · ×BGn is an Eilenberg–Mac Lane space with

π1(BG1 × · · · ×BGn) = G1 × · · · ×Gn

and

πq(BG1 × · · · ×BGn) = 0

for q ≥ 2 and q = 0. Hence, ZK(EGi, Gi) is path connected for any K and part

1 and 2 follow. Finally, there is a short exact sequence of groups

1→ π1(ZK(EGi, Gi))→ π1(ZK(BGi))→ π1(BG1 × · · · ×BGn)→ 1.
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The fundamental group of the spaces ZK(BGi) is calculated next. This calcu-

lation will precede the fact that the polyhedral product ZK(BGi) is an Eilenberg–

Mac Lane space if and only if K is a flag complex. An important feature that

distinguishes flag complexes from other simplicial complexes are the objects de-

fined next.

Definition 2.14. Let K be a simplicial complex on n vertices. A minimal non–

face in K is the boundary of a full simplex on 3 or more vertices not in K. That

is, if σ = ∂τ and τ = ∆[q] for 2 ≤ q ≤ n − 1, and σ is a subcomplex of K but

τ /∈ K, then σ is a minimal non-face in K.

Clearly if K has a minimal non–face, then it cannot be a flag complex. There-

fore, a flag complex can be redefined to be a simplicial complex with no minimal

non-faces.

Proposition 2.15. Let K be a simplicial complex on n vertices and let SK1 be

the 1–skeleton of K. Then

π1(ZK(BGi)) ∼= π1(ZSK1(BGi)) ∼=
∏
SK1

Gi.

Proof. If K is a flag complex, then this is true since ZK(BGi) is a K(π, 1) with

π =
∏

SK1
Gi, see [Davis and Okun, 2012].

Now assume that K is not a flag complex. Then K has a minimal non-face σ

on k vertices. Hence, σ contains the complete graph Γ on its vertices such that

Γ ⊆ σ = ∂∆[k − 1] ⊂ ∆[k − 1] on these k vertices, for 3 ≤ k ≤ n (trivial for

k = 1, 2). First we claim that

π1(Zσ(BGi)) ∼= π1(Z∆[k−1](BGi)) ∼=
∏

Γ

Gi =
k∏
i=1

Gi.

Note that if k = 3 and Gj1 , Gj2 , Gj3 are subgroups of a finite group G such that

they pairwise commute in G, then any product of elements commutes in G. Hence,

if σ is the boundary of the 2–simplex, then

Zσ(BGji) = (BGj1 ×BGj2 × 1) ∪ (BGj1 × 1×BGj3) ∪ (1×Gj2 ×BGj3)
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and using the Seifert–van Kampen theorem twice it follows that

π1(Zσ(BGji))
∼= π1(Z∆[2](BGji))

∼=
∏

Γ

Gji
∼= Gj1 ×Gj2 ×Gj3 .

Note that for k ≥ 3, the polyhedral product can be written as follows

Zσ(BGi) =
⋃

1≤j≤k

(BG1 × · · · ×BGj−1 × 1×BGj+1 × · · · ×BGn).

Using the Seifert–van Kampen theorem finitely many times, more exactly k − 1

times, it follows that

π1(Zσ(BGi)) ∼= π1(Z∆[k−1](BGi)) ∼=
∏

Γ

Gi
∼= G1 × · · · ×Gk.

Now Γ is the complete graph on the vertices of σ. The graph product
∏

ΓGi of

the groups G1, . . . , Gk is actually isomorphic to the product
∏k

i=1Gi, since all the

groups pairwise commute. Also note that adding a 2–dimensional face to Γ does

not introduce a new generator in the fundamental group of ZΓ(BGi). Hence, if

the groups Gi are subgroups of G and Γ is the complete graph on its vertices, the

computation above is equivalent to saying that the map

ZΓ(BGi) −→ BG

factors through Z∆[k−1](BGi) =
∏k

i=1 Gi, so that we have the following commuta-

tive diagram

ZΓ(BGi) BG

Z∆[k−1](BGi)

Hence, on the level of fundamental groups the following diagram commutes
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π1(ZΓ(BGi)) π1(BG)

π1(Zσ(BGi))

π1(Z∆[k−1](BGi))

Therefore,

π1(Zσ(BGi)) ∼= π1(Z∆[k−1](BGi)) ∼=
∏

Γ

Gi
∼=

k∏
i=1

Gi.

If α is a simplex in K, then α can intersect σ at most at a single top dimensional

face. Then,

Zσ(BGi) ∩ Zα(BGi) =
∏

ij∈σ∩α

BGij

where |σ∩α| ≤ k−1. Now let σ1, ..., σp be all the minimal non–faces of K. For σ1

there is a simplicial subcomplex K1 ⊆ K not containing σ1 such that σ1∪K1 = K

and σ1 ∩K1 is a flag complex. Since the CW–pairs are (BGi, ∗), it follows that

Zσ1(BGi) ∪ ZK1(BGi) = ZK(BGi)

and

Zσ1(BGi) ∩ ZK1(BGi) = Zσ1∩K1(BGi),

where σ1 ∩K1 is a flag complex. Thus,

π1(Zσ1∩K1(BGi)) =
∏

S[σ1∩K1]1

Gi.

Hence, using Seifert–van Kampen theorem

π1(Zσ1(BGi)) ∗(
∏
S[σ1∩K1]1

Gi) π1(ZK1(BGi)) = π1(ZK(BGi)).

Now, to find π1(ZK1(BGi)) we repeat the same process. Clearly, σ2 ⊆ K1. Then,

there is K2 ⊆ K1 not containing σ2 such that σ2 ∪K2 = K1 and σ2 ∩K2 is a flag

complex. Similarly,

Zσ2(BGi) ∪ ZK2(BGi) = ZK1(BGi)
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and

Zσ2(BGi) ∩ ZK2(BGi) = Zσ2∩K2(BGi),

where σ2 ∩K2 is a flag complex. Thus,

π1(Zσ2∩K2(BGi)) =
∏

S[σ2∩K2]1

Gi.

Hence, using Seifert–van Kampen theorem

π1(Zσ2(BGi)) ∗(
∏
S[σ2∩K2]1

Gi) π1(ZK2(BGi)) = π1(ZK1(BGi)).

Hence, for σq there is

Kq ⊆ Kq−1 ⊆ · · · ⊆ K1 ⊆ K

not containing σq, σq−1, ..., σ1, such that σq ∪ Kq = Kq−1 and σq ∩ Kq is a flag

complex, for all 1 ≤ q ≤ p. Similarly,

Zσq(BGi) ∪ ZKq(BGi) = ZKq−1(BGi)

and

Zσq(BGi) ∩ ZKq(BGi) = Zσq∩Kq(BGi),

where σq ∩K2 is a flag complex. Thus,

π1(Zσq∩Kq(BGi)) =
∏

S[σq∩Kq ]1

Gi.

Hence, using Seifert–van Kampen theorem

π1(Zσq(BGi)) ∗(
∏
S[σq∩Kq ]1

Gi) π1(ZKq(BGi)) = π1(ZKq−1(BGi)).

Let us denote
∏

S[σq∩Kq ]1 Gi by Nq. Therefore, combining all the steps we get

π1(ZK(BGi)) = π1(Zσ1(BGi)) ∗N1 (π1(Zσ2(BGi) ∗N2 (· · · ∗Np π1(ZKp(BGi)) · · · )).
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Note that Kp is a flag complex since it does not contain any of the minimal

non–faces σ1, ..., σp, so its fundamental group is
∏

i∈S(Kp)1
Gi. Let us denote

Mq = π1(Zσq(BGi)) =
∏

i∈S(σq)1

Gi.

Hence,

π1(ZK(BGi)) = M1 ∗N1 (M2 ∗N2 (· · · (Mp ∗Np (
∏

i∈S(Kp)1

Gi)) · · · )).

Therefore,

π1(ZK(BGi)) ∼=
∏
SK1

Gi.

Another way to prove Proposition 2.15 is by comparing fibrations.

Second proof of Proposition 2.15 . : Consider the following commutative diagram

of spaces

F ZSKq(EGi, Gi) ZK(EGi, Gi)

F ZSKq(BGi) ZK(BGi)

∗
∏n

i=1BGi

∏n
i=1 BGi

where F is the homotopy fibre and SKq is the q–skeleton of K and 1 ≤ q ≤ n.

Hence, the homotopy fibre F of the inclusion

ZSKq(EGi, Gi) ↪−−→ ZK(EGi, Gi)

is the same as the homotopy fibre F of the inclusion

ZSKq(BGi) ↪−−→ ZK(BGi).
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It suffices to show that on the level of fundamental groups, the induced map

π1(ZSK1(EGi, Gi)) ↪−−→ π1(ZK(EGi, Gi))

is an injection. This is true since adding 2–dimensional or higher dimensional faces

to the q–skeleton, for q ≥ 1, adds 3–dimensional or higher dimensional cells to the

space ZSKq(EGi, Gi), and adding these cells to the space does not introduce new

elements in the fundamental group, see [Hatcher, 2002]. This clearly holds for the

case when K is a flag complex, since in that case K has no minimal non–faces.

A special case is the 0–simplex on n vertices, that is, the simplicial complex

consisting only of vertices 1 through n. This case will be treated next in detail.

Before stating the theorem, it is important to note that the functor ZK is a

homotopy functor, which means that for fixed K the homotopy type of ZK(X,A)

depends only on the relative homotopy type of the pairs (X,A). This fact was

also observed in [Denham and Suciu, 2007].

Let K be the 0–skeleton of ∆[n−1], that is, K = {{1}, ..., {n}}. Let Xi = EGi

and Ai = Gi, where Gi are finite discrete groups for all i. Note that the CW -

pairs (EGi, Gi) have the relative homotopy type (not Gi-equivariant) of the pairs

([0, 1], Fi), for all i, where |Fi| = |Gi| and Fi is a finite subset of the unit interval

[0,1], for all i. The following result will be used when talking about monodromy.

Proposition 2.16. Let K be the zero skeleton of ∆[r− 1] and Fi be finite subsets

of [0, 1] with |Fi| = mi, for 1 ≤ i ≤ r. Then ZK([0, 1], Fi) ' ∨NrS1, where Nr is

defined inductively as follows:

N2 = (m1 − 1)(m2 − 1)

Nr = mrNr−1 + (mr − 1)(
r−1∏
i=1

mi − 1) for r ≥ 3.
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Proof. Recall that if T is a spanning tree of a connected graph Γ on finitely many

vertices, then collapsing T to a point does not change the homotopy type of Γ.

Γ/T has only one vertex and has the homotopy type of a finite wedge of circles,

and so does Γ; see [Hatcher, 2002]. It suffices to find the number of circles Nr and

the proof is given by induction on r.

r = 2: ZK(([0, 1], F1), ([0, 1], F2)) contains a maximal tree which we call T2

defined in the following way: It starts at the point (0, 0) ∈ [0, 1]× [0, 1] and runs

parallel to the first coordinate and goes to the next level by using one of the

extreme vertical edges. T2 contains all the vertices and has no loops, hence it is

a spanning tree. There are N2 = (m1 − 1)(m2 − 1) edges not in T2. Figure 2.1

shows a version of T2 for given m1 and m2.

Figure 2.1: T2, r = 2 Figure 2.2: T3, r = 3

r = 3: ZK(([0, 1], F1), ([0, 1], F2), ([0, 1], F3)) contains a maximal tree called T3

(see figure 2.2) defined in the similar way as above: on each level parallel to the

xy-plane it is the same as T2 and it needs a vertical edge to jump to the next

dimension each time. There are m3 levels, each having N2 edges not in T3, and

there are m3− 1 spaces between levels, each having
∏2

i=1(mi)− 1 edges not in T3.

Therefore there are N3 = m3N2 + (m3 − 1)(
∏2

i=1(mi)− 1).

Assume true for r = n, that is, Nn = mnNn−1 + (mn− 1)(
∏n−1

i=1 (mi)− 1). For

r = n+ 1 there is an inclusion ZK(([0, 1], F1), ([0, 1], F2), ..., ([0, 1], Fn+1)) ⊆ Rn+1.

Set

An = ZK(([0, 1], F1), ([0, 1], F2), ..., ([0, 1], Fn)) ⊆ Rn,
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then An '
∨
Nn
S1. The following diagram describes An+1, where between any

An An An

Figure 2.3: An+1

two consecutive An’s there are
∏n

i=1mi edges. Each An has the maximal tree

Tn and the number of edges in An not in Tn is Nn. One edge is used between

two consecutive An’s to complete the graph Tn+1, so there are (
∏n

i=1 mi) − 1

edges not in Tn+1. Hence the total number of edges not in Tn+1 is Nn+1 =

mn+1Nn + (mn+1 − 1)(
∏n

i=1mi − 1).

Corollary 2.17. The value of Nr in Proposition 2.16 is

Nr = (r − 1)
r∏
i=1

mi −
r∑
i=1

(
∏
j 6=i

mj) + 1.

Proof. The proof follows by induction on r. For r = 2 then (m1 − 1)(m2 − 1) =

m1m2 − (m1 + m2) + 1. Now assume this is true for r = n, then for r = n + 1 it

follows from Lemma 2.13 that

Nn+1 = mn+1Nn + (mn+1 − 1)(
n∏
i=1

mi − 1),

where by assumption Nn equals

Nn = (n− 1)
n∏
i=1

mi −
n∑
i=1

(
∏
j 6=i

mj) + 1.

Substituting this value for Nn and rearranging the terms shows that

Nn+1 = (n)
n+1∏
i=1

mi −
n+1∑
i=1

(
∏
j 6=i

mj) + 1.
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Consider the Denham and Suciu (2.1) for K the 0–simplex, to get the following

fibration

ZK(EGi, Gi) '
∨
Nn

S1 −→
∨

1≤i≤n

BGi −→ BGi × · · · ×BGn.

Each of the spaces in the fibration is an Eilenberg–Mac Lane space, hence there

is a short exact sequence of groups

1 −→ F [x1, ..., xNn ] −→ G1 ∗ · · · ∗Gn −→ G1 × · · · ×Gn −→ 1.

where the rank of the free group in the kernel is Nn. This gives a topological

proof of an early result of J. Nielsen [Nielsen, 1948], that computes the rank of

free group in the kernel of the short exact sequence above.

Now we turn our focus to the case when K is a flag complex. As stated in the

proof of Proposition 2.15, if K is a flag complex and Gi are finite discrete groups

for 1 ≤ i ≤ n, then ZK(BGi) is an Eilenberg–Mac Lane space. By a simple

argument, the converse of this statement is also true. The following lemma proves

it.

Lemma 2.18. If K is not a flag simplicial complex, then ZK(BGi) is not an

Eilenberg–Mac Lane space.

Proof. Recall that from Lemma 2.13 it follows that πq(ZK(EGi, Gi)) ∼= πq(ZK(BGi))

for q ≥ 2. So it suffices to show that for K not a flag complex, there is a non–

trivial higher homotopy group of ZK(EGi, Gi). Also recall that if K is not a flag

complex, then it has a minimal non–face σ, say on k vertices for 3 ≤ k ≤ n. There

is an inclusion

i : Zσ(EGi, Gi) ↪−−→ ZK(EGi, Gi),

where for each vertex of K missing in σ, we put the basepoint of the space BGi.

There is also a surjection

s : ZK(EGi, Gi) −−� Zσ(EGi, Gi)
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obtained by projecting the coordinates corresponding to the vertices not in σ to

the basepoint. The composition s ◦ i is the identity on Zσ(EGi, Gi) and hence,

induces the identity on πq, the q–th homotopy group, for all q. It suffices now to

show that Zσ(EGi, Gi) has at least one non–trivial higher homotopy group. Next

we show that Zσ(EGi, Gi) is actually a wedge of
∏k

i=1mi − 1 copies of (k − 1)–

dimensional spheres, where |Gi| = mi. This follows by induction on k ≥ 3.

For k = 3, let |Gi| = mi for i = 1, 2, 3. Then σ is the boundary of the

2–simplex, that is , σ = {{1, 2}, {1, 3}, {2, 3}} and

Zσ(EGi, Gi) = (D1 ×D1 ×G3) ∪ (D1 ×G2 ×D1) ∪ (G1 ×D1 ×D1)

= D1 × ((D1 ×G3) ∪ (G2 ×D1)︸ ︷︷ ︸
wedge of circles

) ∪ (G1 ×D1 ×D1).

The wedge of circles in the union above consists of (m2 − 1)(m3 − 1) circles (see

figure 2.1). The union is equivalent to a wedge of (m1−1) copies of the suspension

of (D1 ×G3) ∪ (G2 ×D1). One can think of the simple case when the groups are

of order 2 and in that case a single sphere is obtained. That is, in general

Zσ(EGi, Gi) =
∨

(m1−1)

Σ((D1 ×G3) ∪ (G2 ×D1))

=
∨

(m1−1)

Σ(
∨

(m2−1)(m3−1)

S1)

=
∨

(m1−1)(m2−1)(m3−1)

S2.

Assume for n, then for n + 1 σ has n + 1 vertices and the polyhedral product



25

becomes

Zσ(EGi, Gi) = (D1 × · · · ×D1 ×Gn+1) ∪ (D1 × · · · ×D1 ×Gn ×D1) ∪ · · · ∪

∪ (G1 ×D1 × · · · ×D1)

= D1 × ((D1 × · · · ×D1 ×Gn) ∪ · · · ∪ (G1 ×D1 × · · · ×D1)︸ ︷︷ ︸
Zσ′ (EGi,Gi)

)∪

∪ (G1 ×D1 × · · · ×D1)

= (D1 × Zσ′(EGi, Gi)) ∪ (G1 ×D1 × · · · ×D1),

where σ′ is the boundary of the simplex ∆[n − 1] on vertices {2, ..., n + 1}. By

assumption Zσ′(EGi, Gi) is homotopy equivalent to a wedge of
∏n+1

i=2 mi−1 copies

of (n − 1)–dimensional spheres. Therefore, Zσ(EGi, Gi) is homotopy equivalent

to the wedge sum of (m1 − 1) copies of the suspension of
∏n+1

i=2 mi − 1 copies of

(n− 1)–dimensional spheres. That is

Zσ(EGi, Gi) '
∨
m1−1

Σ
( ∨
∏n+1
i=2 mi−1

Sn−1) '
∨

∏n+1
i=1 mi−1

Sn

This proves the claim.

Now, it follows that for k ≥ 3 the space Zσ(EGi, Gi) has non–trivial higher

homotopy groups. Therefore, the lemma follows.

Combining this result and the result of Davis and Okun [Davis and Okun,

2012], the following is an immediate corollary

Corollary 2.19. Let Gi be finite discrete groups and K be a simplicial complex

on n vertices. Then ZK(BGi) is an Eilenberg-Mac Lane space if and only if K is

a flag complex.

The following corollary also follows immediately from the previous corollary

and Lemma 2.13.
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Corollary 2.20. Let Gi be finite discrete groups and K be a simplicial complex

on n vertices. Then ZK(EGi, Gi) is an Eilenberg-Mac Lane space if and only if

K is a flag complex.

If K is flag, then ZK(EGi, Gi) is the classifying space of the kernel of the

projection ∏
SK1

Gi −−�
n∏
i=1

Gi.

Hence, Corollary 2.20 shows that the kernel of this projection is torsion free, since

ZK(EGi, Gi) = K(π1(ZK(EGi, Gi)), 1) is of finite type.

It is possible to carry this discussion to finitely generated discrete groups Gi of

infinite order. Recall that if K is a flag complex, then ZK(BZ, ∗) is the classifying

space of the right–angled Artin group
∏

SK1
Z, see [Davis and Okun, 2012]. Using

the Denham and Suciu fibration for Gi = Z, the following is a fibration

ZK(EZ,Z) −→ ZK(BZ, ∗) −→
∏
n

BZ,

where BZ = S1 and K is a simplicial complex on n vertices. Hence, there is a

fibration

ZK(EZ,Z) −→ ZK(S1, ∗) −→
∏
n

S1.

The pairs (EZ,Z) have the relative homotopy type of (R,Z). Similarly, if Gi are

finitely generated discrete groups of infinite order, then the pairs (EGi, Gi) have

the relative homotopy type of (R,Z). This equivalence is not (
∏
Gi)–equivariant.

Hence, ZK(EZ,Z) is an Eilenberg–Mac Lane space if and only if ZK(EGi, Gi)

is an Eilenberg–Mac Lane space and that is true if and only if ZK(S1, ∗) s an

Eilenberg–Mac Lane space.

As mentioned above if K is a flag complex, then ZK(S1, ∗) is an Eilenberg–

Mac Lane space, thus ZK(EGi, Gi) is such a space as well. Next by showing that

if K is not a flag complex then ZK(EZ,Z) is not an Eilenberg–Mac Lane space,

it will follow that ZK(EGi, Gi) is not an Eilenberg–Mac Lane space, either.
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Proposition 2.21. If K is not a flag complex, then ZK(EZ,Z) is not a K(π, 1).

Proof. If K is a flag complex, then it has a minimal non–face σ on k ≥ 3 vertices.

Let 0 ∈ R be the basepoint. If F is the finite set of integers {0, 1}, then there is

an embedding

Zσ([0, 1], F ) ↪−−→ Zσ(R,Z)

obtained by the inclusion of pairs ([0, 1], F ) ↪→ (R,Z). There is an equivalence

Zσ([0, 1], F ) ' Sk−1. Therefore, ZK(EZ,Z) has non–trivial higher homotopy

groups. The rest of this proof is similar to the proof of Lemma 2.18

An immediate corollary of Proposition 2.21 and [Davis and Okun, 2012] is the

following

Corollary 2.22. Let Gi be finitely generated infinite discrete groups. Then,

ZK(EGi, Gi) is an Eilenberg–Mac Lane space if and only if K is a flag complex.

Similarly, this is true if and only if ZK(BGi, ∗) is an Eilenberg–Mac Lane.

Note that in the proof of Proposition 2.21 it is actually not required that Gi

are infinite, or that they are finitely generated. The only requirement is that Gi

have at most the cardinality of N, which is denoted by ℵ0, and have the discrete

topology.

Theorem 2.23. Let Gi be groups with 2 ≤ |Gi| ≤ ℵ0 and endowed with the

discrete topology, for all i. Let K be a simplicial complex on a finite set of ver-

tices. Then ZK(BGi, ∗) is an Eilenberg–Mac Lane space if and only if K is a flag

complex.

Proof. This is the same as the proof of Proposition 2.21.
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2.4 Homotopy groups of other polyhedral products

Let X be a path–connected, finite dimensional and pointed simplicial complex.

Then it is a classical result that X is the classifying space of a topological group

G, which can be described precisely, see for example [Milnor, 1956]. Hence, we can

write X ' BG. This gives a homotopy equivalence ΩX ' G, which implies an

equivalence between the cone of the spaces CG ' C(ΩX). Let ∗ be the basepoint

of EG. There is a commutative diagram of spaces

EG× C(G) C(ΩX)

∗ ×G ΩX.

'

'

Hence, there is a homotopy equivalence of pairs (EG,G) ' (CΩX,ΩX). The

Denham and Suciu fibration (2.1) also works in this setting. Let K be a simplicial

complex on n vertices. Then, there is a fibration

ZK(EG,G) −→ ZK(X, ∗) −→ Xn,

which can also be written as

ZK(CΩX,ΩX) −→ ZK(X, ∗) −→ Xn,

since there is a homotopy equivalence of pairs (EG,G) ' (CΩX,ΩX). This is an

instance of the more general case of a sequence of CW–pairs (X, ∗). Hence, there

is a fibration

ZK(CΩX,ΩX) −→ ZK(X, ∗) −→
n∏
i=1

Xi.

Assume thatG is path–connected. That means π0(G) = 1 and π1(X) = π0(ΩX) =

π0(G) = 0. That is, assume that X is 1–connected. The goal of this section is to

prove that if X is 1–connected, then ZK(EG,G) is 1–connected.
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Definition 2.24. A simplicial complex K on n vertices is shifted if there is a

labelling of the vertices by 1 through n such that for any face, replacing any

vertex of that face with a vertex of smaller label and not in that face results in a

collection which is also a face.

Geometrically, a shifted complex is the geometric realization of K and it is

homotopy equivalent to a wedge of spheres. In case K is a shifted complex, a

conjecture of Bahri etal. [Bahri et al., 2010] was proved by Grbic and Theriault

[Grbić and Theriault, ] that there is a homotopy equivalence

ZK(CY , Y ) '
∨
I /∈K

|KI | ∗ Ŷ I ,

where I is a sequence of integers not in K, |KI | is the realization of KI = {σ∩I|σ ∈

K} and Ŷ I is the smash product of Yi for i ∈ I. In this case it follows that if X

is 1–connected, then ZK(CΩX,ΩX) is 1–connected.

Theorem 2.25. Let X be a 1–connected CW–complex. Then the polyhedral prod-

uct ZK(CΩX,ΩX) is 1–connected.

Proof. As mentioned above, if X is a 1–connected simplicial complex, then X '

BG and G is path-connected, see [Milnor, 1956]. Moreover, there is an equivalence

ZK(CΩX,ΩX) ' ZK(EG,G), where EG and G are path–connected. Hence,

ZK(EG,G) is path–connected. In this proof we will work with ZK(EG,G).

To show that π1(ZK(EG,G)) = 0, the definition of the polyhedral product

will be used. Recall that

ZK(EG,G) = colim
σ∈K

D(σ),

where D(σ) is a product of EG’s and G’s. Also recall that G× · · · ×G = D(∅) ⊂

D(σ), for all σ ∈ K. For two simplices τ, σ ∈ K consider the pushout diagram
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D(τ) ∩D(σ) D(τ)

D(σ) D(τ) ∪D(τ)∩D(σ) D(σ),

i

j

where D(τ) ∪D(τ)∩D(σ) D(σ) is the colimit of the two maps emanating from the

intersection D(τ)∩D(σ). Using Seifert–van Kampen theorem for the fundamental

group, it follows that

π1(D(τ) ∪D(τ)∩D(σ) D(σ)) = π1(D(τ)) ∗N π1(D(σ)),

where N is the subgroup generated by the images of the fundamental group of the

intersection under the induced maps of i and j in π1. Let the set Vσ,τ = {v1, ..., vt}

be the maximal set of vertices in K such that Vσ,τ∩σ = ∅ and Vσ,τ∩τ = ∅. Clearly,

π1(D(τ)) ∗N π1(D(σ)) = π1(Gt), since i and j induce monomorphisms in π1 and

the images of these two maps do not hit the coordinates corresponding to the

vertices in Vσ,τ .

K contains only a finite number of simplices τ1, ..., τk. Let Vi1,...,il be the

maximal set of vertices in K such that Vi1,...,il ∩ τij = ∅ for 1 ≤ j ≤ l ≤ k. As

explained above

π1(D(τ1) ∪D(τ1)∩D(τ2) D(τ2)) = π1(D(τ1)) ∗N1 π1(D(τ2)) = π1(G|V1,2|).

To complete the proof, first perform the computation by taking the colimit with

more simplices until all simplices τ1, .., τk−1 are used. It follows that

π1( colim
1≤i≤k−1

D(τi)) = π1(G|V1,...,k−1|).

In the last step, the polyhedral product equals

ZK(EG,G) = colim
1≤i≤k−1

D(τi) ∪ colim
1≤i≤k−1

D(τi)∩D(τk) D(τk).

Thus, the fundamental group equals

π1( colim
1≤i≤k−1

D(τi) ∪ colim
1≤i≤k−1

D(τi)∩D(τk) D(τk)) = π1( colim
1≤i≤k−1

D(τi)) ∗Nk−1
π1(D(τk)).
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Since V1,...,k = ∅, it follows that π1(ZK(EG,G)) = 0.

A more delicate question is the case when a topological group G acts freely

and properly discontinuously on a CW–complex Y and p : Y → X = Y/G is

a bundle projection. There is a lemma due to Denham and Suciu [Denham and

Suciu, 2007] which describes the fibre when comparing certain fibrations involving

polyhedral products.

Lemma 2.26. Let p : (E,E ′) → (B,B′) be a map of pairs, such that both p :

E → B and p′ = p|E′ : E ′ → B′ are fibrations with fibres F and F ′ respectively.

Suppose that either F = F ′ or B = B′. Then the product fibration p×n : En → Bn

restricts to a fibration

ZK(F, F ′) −→ ZK(E,E ′)
ZK(p)−−−→ ZK(B,B′). (2.2)

Moreover, if (F, F ′)→ (E,E ′)→ (B,B′) is a relative bundle (with structure group

G), and either F = F ′ or B = B′, then (2.2) is also a bundle (with structure group

Gn).

Now, consider the relative map p : (Y,G)→ (Y/G, ∗) with fibres F = F ′ = G.

Thus, there is a fibration

Gn −→ ZK(Y,G) −→ ZK(Y/G, ∗).

Pushing the fibre to the right by taking its classifying space, one gets a fibration

ZK(Y,G) −→ ZK(Y/G, ∗) −→ BGm.

In this case it is not true in general that ZK(Y,G) is 1–connected, as shown in

the next example.
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Example 2.27. Let G = Z/2Z act on the 2–sphere S2 by the antipodal map.

Then the orbit space is S2/(Z/2Z) = RP 2. Hence there is a fibration

ZK(S2,Z/2Z) −→ ZK(RP 2, ∗) −→ B(Z/2Z)m.

If K is the 0–skeleton of the 1–simplex, {{1}, {2}}, then ZK(S2,Z/2Z) = (S2 ×

Z/2Z) ∪ (Z/2Z × S2) is equivalent to the wedge sum (
∨

4 S
2) ∨ S1. Hence,

ZK(S2,Z/2Z) is not simply connected.

Nevertheless, the following theorem gives that the fundamental group of these

polyhedral products can be computed with the information that was obtained

from Section 2.3.

Lemma 2.28. If A ⊂ X ⊂ Y with A finite discrete, X and Y path–connected,

such that the induced map πi(X)
i#−→ πi(Y ) is an isomorphism for i = 0, 1, then

π1(ZK(X,A)) ∼= π1(ZK(Y,A)).

Proof. Let DX(σ) denote the functor D evaluated on the pair (X,A) and DY (σ)

denote the functor D evaluated on the pair (Y,A). If σ ∈ K is a simplex and if

πi(X)→ πi(Y ) is an isomorphism for i = 0, 1, then the inclusion map DX(σ) ↪→

DY (σ) induces an isomorphism on the fundamental group. By definition,

π1(ZK(X,A)) = π1(colim
σ∈K

DX(σ))

and

π1(ZK(Y,A)) = π1(colim
σ∈K

DY (σ)).

Recall that if X2 is the 2–skeleton of X, then π1(X) ∼= π1(X2). Similarly, if Y2 is

the 2–skeleton of Y , then π1(Y ) ∼= π1(Y2). So this shows that π1(X2) ∼= π1(Y2).

Similarly, it suffices to work with the 2–skeleton of the spaces ZK(X,A) and

ZK(Y,A). Denote these two spaces by ZK(X,A)2 and ZK(Y,A)2, respectively.

It is clear that there are inclusions up to homotopy ZK(X,A)2 ↪→ ZSK1(X2, A)
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and ZK(Y,A)2 ↪→ ZSK1(Y2, A) since adding a simplex σ on k ≥ 3 vertices, does

not change the 2–skeleton of the polyhedral product. Both inclusions induce

isomorphisms in π1. This suffices.

Note that Lemma 2.28 can be also proved using the fact that there is a homo-

topy equivalence

ZK(X,A)) = colim
σ∈K

DX(σ) ' hocolim
σ∈K

DX(σ),

see [Bahri et al., 2010], and the fact that

π1(hocolim
σ∈K

DX(σ)) ∼= colim
σ∈K

π1(DX(σ)),

see [Farjoun, 2004] for details.

Next consider the pair (BG,BH), where H is a closed subgroup of G. There

is an inclusion G/H ↪→ C(G/H) which gives an inclusion EG × G/H ↪→ EG ×

C(G/H). Hence, G/H can be regarded as a G–equivariant subspace of EG. There

is a fibration

ZK(EG,G/H) −→ (EG)n ×Gn ZK(EG,G/H) −→ (BG)n.

Since EG × G/H ' G/H and EG ×G G/H ∼= EG/H ∼= BH, then the space

(EG)n×Gn ZK(EG,G/H) is homotopy equivalent to ZK(EG/G,EG×GG/H) '

ZK(BG,BH). This proves the following proposition

Proposition 2.29. Let H be a closed subgroup of the Lie group G. There is a

fibration given by

ZK(EG,G/H) −→ ZK(BG,BH) −→ (BG)n.

Proposition 2.30. Let H be a closed subgroup of G. Then there is a splitting

Ω(ZK(BG,BH)) ' Gn × Ω(ZK(EG,G/H))

and a short exact sequence of groups

1→ π1(ZK(EG,G/H))→ π1(ZK(BG,BH))→ Gn → 1.
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Proof. There is a fibration as follows

ZK(EG,G/H) −→ ZK(BG,BH) −→ (BG)n.

Taking the loops of this fibration gives a fibration

Ω(ZK(EG,G/H)) −→ Ω(ZK(BG,BH)) −→ Ω((BG)n) = Gn.

There is a section Gn s−→ Ω(ZK(BG,BH)) which implies that there is a homotopy

equivalence of topological spaces

Ω(ZK(BG,BH)) ' Gn × Ω(ZK(EG,G/H)).

The short exact sequence follows from this equivalence.

2.5 Monodromy representation

Let Gi be finite discrete groups of order mi, for 1 ≤ i ≤ n. In this section we

are interested in describing the monodromy representation corresponding to the

fibration in (2.1)

ZK(EGi, Gi) −→ ZK(BGi) −→
n∏
i=1

BGi.

Recall that the homotopy type of the polyhedral product ZK(X,A) depends only

on the relative homotopy type of the pairs (X,A).

Lemma 2.31. Let G be a finite discrete group of order m. Then there is a

relative homotopy equivalence (EG,G) ∼ ([0, 1], F ), where F is a subset of [0, 1]

of cardinality m.

Proof. By definition EG is contractible and the group G can be identified with

the orbit of a point x ∈ EG, since G acts freely on EG. This gives an equivalence

of CW–pairs (EG,G) ' ([0, 1], F ) = (I, F ), where F = {f1 < ... < fm} ≈ {(1 =

g1) · x = x, g2 · x, ..., gm · x} is a finite subset of I with the same cardinality as G.

One can pick a path γ : [0, 1]→ EG such that γ(fi) = gi · x.
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Hence, there is a homotopy equivalence ZK(EGi, Gi) ' ZK(I, Fi).

If K = K0 is the zero skeleton of the (n − 1)–simplex, then ZK0(I, Fi) is a

graph in the space [0, 1]n ⊂ Rn (see figure 2.2) and hence, has the homotopy type

of a wedge of Nn circles. The number Nn was shown in Proposition 2.16 and

Corollary 2.17 to be

Nn = (n− 1)
n∏
i=1

−
n∑
i=1

(∏
j 6=i

mj

)
+ 1.

It will be clear that computing the monodromy representation in general is an

involved task, and we will restrict the computations to finite cyclic groups. Using

the description of ZK(EGi, Gi) from Proposition 2.16 allows for a clear description

of monodromy, where possible. The importance of this representation lies in the

fact that it gives some information about elements in Out(Fn).

2.6 The generators of the fundamental group

Let K0 be the 0–simplicial complex on n vertices. In this section explicit loops

in ZK0(I, Fi) are found, whose equivalence classes constitute a generating set for

the fundamental group. These loops represent classes of loops that are elements

in the kernel of the following short exact sequence of groups

1 −→ FNn −→ G1 ∗ · · · ∗Gn −→ G1 × · · · ×Gn −→ 1,

where Gi are finite discrete groups of order mi. Using these loops we will give

an explicit description of the monodromy action of G1 × · · · × Gn on the fiber

ZK(EGi, Gi) for cyclic groups Gi = 〈xi|xmii = 1〉.

Recall that the homotopy type of ZK(EGi, Gi) depends only on the cardinality

of Gi. Hence, when finding the loops for ZK(EGi, Gi) for cyclic groups, the same

computation holds for any collection of groups with the same order, that is the
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same loops will be used to describe the monodromy. However, the representation

depends on the structure of the groups.

The loops will be chosen as follows: Let the point (0, 0, ..., 0) = ∗ be the

basepoint of ZK0(I, Fi). Starting from the basepoint ∗, each path in ZK0(I, Fi)

will be tracked by a word xj1i1x
j2
i2
· · ·xjrir , where xjkik ∈ Gk, each letter showing the

direction of the group it belongs to, together with the distance taken in that

direction. See figure 2.4 for a picture in two dimensions. Always move in the

positive direction, when regarding ZK(EGi, Gi) as a subspace of [0, 1]n ⊂ Rn.

Lemma 2.32. The path tracked by the word xj1i1x
j2
i2
· · ·xjrir is closed if and only if∑r

i=1 ji = 0.

Proof. This can be seen by arguing that, to start and end at the basepoint ∗, if

xj1i1 is a letter of the word, then the letter x−j1i1
should also appear in the same

word, otherwise one can never come back to ∗. Conversely if the sum
∑r

i=1 ji = 0,

then every move forward has been compensated by a move backward.

2.6.1 The case of two finite groups

Start by first considering cyclic groups. Let G1 and G2 be finite cyclic groups

with order m1 and m2, respectively. Then, ZK0(EGi, Gi) ' ZK0(I, Fi) = I ×F2 ∪

F1 × I (the dotted grid in figure 2.4). Consider the cycles given by the words

xi1x
j
2x
−i
1 x
−j
2 = [xi1, x

j
2], where 1 ≤ i ≤ m1− 1 and 1 ≤ m2 ≤ m2− 1. The following

lemma tells which loops suffice.

Lemma 2.33. The set of words W = {[xi1, x
j
2]|1 ≤ i ≤ m1 − 1, 1 ≤ j ≤ m2 − 1}

generates all the cycles in ZK0(I, Fi).

Proof. It suffices to prove that a little square in the grid can be written as a prod-

uct of these generators. Let γ be the cycle in ZK0(I, Fi) given by xi1x
j
2[x1, x2]x−i1 x

−j
2 .
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Figure 2.4: 2-dimensional case, the loop [x6
1, x

5
2]

This word can also be written as

[xi1, x
j
2][xj2, x

i+1
1 ][xi+1

1 , xj+1
2 ][xj+1

2 , xi1].

Lemma 2.34. The set of words W = {[xi1, x
j
2]|1 ≤ i ≤ m1 − 1, 1 ≤ j ≤ m2 − 1}

is a minimal generating set.

Proof. First note that |W| = (m1 − 1)(m2 − 1) = m1m2 − (m1 + m2) + 1. In

Proposition 2.16 and Corollary 2.17 it was shown that N2 equals exactly this

number and hence N2 = |W|.

Now let Hi be any finite groups with cardinality mi, for i = 1, 2. That is,

H1 = {1, h1, ..., hm1−1} and H2 = {1, g1, ..., gm2−1}.

Corollary 2.35. The set of wordsWH = {[hi, gj]|1 ≤ i ≤ m1−1, 1 ≤ j ≤ m2−1}

generates all the cycles in ZK0(EHi, Hi) = ZK0(I, Fi). Moreover, this is a minimal

generating set.

Proof. Follows from Lemma 2.33 and 2.34.

The next problem is to find the action G1× · · · ×Gn on these generators. We

know G1 × · · · × Gn acts on the fiber by conjugation, i. e. g · γ = gγ̃g−1, where
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γ̃ is the word corresponding to γ. Pictorially, the action shifts the loop by g, as

shown in figure 2.5. Let G1 = C10 and G2 = C9 be the cyclic groups of order 10

and 9 respectively. The element x4
2 ∈ G2 acts on the word [x2

1, x
5
2] by conjugation

x4
2 · [x2

1, x
5
2] = x4

2[x2
1, x

5
2]x−4

2

which is the loop shifted up by x4
2 ∈ G2. Section 2.7 gives a thorough description

Figure 2.5: x4
2 acting on [x2

1, x
5
2]

of the action in general.

2.7 The monodromy action

Let [γ] ∈ FNn be the homotopy class of a loop in ZK0(I, Fi). Assume that γ

corresponds to the word ω ∈ Wn. Then G1 × · · · ×Gn acts on the fibre by

g · [γ] = [gωg−1].

Call this map ϕg. The goal is to write gωg−1 as a product of words in Wn, if

possible. Then any element g ∈ G1 ∗ · · · ∗Gn gives an automoprhism of FNn , the

free group on letters the elements of Wn

G1 ∗ · · · ∗Gn
ϕ−→ Aut(FNn)

g 7−→ ϕg,
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where Aut(G) is the group of group automorphisms of G, under composition. One

example is in Section 2.7.1, where this computation is carried out explicitly.

In general, given a short exact sequence of discrete groups 1 → A → B →

C → 1, there is a map

B
Θ−→ Aut(B)

Θ(g)(h) = ghg−1.

Also there is a map

A
Ψ−→ Inn(A)

Ψ(g)(h) = ghg−1,

where Inn(A) is the group of inner automorphisms of A. Since A ↪→ B, then

Inn(A) ↪→ Aut(B). Moreover, Inn(A) E Aut(B) and Out(B) := Aut(B)/Inn(A)

is called the group of outer automorphisms of B.

One can also show that G ∼= Inn(G) if and only if for any g ∈ G, there is

h ∈ G such that ghg−1 6= h, that is Z(G) = 1. Hence, for example Fn ∼= Inn(Fn).

For B = Fn and n ≥ 2, there is a short exact sequence of groups

1 −→ Inn(Fn) −→ Aut(Fn) −→ Out(Fn) −→ 1

and hence, a commutative diagram

1 FNn G1 ∗ · · · ∗Gn G1 × · · · ×Gn 1

1 Inn(FNn) Aut(FNn) Out(FNn) 1.

Hence, the map G1∗· · ·∗Gn → Aut(FNn) induces a map G1×· · ·×Gn → Out(Nn).

Since the kernel of the short exact sequence in the first row of the diagram above

is a free group, it follows that FNn
∼= Inn(FNn).

There is also another short exact sequence

1 −→ IAn −→ Aut(Fn)
ab−→ GLn(Z) −→ 1
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with kernel the group IAn, which is the subgroup of automorphisms that restrict

to the identity in the abelianization of Fn, and “ab” is the map induced by the

abelianization map Fn → Fn/[Fn, Fn] = Zn. In the examples that will be given,

none of the homomorphisms restrict to the identity in the abelianization. Thus,

these elements are not elements of IAn.

Example 2.36. Let G1 = Z/2Z := Z2 = 〈x1|x2
1 = 1〉 and G2 = Z/3Z := Z3 =

〈x2|x3
2 = 1〉. Consider the short exact sequence of groups

1 −→ F2 −→ Z2 ∗ Z3 −→ Z2 × Z3 −→ 1,

where F2 is the free group on two generators ω1 = [x1, x2] and ω2 = [x1, x
2
2].

To compute the map Θ : Z2 ∗ Z3 → Aut(F2), we first compute the automor-

phism ϕx1 ∈ Aut(F2) by looking at the image of the generators ω1, ω2 ∈ F2 under

ϕx1 to find

x1ω1x
−1
1 = [x2, x1] = ([x1, x2])−1 = ω−1

1

and

x1ω2x
−1
1 = [x2

2, x1] = ([x1, x
2
2])−1 = ω−1

2 .

Looking at the induced map of ϕx1 onto the abelianization Z ⊕ Z ∼= F2/[F2, F2],

then

ϕ̃x1(ω1, ω2) = (−ω1,−ω2)

which is given by the matrix

[ϕ̃x1 ] =

−1 0

0 −1


with respect the basis {ω1, ω2}. Similarly, one can compute ϕx2 ∈ Aut(F2) by

finding

x2ω1x
−1
2 = x2[x1, x2]x−1

2 = [x2, x1][x1, x
2
2] = ω−1

1 ω2

and

x2ω2x
−1
2 = [x2, x1] = ([x1, x2])−1 = ω−1

1 .
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Looking at the induced map of ϕx2 onto the abelianization Z ⊕ Z ∼= F2/[F2, F2],

then

ϕ̃x2(ω1, ω2) = (−ω1 + ω2,−ω1)

which is given by the matrix

[ϕ̃x2 ] =

−1 1

−1 0


with respect the basis {ω1, ω2}. Using properties of group actions, any automor-

phism ϕg, g ∈ F2 can be found using ϕx1 and ϕx1 . For example ϕx1x2 = ϕx1 ◦ ϕx2
and so on. Note that ϕx1 and ϕx2 are not elements of IA2 since the functions do

not restrict to the identity in the abelianization.

This calculation gives a homomorphism ab ◦ Θ : Z2 ∗ Z3 → GL2(Z) by com-

posing the homomorphisms

Z2 ∗ Z3
Θ−→ Aut(F2)

ab−→ GL2(Z).

The map Θ induces a homomorphism Θ̃ : Z2 × Z3 −→ Out(F2). Moreover, the

map ab ◦ Θ can be considered the same as the composition p ◦ Θ̃, where p is the

projection to the abelianization of Z2 ∗ Z3, since [ϕ̃x1 ] and [ϕ̃x2 ] commute.

Example 2.37. Let Σ3 be the symmetric group on three letters, given by

Σ3 = {1, (12), (13), (23), (123), (132)}.

Let C2 = Z2 = {1, x} be the cyclic group with two elements. There is a short

exact sequence of groups

1 −→ F5 −→ Z2 ∗ Σ3 −→ Z2 × Σ3 −→ 1,

where F5 is the free group on letters W = {[x, g]|x, g 6= 1, x ∈ Z3, g ∈ Σ2}. To

calculate the representation Z2 × Σ3 → Out(F5), start with evaluating ϕg for

g ∈ Z2 ∗ Σ3. Hence, ϕx([x, g]) = [g, x] = [x, g]−1 for all g ∈ Σ3. After restricting
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to the abelianization ϕ̃x([x, g]) = −[x, g]. Hence, the matrix representation of ϕ̃x

is given by [ϕ̃x] = −I5.

Similarly, ϕ(12)([x, (12)]) = [(12), x] and ϕ(12)([x, g]) = [(12), x][x, (12)·g] if g 6=

(12). In the abelianization, we get ϕ̃(12)([x, (12)]) = −[x, (12)] and ϕ̃(12)([x, g]) =

−[x, (12)] + [x, (12)g]. Order the basis as follows

W = {[x, (12)], [x, (13)], [x, (23)], [x, (123)], [x, (132)]}.

Then the matrix representation for ϕ̃(12) is

[ϕ̃(12)] =



−1 −1 −1 −1 −1

0 0 0 0 1

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0


.

One can find the other automorphisms similarly, since ϕg([x, h]) = [g, x][x, gh].

Hence,

[ϕ̃(13)] =



0 0 0 1 0

−1 −1 −1 −1 −1

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0


, [ϕ̃(23)] =



0 0 0 0 1

0 0 0 1 0

−1 −1 −1 −1 −1

0 1 0 0 0

1 0 0 0 0


and

[ϕ̃(123)] =



0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

−1 −1 −1 −1 −1

0 0 0 1 0


, [ϕ̃(132)] =



0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

−1 −1 −1 −1 −1


.
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Note that these matrices do not commute in general. For example [ϕ̃(13)]·[ϕ̃(132)] 6=

[ϕ̃(132)] · [ϕ̃(13)]. However, [ϕ̃x] commutes with the other matrices. Hence, the map

Z2 ∗ Σ3
Θ−→ Aut(F5)

ab−→ GL5(Z)

is the same as the composition

Z2 ∗ Σ3
p−→ Z2 × Σ3

Θ̃−→ Out(F5)
ab−→ GL5(Z).

Therefore, there is a homomorphism Z2 × Σ3 → GL5(Z).

2.7.1 Two finite cyclic groups

Consider the general case of two cyclic groups G1
∼= Z/nZ ∼= 〈x1|xn1 = 1〉 and

G2
∼= Z/mZ ∼= 〈x2|xm2 = 1〉. There is a short exact sequence of groups

1 −→ Fk −→ Zn ∗ Zm −→ Zn × Zm −→ 1,

where Fk is the free group on k = (n− 1)(m− 1) letters given by the elements of

W2 = {ωij = [xi1, x
j
2]|1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1}.

To compute the map Θ : Zn ∗ Zm → Aut(Fk), we first compute the automor-

phism ϕx1 ∈ Aut(Fk) by looking at the image of the generators ωij ∈ Fk under

ϕx1 to find

x1ωijx
−1
1 = x1[xi1, x

j
2]x−1

1 = [xi+1
1 , xj2][xj2, x1] = ωi+1,jω1,j

−1.

Looking at the induced map of ϕx1 onto the abelianization⊕
(n−1)(m−1)

Z ∼= F(n−1)(m−1)/[F(n−1)(m−1), F(n−1)(m−1)]

then

ϕ̃x1(ω11, ..., ω(n−1)(m−1)) = (ω2,1 − ω1,1, ω2,2 − ω1,2, ω2,3 − ω1,3, ...,−ω(n−1),(m−1))



44

which is given by the matrix

[ϕ̃x1 ] =



−Im−1 Im−1 0 0 · · · 0

0 −Im−1 Im−1 0 · · · 0

0 0 −Im−1 Im−1 · · · 0
...

...
...

. . . . . .
...

0 · · · 0 0 −Im−1 Im−1

0 · · · 0 0 0 · · · −Im−1


with respect the basis W2, where Im−1 is the (m− 1)× (m− 1) identity matrix.

Hence, clearly ϕx1 is not an element of IAk.

For ϕx2 ∈ Aut(Fk):

x2ωijx
−1
2 = x2[xi1, x

j
2]x−1

2 = [x2, x
i
1][xi1, x

j+1
2 ] = ωi,1

−1ωi,j+1.

Similarly, looking at the induced map of ϕx2 onto the abelianization of Fk we get

ϕ̃x2(ω11, ..., ω(n−1)(m−1)) = (−ω1,1 + ω1,2 − ω1,1 + ω1,3, ...,−ω(n−1),(m−1)),

which is given by the matrix

[ϕ̃x2 ] =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · An−1


with respect to the basis W2, where

Ai =



−1 1 0 0 · · · 0

−1 0 1 0 · · · 0

−1 0 0 1 · · · 0

−1 0 0 0
. . . 0

...
...

...
... · · · 1

−1 0 0 0 · · · 0


(m−1)×(m−1)
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for all i. Hence, ϕx2 is not an element of IAk.

In general, Θ maps an element xi1x
j
2 to ϕxi·xj ∈ Aut(Fk), which when restricted

to the abelianization
⊕

k Z, can be identified with the matrix [ϕ̃x1 ]
i[ϕ̃x2 ]

j. This

matrix is the identity if and only if i = n and j = m. Hence, there is a homomor-

phism

Zn ∗ Zm
ab◦Θ−−−→ GLk(Z).

Θ induces a homomorphism Θ̃ : Zn × Zm −→ Out(Fk). Hence, there is a homo-

morphism Zn × Zm
ab◦Θ̃−−−→ GLk(Z).

If m is even and n is odd or vice-versa, then

det[ϕ̃x1 ] = (−1)(n−1)(m−1) = 1,

det[ϕ̃x2 ] = det(A1) · · · det(An−1) = (det(A1))n−1.

Since det(Ai) = 1 ifm is odd and -1 ifm is even, and if n is odd we get (−1)n−1 = 1,

then det[ϕ̃x2 ] = 1. Hence, there is a homomorphism

Zn ∗ Zm −→ SLk(Z)

which induces a homomorphism

Zn ∗ Zm SLk(Z) ⊂ GLk(Z)

Zn × Zm Out(Fk).

ab

ab ◦ Θ̃ ◦ ab

Θ̃

ab

That is, there is a representation of Zn × Zm → SLk(Z). Similarly as before,

the map ab ◦ Θ can be considered the same as the composition p ◦ Θ̃, where p is

the projection to the abelianization of Zn ∗ Zm, since [ϕ̃x1 ] and [ϕ̃x2 ] commute.



46

To show that [ϕ̃x1 ] and [ϕ̃x2 ] commute it suffices to show that they commute for

n = m = 3

[ϕ̃x1 ] · [ϕ̃x2 ] = [ϕ̃x2 ] · [ϕ̃x1 ] =


1 −1 −1 1

1 0 −1 0

0 0 −1 1

0 0 −1 0

 .

In the next section we discuss the implications that these representations have

for the monodromy in for any simplicial complex K.

2.7.2 Any two finite groups

LetG andH be any finite groups, not necessarily cyclic or abelian, with cardinality

m and n respectively. That is, G = {1, g1, ..., gm−1} and H = {1, h1, ..., hn−1}.

There is a short exact sequence of groups

1 −→ F(m−1)(n−1) −→ G ∗H −→ G×H −→ 1.

To calculate the map G ∗H → Aut(F(m−1)(n−1)), start with ϕf , where f ∈ G or

f ∈ H. Choose a basis for F(m−1)(n−1) to be

W = {[gi, hj]|1 ≤ i ≤ m− 1, 1 ≤ m ≤ n− 1}.

Then,

ϕgk([gi, hj]) = gk[gi, hj]gk
−1 = [gkgi, hj][hj, gk]

and

ϕhk([gi, hj]) = hk[gi, hj]hk
−1 = [hk, gi][gi, hkhj].

To find the matrix representation of these, it is necessary to know the group

structure of G and H.

Hence, we get a composition of homomorphisms

G ∗H → G×H → Out(F(m−1)(n−1))
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which is the same as the composition

G ∗H → Aut(F(m−1)(n−1))→ Out(F(m−1)(n−1)).

Remark. In sections 2.7.1 and 2.7.2 as well as in the examples, data is being

collected, with the goal of axiomatizing properties of the monodromy.

2.7.3 A collection of finite discrete groups

In this section we list the properties of the monodromy representation that are ob-

served to hold for a finite collection of finite discrete groups. This will conclude the

endeavor in describing this representation completely for the 0–simplicial complex

K0, but with an incomplete answer.

Recall that for a groupG, there is a sequence of subgroups called the descending

central series of G given by

G = Γ1(G)D Γ2(G)D · · ·D Γn(G)D · · ·

such that the second stage is Γ2(G) = [G,G] and the (n + 1)–st stage is given

inductively Γn+1(G) = [Γn(G), G]. The Lie algebra associated to the descending

central series is given by

gr∗(G) =
⊕
i≥1

Γi(G)/Γi+1(G)

with grp(G) = Γp(G)/Γp+1(G).

Lemma 2.38. Let {Gi}ni=1 be a collection of finite discrete groups and K0 be the

0–simplicial complex on n vertices. Let ρ :
∏n

i=1Gi → Out(FN) be the monodromy

representation where FN is isomorphic to the kernel of the projection p : ∗ni=1Gi →∏n
i=1 Gi. Then the following hold:

1. There is a choice of a generating set for FN that consists of elements of the

form

f = [gi1 , [gi2 , [..., [gik−1
, gik ]...]]] ∈ Γk(∗ni=1Gi)
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such that gij ∈ Gij , for all ij.

2. For any g ∈ ∗ni=1Gi, the map ρ(g) ∈ Aut(FN) satisfies ρ(g)(f) = ∆ · f , such

that ∆ ∈ Γk+1(∗ni=1Gi). That is, ∆ = 1 ∈ grp(∗ni=1Gi) for p ≤ i.

Proof. Part 1: From the homotopy type of ZK0(EGi, Gi) ⊂ [0, 1]n it is clear that

all types of paths can be described using commutators of length at most n. It

remains to prove that it is sufficient to consider only gij ∈ Gi,j and not other

elements in ∗ni=1Gi to construct these commutators.

Start with [gigj, gk] ∈ Γ3(∗ni=1Gi). Then

[gigj, gk] = [gi, [gj, gk]] · [gj, gk·][gi, gk].

Thus for any product, say gi = h1 · · ·ht, it follows that

[gigj, gk] = [(h1 · · ·ht)gj, gk] = [h1 · · ·ht, [gj, gk]] · [gj, gk] · [h1 · · ·ht, gk].

Then this product can be reduced to a product of commutators of the form stated

in part 1, in finitely many steps by applying the step t more times.

Part 2: If f = [gi1 , [gi2 , [..., [gik−1
, gik ]...]]] ∈ Γk(∗ni=1Gi) is a element in FN , then

ρ(g)(f) = g · [gi1 , [gi2 , [..., [gik−1
, gik ]...]]] · g−1

= [g, [gi1 , [gi2 , [..., [gik−1
, gik ]...]]]] · [gi1 , [gi2 , [..., [gik−1

, gik ]...]]]

= ∆ · f,

where ∆ = [g, [gi1 , [gi2 , [..., [gik−1
, gik ]...]]]] = [g, f ] ∈ Γk+1(∗ni=1Gi).

2.8 Monodromy representation for general K

Let {Gi}ni=1 be a collection of finite discrete groups and K a simplicial complex

on n vertices. Recall the fibration due to Denham and Suciu [Denham and Suciu,

2007],

ZK(EGi, Gi) −→ ZK(BGi) −→
n∏
i=1

BGi
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and consider the monodromy representation

ρK : G1 × · · · ×Gn −→ Out(π1(ZK(EGi, Gi))).

The goal of this section is to describe the representation ρK using the represen-

tation ρK0 : G1 × · · · ×Gn −→ Out(FN), where FN is isomorphic to the kernel of

the projection ∗iGi →
∏

iGi.

There is a commutative diagram of fibrations

F F ∗

ZK0(EGi, Gi) ZK0(BGi)
∏n

i=1 BGi

ZK(EGi, Gi) ZK(BGi)
∏n

i=1 BGi,

p

where F is the homotopy fibre of the map p.

Lemma 2.39. Let π = π1(ZK(EGi, Gi)). Then π is torsion free.

Proof. The lemma follows since ZK(EGi, Gi) is homotopy equivalent to a finite

dimensional CW–complex.

Hence, since F is connected, it follows from the long exact sequence in ho-

motopy that the map p induces a surjection p# : FN → π, on the level of fun-

damental groups. Thus, the kernel of the projection map is a free group and

Ker(p#) < π1(F ). From Theorem 2.23 it follows that the fibre F is an Eilenberg–

Mac Lane space if and only if K is a flag complex.

Lemma 2.40. Let K be an abstract flag simplicial complex on n vertices and

G1, ..., Gn be finite discrete groups. Then there is a short exact sequence of groups

1→ Fq → G1 ∗ · · · ∗Gn →
∏
SK1

Gi → 1,

where Fq is the free group generated by {[gi, gj]|{i, j} ∈ SK1, gi ∈ Gi, gj ∈ Gj},

that is, {i, j} is an edge in SK1.
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Proof. There is a fibration F → ZK0(BGi)→ ZK(BGi). It follows from Theorem

2.23 that if K is a flag complex, then ZK(BGi) is an Eilenberg–Mac Lane space.

Hence, F is an Eilenberg–Mac Lane space with fundamental group H. Therefore,

there is a short exact sequence of groups

1→ H → G1 ∗ · · · ∗Gn →
∏
SK1

Gi → 1,

where the equality π1(ZK(BGi)) =
∏

SK1
Gi follows from [Davis and Okun, 2012].

By definition
∏

SK1
Gi = (∗ni=1Gi)/H, where N is the normal completion of the

group generated by {[gi, gj]|{i, j} ∈ SK1, gi ∈ Gi, gj ∈ Gj}. Hence, H = Fq is a

free group. This fact can also be deduced by observing that H is a subgroup of

π1(ZK0(EGi, Gi)), which is free.

Let FN be the kernel of the projection G1 ∗ · · · ∗Gn �
∏n

i=1Gi. Consider the

commutative diagram of fibrations above. As mentioned in the proof of Lemma

2.40, if K is a flag complex, then it follows that all the spaces involved in the

diagram are Eilenberg-Mac Lane spaces. Hence, there is a commutative diagram

of short exact sequences on the level of the fundamental groups

1 1 1 1 1

1 F F 1 1

1 FN G1 ∗ · · · ∗Gn

∏n
i=1Gi 1

1 π
∏

SK1
Gi

∏n
i=1Gi 1

1 1 1

∼=

p#

Consider the diagram below, where the dotted homomorphisms are yet to be

determined if they exist.
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FN ∗iGi

∏
Gi

Inn(FN) Aut(FN) Out(FN)

π
∏

SK1
Gi

∏
Gi

Inn(π) Aut(π) Out(π)

p#

ρK0

ρK

If there is a homomorphism q : Aut(FN) → Aut(π) induced from the projection

p# : FN → π, then the following diagram should commute

Ker(p#) −−−→ FN
p#−−−→ πyf yf yf̄

Ker(p#) −−−→ FN
p#−−−→ π.

That means, f ∈ Aut(FN) should preserve the kernel of the induced projection

p#. Hence, this proves the following lemma

Lemma 2.41. If f ∈ Aut(FN), then f(Ker(p#)) ⊆ Ker(p#).

Lemma 2.42. Let K be a flag complex. Then

H1(ZK(BGi);Z) ∼= H1(ZK0(BGi);Z).

Proof. If K is a flag complex, then ZK(BGi) is an Eilenberg–Mac Lane space.

Hence, H1(ZK(BGi);Z) ∼= H1(π1(ZK(BGi);Z)) = H1(
∏

SK1
Gi;Z). Similarly, it

follows that H1(ZK0(BGi);Z) ∼= H1(π1(ZK0(BGi);Z)) = H1(∗ni=1Gi;Z). Since

both
∏

SK1
Gi and ∗ni=1Gi both project to G1× · · ·×Gn, then they have the same

abelianization.

Remark. The goal is to show that if there is a homomorphism r : Out(FN) →

Out(π) induced by p#, then there is a homomorphism ρK : G1×· · ·×Gn → Out(π)

such that the following diagram commutes
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1 Out(FN)

G1 × · · · ×Gn

Out(π).

r

ρK0

ρK

That means, ρK = r ◦ ρK0 . Hence, we want to find such a map r.

2.9 An extension problem

In this section we are interested in investigating a certain extension problem that

arises from polyhedral products. Assume {G1, ..., Gn} is a family of subgroups of

a finite discrete group G. Then there is a natural map

G1 ∗ ... ∗Gn
ϕ−→ G.

In work of A. Adem, F. R. Cohen and E. Torres Giese [Adem et al., 2011], the

spaces B(q,G) were introduced, such that the sequence of spaces

B(2, G) ⊂ B(3, G) ⊂ · · · ⊂ B(∞, G) = BG

gives a filtration of BG. B(2, G) is defined to be the geometric realization

B(2, G) =
( ⊔
k≥1

Hom(Zk, G)×∆[k]
)
/ ∼,

where ∼ is generated by the standard face and degeneracy operations.

A proof of the following lemma can be found in [Adem et al., 2011].

Lemma 2.43. Let G be a nonabelian group. The following are equivalent

a. If g /∈ Z(G), then C(g) is abelian.

b. If [g, h] = 1, then C(g) = C(h) whenever g, h /∈ Z(G).
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c. If [g, h] = 1 = [h, k], then [g, k] = 1 whenever h /∈ Z(G).

d. If A,B ≤ G and Z(G) < CG(A) ≤ CG(B) < G, then CG(A) ≤ CG(B).

Definition 2.44. Let G be a nonabelian group. If G satisfies any of the equivalent

statements in Lemma 2.43, then G is called a transitively commutative group, or

simply a TC group.

In [Adem et al., 2011] Adem, Cohen and Torres Giese prove the following

theorem

Theorem 2.45 (Adem, Cohen & Torres Giese). If G is a finite TC group with

trivial center, then there is a homotopy equivalence

B(2, G) '
∨

1≤i≤k

( ∏
p||CGai|

BP
)
,

where P ∈ SylP (G).

Basically, this theorem states that if G is a TC group, then

B(2, G) = BG1 ∨ · · · ∨BGn

and this is the polyhedral product ZK0(BGi). Hence, there is a map

ZK0(BGi) −→ BG.

On the level of the fundamental groups, this brings the discussion back to the

homomorphism

G1 ∗ ... ∗Gn
ϕ−→ G.

It is natural to ask for which abstract simplicial complexes K on [n], does the

map BG1 ∨ ... ∨ BGn
Bϕ−−→ BG extend to ZK(BGi), that is for which K does the

following diagram commute
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BG1 ∨ ... ∨BGn BG

ZK(BGi)

Bϕ

i

The importance of this question is that if the map in question extends, then we

detect commuting elements in G. One could also pose the same question alge-

braically. For what simplicial complexes K does the following diagram commute

G1 ∗ · · · ∗Gn G

∏
SK1

Gi

ϕ

i#

The rest of this section will be devoted to understanding this extension question.

The first example is that of a transitively commutative (TC) group G with

trivial center, and the family of subgroups {G1, ..., Gn} is chosen to consist of the

maximal abelian subgroups of G.

Proposition 2.46. Let G be a transitively commutative group and let {A1, ..., Ak}

be the distinct maximal abelian subgroups of G. Then the map Bϕ : BA1 ∨ · · · ∨

BAk → BG does not extend for any simplicial complex K.

Proof. If it extends for a simplicial complex K, then K has at least one edge,

say {i, j}. This implies that [Ai, Aj] = 1 for some i 6= j. One can check that

the groups Ai are centralizers of elements in G not in the center, and that they

intersect trivially, yielding a contradiction to the assumption.

Let Γk(G) denote the k–th stage of the descending central series of the group

G. Next we define a similar class of groups with the same property.

Definition 2.47. Let gl, kl ∈ Γl−1(G). We say that G is an l–transitively com-

mutative group, or simply l–TC group, if

[gl, h] = 1 = [h, kl] =⇒ [gl, kl] = 1 for all h ∈ G.
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Note that a 2–TC group is the same as the ordinary TC group. Also that the

condition that l ≥ 2 is required for the definition.

Remark. If G is an m–TC group then it is an n–TC group for all n ≥ m. This

follows from the structure of the descending central series. Hence, if G is a TC

group, then it is a k–TC group for all k ≥ 2. By convention, let finite simple

groups be called 1–TC groups.

Example 2.48. A group which is 3–TC but not 2–TC is the quaternion group,

Q8. This group has a presentation as follows

Q8 = {±1,±i,±j,±k|i2 = j2 = k2 = −1, ij = k, jk = i, ki = j}.

First we note that [i,−1] = 1 = [−1, j] but [i, j] = −1, so Q8 is not 2–TC. Now

[i, j] = [j, k] = [k, i] = −1 and [[i, j], h] = 1 for any h ∈ Q8. Therefore Q8 is 3–

TC. One can also compute the descending central series for Q8. Its commutator

subgroup is Γ2(Q8)[Q8, Q8] = {±1} ∼= Z/2Z and Γ3(Q8) = [[Q8, Q8], Q8] = 1.

Therefore, the descending central series for Q8 is

1C Z/2ZCQ8.

Lemma 2.49. If G is nilpotent of nilpotency class m, then G is an m–TC group.

Proof. G is nilpotent of nilpotency class m means Γm(G) = 1, that is, [gm, h] = 1

for all gm ∈ Γm−1(G), h ∈ G. In particular, [gm, km] = 1 for all gm, km ∈ Γm−1(G),

hence G is m-TC.

Definition 2.50. Let g ∈ G. The l–stage centralizer of g ∈ G, denoted C l
G(g), is

the subgroup

C l
G(g) := {gl+1 ∈ Γl(G)|gl+1gg

−1
l+1 = g}.

We can also write C l
G(g) = CG(g) ∩ Γl(G).
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Lemma 2.51. Let G be an (l+ 1)–TC group with trivial center. Then C l
G(g) are

abelian subgroups of G for all g ∈ G. Moreover, if Z(G) = 1, then C l
G(g) are

distinct and either intersect trivially or coincide.

Proof. It is clear that C l
G(g) are abelian. If C l

G(g) ∩ C l
G(h) is non-trivial then

there is 1 6= k ∈ C l
G(g) ∩ C l

G(h) and thus, the two coincide by definition of an

(l + 1)–TC group.

Lemma 2.52. Let {C l
G(g)}g∈Λ be the family of distinct l-stage centralizers of

elements in G. If G is an (l + 1)–TC group with Z(G) = 1, the map∨
g∈Λ

BC l
G(g) −→ BG

does not extend for any K on [m] where m = |{C l
G(g)}g∈Λ|.

Proof. This follows from the previous lemma.

Corollary 2.53. Let G be a finite (k + 1)–TC group with trivial center. Let

G1, G2 be two subgroups of G such that Ck
G(g1) ≤ G1 and Ck

G(g2) ≤ G2, where

Ck
G(g1) ∩ Ck

G(g2) = 1. Then the map

BG1 ∨BG2 −→ BG

does not extend to BG1 ×BG2.

Proof. The proof follows from Lemma 2.52.

Using this corollary the following theorem follows easily. This theorem applies

to TC groups in particular.

Theorem 2.54. Let {Gi}mi=1 be a family of subgroups of a finite (k+1)–TC group

G with trivial center. If Gi contain distinct C l
G(gi), for i = 1, 2, ...,m and l ≥ k,

then the map ∨
1≤i≤m

BGi −→ BG

does not extend to ZK(BGi) for any K on [m], other than the 0-skeleton.
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Proof. From the definition we have C l
G(gi) = CG(gi)∩Γl(G) which gives C l

G(gi) ≥

C l+1
G (gi). The rest of the proof follows from Corollary the 2.9.

Below we give a result for when this extension actually exists.

Definition 2.55. Let K be a simplicial complex. The flag complex of K is the

simplicial complex Flag(K) obtained fromK by completing the minimal non–faces

to faces.

Note that an edge {i, j} is in K if and only if it is an edge in Flag(K). Now

let {H1, ..., Hn} be a collection of subgroups of a group G. Let Γ be a graph on

n vertices that records the commutativity relations of the set {H1, ..., Hn}. That

means, {i, j} is an edge in Γ if and only if [Hi, Hj] = 1. Let Flag(Γ) be flag

complex of Γ.

Lemma 2.56. Let {H1, ..., Hn} be a collection of subgroups of a finite group G

with Z(G) = 1. If Γ is the graph described above, then the map

BH1 ∨ · · · ∨BHn −→ BG

extends to ZFlag(Γ)(BHi).

Proof. By definition, Flag(Γ) is a flag complex. Hence, the polyhedral product

ZFlag(Γ)(BHi) is an Eilenberg–Mac Lane space with fundamental group
∏

Γ Hi. So

there is a commutative diagram of groups

H1 ∗ · · · ∗Hn G

∏
Γ Hi G.

ϕ

i# id

ϕ̃

Hence, there is a commutative diagram of spaces

BH1 ∨ · · · ∨BHn BG

ZFlag(Γ)(BHi) BG.

Bϕ

Bi# id

Bϕ̃
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This lemma actually holds for any simplicial complex K such that Γ ⊆ K ⊆

Flag(Γ), even though K is not a flag complex.

Theorem 2.57. Let {H1, ..., Hn} be a collection of subgroups of a finite group G

with Z(G) = 1. If Γ is the graph described above and K is a simplicial complex

such that Γ ⊆ K ⊆ Flag(Γ), then the map

BH1 ∨ · · · ∨BHn −→ BG

extends to ZK(BHi).

Proof. The proof follows by naturality and 2.56. First, the following diagram of

inclusions commutes

BH1 ∨ · · · ∨BHn ZFlag(Γ)(BHi)

ZK(BHi) .

Bi# = i

i1 i2

Combining this diagram with the diagram of spaces in Lemma 2.56, it follows

that the diagram

BH1 ∨ · · · ∨BHn BH1 ∨ · · · ∨BHn BG

ZK(BHi) ZFlag(Γ)(BHi) BG

=

i1

Bϕ

Bi# id

i2 Bϕ̃

commutes. Hence, the map BH1∨ · · · ∨HBn
Bϕ−−→ BG extends to ZK(BHi). That

is, the following diagram of spaces commutes

BH1 ∨ ... ∨BHn BG

ZK(BGi) .

Bϕ

i1
Bϕ̃ ◦ i2
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We finish this section by posing two questions:

Question 2.58. A natural question to ask about the notion of a k–TC groups is

whether every finite non–abelian group G is k–TC, for some integer k ≥ 2.

Question 2.59. Are these the only obstructions to the extension of the maps∨
iBGi −→ BG? Equivalently, if G1 and G2 do not contain distinct C l

G(gi) for

any l ≥ k, does the map
∨
iBGi −→ BG extend to ZK(BGi) for some K other

than the 0–skeleton? If the answer to this question is affirmative then we will

have found a topological characterization for (k + 1)–TC groups. In particular,

we will have found a topological characterization for TC groups.



60

3 Commuting Elements in Lie groups

3.1 Introduction

The goal of this chapter is to study the homotopy theoretic properties of the

spaces of homomorphisms Hom(Zn, G) for certain Lie groups G. In particular, we

study the homology and cohomology groups of these spaces.

The approach taken here is somewhat different from previous approaches that

are present in the literature. Instead of investigating the spaces Hom(Zn, G)

individually, they are assembled into a single space, which is called X(2, G), see

Definition 3.23. The first class of Lie groups considered are the compact and

connected Lie groups with maximal torus T such that every abelian subgroup of

G can be conjugated to a subgroup of T . A torus with this additional property

will be called a strong maximal torus, see also Definition 3.20. It turns out that

the assembly of all the spaces Hom(Zn, G) into a single space X(2, G), which lies

inside the James reduced product J(G), has a cohomology algebra that can be

computed explicitly when G has a strong maximal torus T and the coefficients are

in the ring of integers with the order of the Weyl group inverted. In cases when G

does not have a strong maximal torus T , e.g. SO(3), the methods of calculation

need some modification, and the answer is known for all such groups, but we need

to restrict to the connected component of the identity of the space X(2, G). The

main theme of this chapter is to identify properties of the space X(2, G).

Assume that all the spaces considered here are of the homotopy type of CW–



61

complexes with non–degenerate basepoints. Together with the main theorem, the

following are the main results in this chapter. Let Y be a G-space such that the

projection Y −→ Y/G is a locally trivial fibre bundle. Let X be a G-space such

that the basepoint ∗ ∈ X is fixed by the action of G. The James construction

J(X) is also a G-space with fixed basepoint.

Theorem 3.1. Let Y be a G-space such that the projection Y −→ Y/G is a locally

trivial fibre bundle. Let X be a G-space with fixed basepoint ∗. Then there is a

stable homotopy equivalence

Σ(Y ×G J(X)) ' Σ(Y/G ∨ (
∨
n≥1

Y ×G X̂n/Y ×G ∗)).

As an application of this theorem, let Y be a Lie group G with basepoint 1

and X be its maximal torus T . Both Y and X are NT−spaces, where NT is the

normalizer of T , acting on G by right translation and on T by conjugation. Given

this data the following corollary holds,

Corollary 3.2. Let G, T and NT be as above. Then there is a stable homotopy

equivalence

Σ(G×NT J(T )) ' Σ(G/NT ∨ (
∨
n≥1

G×NT T̂ n/G×NT 1)).

Given the space X(2, G), if G has a strong maximal torus T , then there is a

surjection

Θ : G×NT J(T )� X(2, G).

Let Z[|W |−1] denote the ring of integers with the order of the Weyl group W

inverted. Then the fibers of θ have the following property,

Proposition 3.3. Let G be a compact and connected Lie group with strong max-

imal torus T and Weyl group W . Then the fibres of Θ

Θ : G×NT J(T )� X(2, G)

have trivial reduced homology with coefficients in Z[|W |−1].
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Therefore, using this proposition, the next theorem holds. For the remaining

of this chapter let R denote the ring Z[|W |−1].

Theorem 3.4. If G is a compact and connected Lie group with strong maximal

torus T , then Θ induces a homology isomorphism with coefficients in R. That is,

there are isomorphisms

H∗(G×NT J(T ), R) ∼= H∗(X(2, G), R).

Finally, the case when the compact and connected Lie group G does not nec-

essarily have a strong maximal torus T , is considered. Let G be the Lie group

SO(3), which does not have a strong maximal torus. The following proposition

about SO(3) holds,

Proposition 3.5. There is a homotopy equivalence

X(2, SO(3)) ' X(2, SO(3))1

⊔(⊔
∞

S3/Q8

)
,

where X(2, SO(3))1 is the connected component of the identity.

This proposition is an instance of a more general construction that works here.

For any compact and connected Lie group G, there is a surjection

Θ1 : G×NT J(T )� X(2, G)1.

Similar to the map Θ, the following proposition holds for the fibres of Θ1, which

gives explicit answers for the homotopy theoretic invariants of X(2, SO(3)), such

as homology or cohomology.

Proposition 3.6. Let G be a compact and connected Lie group with maximal

torus T and Weyl group W . Then the fibres of Θ1

Θ1 : G×NT J(T )� X(2, G)1

have trivial reduced homology with coefficients in the ring R.
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Therefore, using Proposition 3.6 the next theorem follows.

Theorem 3.7. If G is a compact and connected Lie group with maximal torus T ,

then Θ1 induces a homology isomorphism with coefficients in R. That is, there

are isomorphisms

H∗(G×NT J(T ), R) ∼= H∗(X(2, G)1, R).

It has been proved that if G has a strong maximal torus, then Hom(Zn, G) is

path–connected for all n ≥ 1, see [Adem and Cohen, 2007]. Hence, Theorem 3.7

implies Theorem 3.4.

Remark. Another fact to note is that Theorem 3.7 applies to compact and con-

nected exceptional Lie groups, namely the groups G2, F4, E6, E7 and E8.

The homology groups are given by the following coinvariants.

Theorem 3.8. Let G be a connected and compact Lie group with maximal torus

T and Weyl group W . Then there is an isomorphism in homology

H∗(X(2, G)1;R) ∼=
(
R[W ]⊗R T [V ]

)
W
.

If grading of homology is disregarded, that is, if ungraded homology is consid-

ered, then the homology groups are given as follows. Let HU
∗ denote the ungraded

homology, TU [V ] denote the ungraded tensor algebra over V and R denote the

ring R. Then the following theorem holds.

Theorem 3.9. Let G be a connected and compact Lie group with maximal torus

T and Weyl group W . Then there is an isomorphism in ungraded homology

HU
∗ (X(2, G)1;R) ∼= TU [V ].

The space X(2, G) also admits a stable decomposition as wedge sum of com-

ponents as follows,
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Proposition 3.10. Let G be a compact and connected Lie group. There is a stable

homotopy equivalence

ΣX(2, G) ' Σ
∨
n≥1

Ĥom(Zn, G).

This proposition can be used to recover information about the spaces of com-

muting elements Hom(Zn, G), see Section 3.3. IfG is a closed subgroup ofGLn(C),

the spaces Hom(Zn, G) admit a stable decomposition as well, see Theorem 1.1,

which was given by A. Adem and F. Cohen [Adem and Cohen, 2007] to be

Σ(Hom(Zn, G)) '
∨

1≤k≤n

Σ(

(nk)∨
Hom(Zk, G)/Sk(G)),

where Hom(Zk, G)/Sk(G) = Ĥom(Zk, G) and Sk(G) is the subspace of Hom(Zk, G)

consisting of k-tuples with at least one coordinate being the identity. So the sta-

ble sums for Hom(Zk, G)/Sk(G) can be obtained from the stable decomposition

of X(2, G).

The structure of this chapter is as follows. We start by proving a decomposition

theorem in Section 3.2. A few applications of the decomposition are given in the

same section. The space X(2, G) is defined in Section 3.3 and its homology is

computed in Section 3.4 for Lie groups with strong maximal tori. In Section

3.6 the homology of the connected component of the identity representation is

calculated for compact and connected Lie groups in general.

3.2 A decomposition theorem

Let (X, ∗) be a CW–pair with non-degenerate basepoint and let G be a topological

group. What follows is the definition of the James reduced product or James

construction, which is a free associative monoid with generators the elements of

the pointed space X, where ∗ is the identity element.
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Definition 3.11. The James reduced product on the pointed CW–complex (X, ∗)

is defined to be

J(X) :=
⊔
n≥0

Xn/ ∼,

where ∼ is the equivalence relation generated by the relation

(x1, ..., xn) ∼ (x1, ..., xi−1, x̂i, xi+1, ..., xn) if xi = ∗

and X0 is the basepoint ∗.

The space J(X) has the structure of an associative monoid with elements

being the reduced words of the form x1 · · ·xk, where ∗ 6= xi ∈ X for all i, or all

of them are ∗, and the multiplication being concatenation of words. If X is a

G–space with fixed basepoint, then J(X) is also a G−space with the action being

g · (x1 · · · xk) = (g · x1) · · · (g · xk), where the class of the basepoint is fixed by G.

The James reduced product has a natural filtration as follows,

Definition 3.12. Let Jq(X) ⊂ J(X) be the image of Xq in J(X). Then

Jq(X) =
⊔

1≤i≤q

X i/ ∼,

where ∼ is the same relation as in 3.11. So Jq(X) is the subspace consisting of

words with length at most q.

So there is a filtration

J0(X) = ∗̄ ⊂ J1(X) = X ⊂ J2(X) ⊂ · · · ⊂ Jq(X) ⊂ · · · ⊂ J(X),

where G acts on each Jq(X). Moreover, the inclusions Jq−1(X) ↪→ Jq(X) are

cofibrations with cofiber Jq(X)/Jq−1(X) = X̂q, where X̂q = X ∧ · · · ∧ X, the

q–fold smash product of X with itself. This follows since the diagram⊔
1≤i≤q−1X

i
⊔

1≤i≤qX
i

Jq−1(X) Jq(X)

i

p1 p2

ī



66

commutes, where p1 and p2 are the quotient maps by the relation ∼.

Let X be of the homotopy type of a connected CW -complex. Consider the

following theorem which is due to I. James [James, 1955].

Theorem 3.13 (James). If X has the homotopy type of a connected CW−complex,

there is a homotopy equivalence J(X) ' ΩΣX.

One result is stated next.

Theorem 3.14. Let X be a path-connected G−space with non-degenerate fixed

basepoint. There is a G-equivariant homotopy equivalence ΣJ(X) ' Σ(
∨
n≥1 X̂

n).

The following classical technical lemma is used in the proof of Theorem 3.14.

Lemma 3.15. A map f : A→ ΩB extends to J(A) ' ΩΣA, that is, there is Ωf

such that the following diagram commutes

A ΩB

J(A) = ΩΣA.

f

∃Ωf

Proof. See [Cohen et al., 1987].

Proof of Theorem 3.14. Define a map H as follows

H : J(X) −→ J(
∨
q≥1

X̂q)

(x1, ..., xn) 7→
∏
I⊂[n]

xI

where xI = xi1 ∧ · · · ∧ xiq for I = (i1, ..., iq) running over all admissible sequences

in [n], that is all sequences of the form (i1 < · · · < iq), and xI having the left

lexicographic order. From Theorem 3.13 it follows that there is a homotopy equiv-

alence J(
∨
q≥1 X̂

q) ' ΩΣ(
∨
q≥1 X̂

q). Now, it follows from Lemma 3.15 that there

is a map ΩH, such that the following diagram commutes
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J(X) ΩΣ(
∨
n≥1 X̂

n)

J(J(X)) = ΩΣJ(X).

H

ΩH

The claim is that ΩH is a homotopy equivalence, and therefore there is a

homotopy equivalence

ΣJ(X) ' Σ(
∨
n≥1

X̂n).

To prove the claim we use induction and the filtration in definition 3.12.

For n = 1 there is a map of spaces

ΣJ1(X) = ΣX −→ Σ(
∨

1≤n≤1

X̂n) = ΣX

which is a homotopy equivalence. Since the suspension of cofibrations is a cofi-

bration, there are cofibrations ΣJ1(X) ↪→ ΣJ2(X) and ΣX ↪→ Σ(X ∨ X̂2) both

with cofiber X̂2 as follows

ΣJ1(X) ↪→ ΣJ2(X)→ Σ(J2(X)/J1(X)) = ΣX̂2

ΣX ↪→ Σ(X ∨ X̂2)→ Σ((X ∨ X̂2)/X) = ΣX̂2.

So there is a commutative diagram

ΣJ1(X) ΣX

ΣJ2(X) Σ(X ∨ X̂2)

ΣX̂2 ΣX̂2.

'

h1

'

Hence, there is a map h1 which is a homotopy equivalence. Now, assume there is

a homotopy equivalence ΣJq(X)'Σ(
∨

1≤n≤q X̂
n). There are cofibrations

ΣJq(X) −→ ΣJq+1(X) −→ Σ(Jq+1(X)/Jq(X)) = ΣX̂q+1,
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Σ(
∨

1≤n≤q

X̂n) −→ Σ(
∨

1≤n≤q+1

X̂n) −→ Σ((
∨

1≤n≤q+1

X̂n)/(
∨

1≤n≤q

X̂n)) = ΣX̂q+1.

So there is a homotopy commutative diagram of spaces

ΣJq(X) Σ(
∨

1≤n≤q X̂
n)

ΣJq+1(X) Σ(
∨

1≤n≤q+1 X̂
n)

ΣX̂q+1 ΣX̂q+1.

'

hq

'

Hence hq is a homotopy equivalence. Therefore, by induction there is a homotopy

equivalence

ΣJ(X) ' Σ(
∨
n≥1

X̂n).

The group G acts on the product Xn by

g · (x1, . . . , xn) = (g · x1, . . . , g · xn).

Hence, G acts on the n–fold smash product X̂n by

g · (x1 ∧ · · · ∧ xn) = (g · x1 ∧ · · · ∧ g · xn).

These two actions induce actions of G on J(X) and J(
∨
n≥1 X̂

n), respectively.

Note that, by hypothesis, the action satisfies g · ∗ = ∗ for all g ∈ G. The map

H : J(X)→ J(
∨
n≥1 X̂

n) satisfies

H(g · (x1, . . . , xn)) = H(g · x1, . . . , g · xn)

=
∏

{i1,...,iq}=I⊂[n]

(g · xi1 ∧ · · · ∧ g · xiq)

= g ·
( ∏
I⊂[n]

xI
)

= g ·H(x1, . . . , xn)

so it is G–equivariant. Similarly, it follows that the map ΩH : J(J(X)) →

J(
∨
n≥1 X̂

n) is also G–equivariant, by extending H multiplicatively.
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Using a similar method of induction, the following decomposition theorem

holds.

Theorem 3.16. Let Y be a G-space such that the projection Y −→ Y/G is a

locally trivial fibre bundle. Let X be a G-space with fixed basepoint ∗. Then there

is a homotopy equivalence

Σ(Y ×G J(X)) ' Σ
(
Y/G ∨ (

∨
n≥1

(Y ×G X̂n)/(Y ×G ∗))
)
.

Before proving the theorem, we state a technical lemma.

Lemma 3.17. Let Y be a G-space such that the projection Y −→ Y/G is a locally

trivial fibre bundle. Let X be a G-space with fixed basepoint ∗. Then there is a

fibre bundle

X −→ Y ×G X −→ Y/G

such that Y/G −→ Y ×G X is a cofibration with cofibre (Y ×G X)/(Y/G) and

there is a homotopy equivalence

Σ(Y ×G X) ' Σ(Y/G) ∨ Σ
(
(Y ×G X)/(Y/G)

)
.

A version of this lemma can be found in [Adem and Cohen, 2007]. Note that

the orbit space Y/G can be rewritten as Y ×G ∗. Now we are ready to prove

Theorem 3.16.

Proof of Theorem 3.16. Define a map

H : Y × J(X) −→ J(
∨
q≥1

Y × X̂q)

(y, (x1, ..., xn)) 7→
∏
I⊂[n]

y × xI

where xI = xi1 ∧ · · · ∧ xiq for I = (i1, ..., iq) running over all admissible sequences

in [n], that is all sequences of the form (i1 < · · · < iq), and xI having the left

lexicographic order. G acts on Y × J(X) diagonally by

g · (y, (x1 · · · xn)) = (g · y, ((g · x1) · · · (g · xn))).
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Hence, G acts on J(
∨
q≥1 Y × X̂q) by

g ·
( ∏
I⊂[n]

y × xI
)

=
∏

{i1,...,iq}=I⊂[n]

(g · y)× (g · xi1 ∧ · · · ∧ g · xiq).

Note that the basepoint ∗ is fixed by the action of G. It follows that the map H

satisfies

H(g · (y, (x1, ..., xn)) =
∏

{i1,...,iq}=I⊂[n]

(g · y)× (g · xi1 ∧ · · · ∧ g · xiq)

= g ·
( ∏
I⊂[n]

y × xI
)

= g ·H((y, (x1, ..., xn)),

so H is G–equivariant. Taking the quotient by the diagonal G-action we get an

induced map HG

Y × J(X) J(
∨
q≥1 Y × X̂q)

Y ×G J(X) J(Y/G ∨ (
∨
q≥1 Y × X̂q/(Y ×G ∗))).

H

HG

By Lemma 3.15 there is a map ΩHG, such that the following diagram commutes

Y ×G J(X) J(Y/G ∨ (
∨
q≥1 Y × X̂q/(Y ×G ∗)))

J(Y ×G J(X)) = ΩΣ(Y ×G J(X)).

HG

ΩHG

The claim is that ΩHG is a homotopy equivalence, and the theorem follows.

To prove the claim, similarly as in the case of Theorem 3.14, induction on

James filtration will be used. On one side q will mean the q–th stage of the James

filtration, and on the other side it will be the q–fold smash product of X. Hence,

we will restrict ΩHG to those spaces and compare them. Recall that the filtration

is given by

J0(X) = ∗̄ ⊂ J1(X) = X ⊂ J2(X) ⊂ · · · ⊂ Jq(X) ⊂ · · · ⊂ J(X).
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Let fq be the map of ΩHG restricted to the q–th stage. For the case q = 1, there

is a map

Σ(Y ×G J1(X))
f1−→ Σ(Y/G ∨ (Y ×G X)/Y ×G ∗).

From Lemma 3.17, it follows that there is a homotopy equivalence

Σ(Y ×G J1(X)) ' Σ(Y/G ∨ (Y ×G X)/Y ×G ∗).

Now assume there are maps f2, f3 such that the following diagram commutes

Σ(Y ×G J1(X)) Σ(Y/G ∨ (
∨

1≤n≤1 Y ×G X/Y ×G ∗))

Σ(Y ×G J2(X)) Σ(Y/G ∨ (
∨

1≤n≤2 Y ×G Xn/Y ×G ∗))

Σ(Y ×G J2(X)/Y ×G J1(X)) Σ((Y ×G X̂2)/Y ×G ∗).

'

f2

f3

Our aim is to prove that either f2 or f3 is a homotopy equivalence. In the proof

of Theorem 3.14 we got that there are homotopy equivalences

ΣJn(X) ' Σ(
∨

1≤q≤n

X̂n).

Also there is a fibration

J2(X) −→ Y ×G J2(X) −→ Y/G

and hence there is a first quadrant spectral sequence

E2
p,q = Hp(Y/G;Hq(J2(X);Z))

converging to H∗(Y ×G J2(X);Z).

For q ≥ 1 we have that

Hq(J2(X);Z) ∼=
⊕

1≤i≤2

Hq(X̂
i;Z).
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Hence, for q ≥ 1 we get

E2
p,q = Hp(Y/G;

⊕
1≤i≤2

Hq(X̂
i;Z)) ∼=

⊕
1≤i≤2

Hp(Y/G;Hq(X̂
i;Z))

and for q = 0 we get

E2
p,0 = Hp(Y/G;Z).

Therefore we get that the same spectral sequence converges to

H∗(Y/G ∨ (
∨

1≤n≤2

Y ×G Xn/Y ×G ∗);Z).

Hence, f2 is a homotopy equivalence and so is f3.

Using the induction step we get

Σ(Y ×G Jq(X)) Σ(Y/G ∨ (
∨

1≤n≤q Y ×G X/Y ×G ∗))

Σ(Y ×G Jq+1(X)) Σ(Y/G ∨ (
∨

1≤n≤q+1(Y ×G Xn)/Y ×G ∗))

Σ
(
(Y ×G Jq+1(X))/(Y ×G Jq(X))

)
Σ
(
(Y ×G X̂q+1)/(Y ×G ∗)

)
.

'

g2

g3

The same argument works for the spectral sequence getting

E2
p,q = Hp(Y/G;

⊕
1≤i≤q+1

Hq(X̂
i;Z)) ∼=

⊕
1≤i≤q+1

Hp(Y/G;Hq(X̂
i;Z))

for q ≥ 1, and

E2
p,0 = Hp(Y/G;Z)

which gives a spectral sequence that converges to

H∗(Y/G ∨ (
∨

1≤n≤q+1

Y ×G Xn/Y ×G ∗);Z)

and the theorem follows.



73

3.2.1 Applications of Theorem 3.16

Let G be a compact Lie group with maximal torus T . Consider the quotient

space G ×NT J(T ), where NT is the normalizer of T , acting diagonally on the

product G× J(T ). More precisely NT acts on on T by conjugation and on G by

group multiplication on the left. Then the following are immediate corollaries of

Theorem 3.16.

Corollary 3.18. Let G be a compact and connected Lie group with maximal torus

T and NT acting on T by conjugation and on G by group multiplication. There

is a homotopy equivalence

Σ(G×NT J(T )) ' Σ(G/NT ∨ (
∨
n≥1

G×NT T̂ n/G×NT {1})).

Corollary 3.19. With the same assumptions of Corollary 3.18, there is a homo-

topy equivalence

Σ(G×NT J(T )/(G×{1})) ' Σ(G/NT ∨ (
∨
n≥1

G×NT T̂ n/G×NT {1}))/(G×{1}).

3.3 The space X(2, G)

Let G be a Lie group and 1 ∈ G be the identity element and basepoint of G. In

this section we construct a space called X(2, G), which assembles all the spaces

of commuting elements Hom(Zn, G) into a single space inside the James reduced

product of G. This space will be used to study the homology and cohomology

groups of the spaces Hom(Zn, G). For the remaining of the chapter assume that

G is compact and connected, unless otherwise stated.

Definition 3.20. A subgroup T of G is called a torus if it is a isomorphic to a

k–torus for some k. It is a maximal torus if it is not contained in any larger torus

subgroup of G.
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In this discussion we will consider a maximal torus T of a compact and con-

nected Lie group G which has the additional property that every abelian subgroup

of G is conjugate to a subgroup of T . Every compact and connected G has a max-

imal torus. However, this additional property of the maximal torus does not hold

for all G. For example SO(3) is compact and connected and has a subgroup iso-

morphic to Z2 ⊕Z2 which is not conjugate to a subgroup of its maximal torus T ,

which is isomorphic to the circle S1. To distinguish between these types of tori

and the standard maximal torus, the following definition is introduced.

Definition 3.21. Let G be a Lie group. T is called a strong maximal torus if it

is a maximal torus of G such that every abelian subgroup of G is conjugate to a

subgroup of T .

Definition 3.22. Let G be a Lie group with maximal torus T and NT the nor-

malizer of T . Then the Weyl group of G, denoted by W , is the group W = NT/T .

It is a classical result that if G is a compact Lie group, then the Weyl group

of G is finite, see [Adams, 1969] for a proof.

Let G be a compact Lie group with maximal torus T . Recall that the James

reduced product on the pointed space (G, 1 = ∗) is defined as

J(G) =
⊔
n≥1

Gn/ ∼

where ∼ is the equivalence relation generated by the identifications

(g1, ..., gi−1, 1, gi+1, ..., gn) ∼ (g1, ..., gi−1, 1̂, gi+1, ..., gn).

Recall that the space of homomorphisms Hom(Zn, G) can be realized as a sub-

space of Gn by identifying all f ∈ Hom(Zn, G) with f ∼ (g1, ..., gn) ∈ Gn, where

f(t1, ..., tn) = (gt11 , ..., g
tn
n ). Define the space X(2, G) as follows

Definition 3.23. Let G be a Lie group. The space X(2, G) is defined to be

X(2, G) :=
⊔
n≥1

Hom(Zn, G)/∼



75

where ∼ is the equivalence relation generated by

(g1, ..., gi−1, 1, gi+1, ..., gn) ∼ (g1, ..., gi−1, 1̂, gi+1, ..., gn).

Note that since each Hom(Zn, G) ⊆ Gn, there is an inclusion X(2, G) ↪→ J(G).

Remark. As a set, X(2, G) is the set of words g1 · · · gn, such that the letters

satisfy gigj = gjgi in G, for all 1 ≤ i, j ≤ n and all n ≥ 1.

This remark follows directly from the definition.

The remaining of this chapter will devoted to studying the space X(2, G) and

how it can be used to study the spaces Hom(Zn, G).

Remark. The spaces X(2, G) are a special case of a more general construction

on the Lie group G. Let Fn be a free group on n letters. Consider the descending

central series of Fn. Then Zn = Fn/Γ
2(Fn) = Fn/[Fn, Fn]. Now consider the

quotients Fn/Γ
q(Fn). There are spaces of homomorphisms Hom(Fn/Γ

q(Fn), G)

which can be realized as subspaces of Gn by identifying f ∼ (g1, ..., gn), where

f(x1, .., xn) = (g1, ..., gn) and x1, ..., xn are the generators of Fn/Γ
q(Fn). The

following definition justifies the notation of X(2, G).

Definition 3.24. Define spaces X(q,G) for q ≥ 2 as follows

X(q,G) :=
⊔
n≥1

Hom(Fn/Γ
q(Fn), G)/∼

where ∼ is the single relation of Definition 3.23.

The maps that will be introduced next are commonly used when studying the

spaces of commuting elements in G. Start with a map

θn : G× T n −→ Hom(Zn, G)

defined by θn(g, t1, ..., tn) = (gt1g
−1, ..., gtng

−1). The maximal torus T acts on the

product G× T n by

t · (g, t1, ..., tn) = (gt, t−1t1t, ..., t
−1tnt) = (gt, t1, ..., tn).



76

Hence T acts trivially on itself. So the map θn is T–invariant and factors through

(G× T n)/T = G×T T n

G× T n Hom(Zn, G)

G×T T n = G/T × T n.

q

θn

θ̃n

Let NT be the normalizer of the maximal torus T and let W = NT/T be the

Weyl group of G. Then W acts on G/T × T n by

w · (gT, t1, ..., tn) = (gwT,w−1t1w, ..., w
−1tnw).

where gT is a coset in G/T . It follows that the map θ̃n is W–invariant since

(gw,w−1t1w, ..., w
−1tnw) = ((gw)w−1t1w(gw)−1, ..., (gw)w−1tnw(gw)−1)

= (gt1g
−1, ..., gtng

−1).

Therefore, the map θ̃n factors through G×NT T n

G×T T n Hom(Zn, G)

G×NT T n.

q′

θ̃n

θ̂n

The following proposition is due to A. Adem and F. Cohen [Adem and Cohen,

2007].

Proposition 3.25 (Adem & Cohen). If every abelian subgroup of G is con-

tained in a path–connected abelian subgroup, then the space Hom(Zn, G) is path–

connected.

Hence, if G has a strong maximal torus T , then Hom(Zn, G) is path connected.

Let G be a compact and connected Lie group that has a strong maximal torus T .

Consider the action map

G× Hom(Zn, G) −→ Hom(Zn, G)

g · (g1, ..., gn) 7−→ (gg1 , ..., g
g
n).
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Then the fixed set of the strong maximal torus T is (Hom(Zn, G))T = T n and

the map

G× (Hom(Zn, G))T −→ Hom(Zn, G)

is surjective since every abelian subgroup of G is conjugate to a subgroup of T .

We get surjective maps

θn : G× T n −→ Hom(Zn, G).

Therefore, the map θ̂n : G×NT T n −→ Hom(Zn, G) is surjective.

Lemma 3.26. Let G be a compact and connected Lie group with strong maximal

torus T . Then the maps θ̂n induce a map Θ

G×NT J(T )
Θ−→ X(2, G)

which is surjective.

Proof. This map is obtained by considering the James reduced product on the

second coordinate of the spaces G× T n and then factoring through the quotient

G×NT T n as all the maps are NT–invariant. On the other hand the construction

of X(2, G) is applied on the spaces of commuting elements. Surjectivity follows

from the comments preceding this lemma.

We study the map Θ to understand the homology of X(2, G). Note that in

general a compact Lie group does not have a strong maximal torus, for exam-

ple SO(3) and G2. Lie groups with a strong maximal torus include the groups

U(n), SU(n) and Sp(n). These cases will be treated separately.

Definition 3.27. Let G be a Lie group. The space S(Hom(Zn, G)) denotes the

subspace of Hom(Zn, G) consisting of n−tuples, such that at least one coordinate

is the basepoint of G, that is, the identity 1 ∈ G. Sometimes the notation Sn(G) is
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used for S(Hom(Zn, G)). Denote the quotient of Hom(Zn, G) by S(Hom(Zn, G))

as follows

Ĥom(Zn, G) = Hom(Zn, G)/S(Hom(Zn, G)).

Before giving explicit homology computations of X(2, G), it is useful to note

the following stable decomposition of this space for any Lie group G.

Proposition 3.28. Let G be a Lie group. There is a stable homotopy equivalence

ΣX(2, G) ' Σ
∨
n≥1

Ĥom(Zn, G).

Proof. The proof here is similar to the proof of theorem 3.16. Define a filtration

of X(2, G) as follows

X1(2, G) ⊆ X2(2, G) ⊆ · · · ⊆ Xq(2, G) ⊆ Xq+1(2, G) ⊆ · · ·

where each stage of the filtration is defined to be

Xq(2, G) :=
(⊔
i≤q

Hom(Zi, G)
)
/ ∼ .

Hence, Xq(2, G) is the space of words of length at most q, such that the letters

of the words pairwise commute in G. Then it follows that the quotient of two

consecutive stages of the filtration is

Xq+1(2, G)/Xq(2, G) ' Hom(Zq+1, G)/S(Hom(Zq+1, G))

where S(Hom(Zq+1, G)) is the same as in Definition 3.27. Therefore, after taking

the suspension, it follows that

Σ
(
Xq+1(2, G)/Xq(2, G)

)
' Σ

(
Hom(Zq+1, G)/S(Hom(Zq+1, G))

)
.

To prove the decomposition in the theorem, we use induction on the filtration

of X(2, G). First, for q = 1 it follows from definitions that X1(2, G) = G and

Hom(Z, G)/S(Hom(Z, G)) = G. Hence, there is a homotopy equivalence

ΣX1(2, G) ' ΣHom(Z, G)/S(Hom(Z, G)).

There is morphism of cofibrations as follows
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ΣX1(2, G) Σ
∨

1≤i≤1 Ĥom(Zi, G)

ΣX2(2, G) Σ
∨

1≤i≤2 Ĥom(Zi, G)

Σ
(
X2(2, G)/X1(2, G)

)
ΣĤom(Z2, G).

'

h2

'

Thus, h2 is homotopy equivalence equivalence. Now assume for q to get the

following diagram

ΣXq(2, G) Σ
∨

1≤i≤q Ĥom(Zi, G)

ΣXq+1(2, G) Σ
∨

1≤i≤q+1 Ĥom(Zi, G)

Σ
(
Xq+1(2, G)/Xq(2, G)

)
ΣĤom(Zq+1, G).

'

hq+1

'

Similarly, hq+1 is an equivalence and the theorem follows.

Recall the stable decomposition of the spaces Hom(Zn, G) for G a closed sub-

group of GLn(C), due to A. Adem and F. Cohen, stated here as Theorem 1.1.

There is a stable homotopy equivalence

Σ(Hom(Zn, G)) '
∨

1≤k≤n

Σ
( (nk)∨

Hom(Zk, G)/Sk(G)
)

where Hom(Zn, G)/Sn(G) = Ĥom(Zn, G). Therefore, it is possible to obtain all

the stable summands of Σ(Hom(Zn, G)) from the stable summands of ΣX(2, G).

It follows that if certain homotopy theoretic invariants, such as the homology or

cohomology groups, of the space X(2, G) can be determined, then information

about the spaces Hom(Zn, G) can be obtained.
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3.4 The homology of X(2, G)

Let G be a compact and connected Lie group with strong maximal torus T .

Consider the surjective maps

θn : G× T n −→ Hom(Zn, G)

θ̂n : G×NT T n −→ Hom(Zn, G).

To find the homology of the space X(2, G) we will use a list of technical lemmas

which are stated next. More general versions of these lemmas appear in a paper

by T. Baird [Baird, 2007].

Let F be a field and χ(F ) be the characteristic of F . For the remaining of this

chapter let R denote the ring Z[|W |−1].

Lemma 3.29. Let G be a compact and connected Lie group with strong maximal

torus T . Then H∗(G/NT, F ) ∼= H∗(pt, F ) for (χ(F ), |W |) = 1.

By an analogue of Lemma 3.1 and 3.2 in [Baird, 2007], we have the following

lemma

Lemma 3.30. If G is a compact and connected Lie group with strong maximal

torus T , then H∗(θ̂
−1
n (g1, ..., gn);R) is isomorphic to H∗(pt, R).

Proof. Let X = T n and let T act on X by conjugation. Then the fixed point set

of the action is XT = X. Thus, the fibre of the action map φ : G ×XT → X is

φ−1(x) = G0
xNT , where G0

x is the connected component of the stabilizer of x in

G, and

θ̂−1
n (x) ≡ φ−1(x)/NT = G0

xNT/NT
∼= G0

x/NG0
x
T.

If WG is the Weyl group of G and WG0
x

is the Weyl group of G0
x, it follows that

|WG0
x
| | |WG|. Hence, by A.4 in Appendix A in [Baird, 2007] it follows that there

are isomorphisms H∗(θ̂
−1
n (x), R) = H∗(pt, R). Equivalently, the reduced homology

groups of the fibres with coefficients in R are trivial.
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The following theorem will be used to state the next result. A version of the

following theorem also appears in [Baird, 2007].

Theorem 3.31 (Vietoris & Begle). Let h : X −→ Y be a closed surjection, where

X is a paracompact Hausdorff space. Suppose that for all y ∈ Y , H∗(h
−1(y), R) =

H∗(pt, R). Then the induced maps in homology h∗ : H∗(X,R) −→ H∗(Y,R) are

isomorphisms.

Now as a consequence of 3.30 and 3.31, the following theorem holds,

Theorem 3.32. If G is a compact and connected Lie group with strong maximal

torus T , then the map Θ : G ×NT J(T ) −→ X(2, G) induces a homology iso-

morphism with coefficients in R = Z[|W |−1], where |W | is the order of the Weyl

group. That is, there are isomorphisms

Θ∗ : H∗(G×NT J(T );R) ∼= H∗(X(2, G);R).

This theorem, as stated, does not yet give explicit computations for the ho-

mology of X(2, G). However, it will suffice to compute the homology groups of

the space G×NT J(T ). Before computing these homology groups note that using

Theorem 3.16 and Proposition 3.28 the following proposition holds.

Proposition 3.33. Let G be a compact and connected Lie group with strong

maximal torus T . There are isomorphisms

H∗
(
X(2, G);R

) ∼= H∗
( ∨
n≥1

Ĥom(Zn, G);R
)

∼= H∗
(
G/NT ∨

( ∨
n≥1

(G×NT T̂ n)/(G×NT {1})
)
;R
)
.

Proof. This follows immediately from the stable decompositions in Theorem 3.16

and Proposition 3.28.
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However, this proposition will not be used directly in computations here. This

proposition only shows a different way to compute the homology. Here we will

use a spectral sequence argument to find the homology groups.

Consider the following classical result. A version with coefficients being the

complex numbers can be found in [Baird, 2007].

Theorem 3.34. Let G be a Lie group with maximal torus T . As an ungraded left

W−module,

H∗(G/T ;R) ∼= R[W ]

where R[W ] is the group ring of W over the ring R.

We first compute the homology groups of the space G ×NT J(T ). Let T [M ]

denote the tensor algebra on an R–module M .

Proposition 3.35. Let G be a compact and connected Lie group with strong

maximal torus T . Then the homology groups of G ×NT J(T ) with coefficients in

R are given by

H∗(G×NT J(T );R) ∼=
(
R[W ]⊗R T [V ]

)
W
.

Proof. There is a short exact sequence of groups 1 → T → NT → W → 1, and

associated to it, there is a fibration sequence

(
G× J(T )

)
/T →

(
G× J(T )

)
/NT → BW,

which is equivalent to the fibration

G×T J(T ) −→ G×NT J(T ) −→ BW.

The Leray spectral sequence has second page given by the groups

E2
p,q = Hp(BW ;Hq(G×T J(T );P ))
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which converges to Hp+q(G ×NT J(T );P ), where P is a ring. If |W |−1 ∈ P it

follows that E2
s>0,t = 0 and the groups on the vertical axis are given by

E2
0,t = H0

(
BW ;Ht(G×T J(T );P )

)
.

As a special case, if we let P = R = Z[|W |−1], then

E2
0,t = E0,t

∞ = H0

(
BW ;Ht(G×T J(T );R)

)
Recall that homology in degree 0 is given by the coinvariants

H0

(
BW ;Ht(G×T J(T );R)

)
=
(
Ht(G×T J(T );R)

)
W
.

Also T acts by conjugation and thus trivially on T n, so it acts trivially on J(T ).

Hence, G×T J(T ) = G/T × J(T ).

The flag variety G/T has torsion free integer homology, see [Bott, 1954], and

so does J(T ). So the homology of G/T × J(T ) with coefficients in R is given by

the following tensor product

Ht(G×T J(T );R) =
⊕
i+j=t

[
Hi(G/T ;R)

⊗
R

Hj(J(T );R)
]
.

The spectral sequence collapses at the E2 term as stated above, hence,

Ht(G×T J(T );R) ∼=
(
Ht(G×T J(T );R)

)
W

∼=

(⊕
i+j=t

[
Hi(G/T ;R)

⊗
R

Hj(J(T );R)
])

W

.

Using theorem 3.34, it follows that

H∗(G×NT J(T );R) =
(
R[W ]⊗R H∗(J(T );R)

)
W
.

Recall that the homology of J(T ) is the tensor algebra on the reduced homology

of T . Let T [V ] denote the tensor algebra on the reduced homology of T , denoted

by V . Then there is an isomorphism

H∗(G×NT J(T );R) =
(
R[W ]⊗R T [V ]

)
W
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The results proved so far will suffice to finally state the following theorem.

Theorem 3.36. Let G be a compact Lie group with strong maximal torus T . Then

the homology of X(2, G) with coefficients in R is

H∗(X(2, G);R) ∼=
(
R[W ]⊗R T [V ]

)
W
.

Proof. This theorem is an immediate corollary of Theorem 3.32 and Proposition

3.35.

This theorem concludes the section. Examples are given in the next section.

3.5 Examples

Let G be a compact and connected Lie group. Assume that G has a strong

maximal torus T . Examples of such Lie group are the groups U(n), SU(n) and

Sp(n). To determine the homology of X(2, G) for a particular Lie group G as

stated in Theorem 3.32, it is necessary to determine the action of the Weyl group

of G on the tensor product. More precisely, it is necessary to determine the

coinvariants (
R[W ]⊗R T [V ]

)
W
.

For the unitary group U(n) it is well-known that the Weyl group is isomorphic to

the symmetric group on n letters Σn. Hence, it follows from Theorem 3.32 that

H∗(X(2, U(n));Z[|Σn|−1]) ∼=
(
Z[|Σn|−1][Σn]⊗Z[|Σn|−1] T [V ]

)
Σn

that is,

H∗(X(2, U(n));Z[
1

n!
]) ∼=

(
Z[

1

n!
][Σn]⊗Z[ 1

n!
] T [V ]

)
Σn
.

The table below shows the Weyl groups for some connected and compact Lie

groups with strong maximal tori. A reference for Lie groups in general and for

the Weyl groups in particular is the book by J. F. Adams, “Lectures on Lie groups”
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Lie group G Weyl group W |W | Rank

U(n) Σn n! n

SU(n) Σn n! n− 1

Sp(2n) Σ2 o Σn 2nn! n

Table 3.1: G with a strong maximal torus

[Adams, 1969]. Recall that the group Σ2 oΣn is the wreath product of Σ2 and Σn

where Σn acts on the n–fold product Σ2 × · · · ×Σ2 by permuting coordinates. In

Appendix A the case of the unitary group U(n) will be investigated.

Recall that not all compact and connected Lie groups have a strong maximal

torus. A basic example is the special orthogonal group SO(3). The maximal torus

of SO(3) has rank 1 and is isomorphic to S1. However, SO(3) has a subgroup

isomorphic to Z2 ⊕ Z2 and clearly it can not be conjugated to a subgroup of S1.

Therefore, T = S1 is not a strong maximal torus. It turns out that the Lie groups

SO(2n) and SO(2n + 1) have Weyl groups as shown in Table 3.2 below. Recall

Lie group G Weyl group W |W | Rank

SO(2n+ 1) Σ2 o Σn 2nn! n

SO(2n) Σ2 o An 2n(
n!

2
) n

Table 3.2: G with no strong maximal torus

that the group An is the subgroup of even permutations in Σn. Tables 3.1 and

3.2 will suffice for this chapter, even though not very instructive, as we are not

momentarily investigating the module structure of the homology. For more details

see [King and Al-Qubanchi, 1981].

Next we give the homotopy type of X(2, SO(3)). It was proven by E. Torres-

Giese and D. Sjerve in [Torres Giese and Sjerve, 2008] that there is a homeomor-
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phism of spaces

Hom(Zn, SO(3)) ≈
(⊔
xn

S3/Q8

)⊔
Hom(Zn, SO(3))1

where xn is given in Theorem 2.4 in [Torres Giese and Sjerve, 2008] and the space

Hom(Zn, SO(3))1 is the connected component of the identity representation. The

integer xn is given by

xk =


1
6
(4n − 3 · 2n + 2) : if n is even

2
3
(4n−1 − 1)− 2n−1 + 1 : if n is odd.

The quotient S3/Q8 can be obtained by taking the quotient SO(3)/Z2⊕Z2, where

the action of Z2 ⊕ Z2 is group multiplication if we consider it as the subgroup of

SO(3) generated by {diag(−1,−1, 1), diag(−1, 1,−1)}.

Proposition 3.37. There is a homotopy equivalence

X(2, SO(3)) = X(2, SO(3))1

⊔(⊔
∞

S3/Q8

)
.

Proof. The proof of this proposition will be given in the form of a discussion.

For every connected component S3/Q8, there is an n–tuple (A1, ..., An), where

there are two matrices Ai, Aj which are involutions about orthogonal axes, and

all the other Ak’s are one of I, Ai, Aj, AiAj = AjAi. There is a natural inclusion

Hom(Zn, SO(3)) ↪−−→ Hom(Zn+1, SO(3))

given by (A1, ..., An) ↪→ (A1, ..., An, I). Therefore, there is an inclusion

Hom(Zn, SO(3))1 ↪−−→ Hom(Zn+1, SO(3))1

because of the property described above. It follows from [Torres Giese and

Sjerve, 2008] that xn < xn+1, that is the number of connected components

in Hom(Zn+1, SO(3)) is strictly larger than the number of connected compo-

nents in Hom(Zn, SO(3)), so the inclusion above misses some copies of S3/Q8

in Hom(Zn+1, SO(3)).
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Recall that for any Lie group G, the space X(2, G) is defined by

X(2, G) =
( ⊔
n≥1

Hom(Zn, G)
)
/ ∼

with the single relation being (y1, ...yi−1, 1, yi+1, ..., yn) ∼ (y1, ...yi−1, yi+1, ..., yn).

Therefore, it follows by definition that

X(2, SO(3)) =
( ⊔
n≥1

((⊔
xn

S3/Q8

)⊔
Hom(Zn, SO(3))1

))
/ ∼ .

Note that the n–tuple (A1, ..., An) is in he component Hom(Zn, SO(3))1 if and only

if (A1, ..., An, I) is in Hom(Zn+1, SO(3))1. Similarly, (A1, ..., Ai−1, I, Ai+1, ..., An)

is in the component Hom(Zn+1, SO(3))1, if and only if (A1, ..., Ai−1, Ai+1, ..., An)

is in the space Hom(Zn, SO(3))1. The same fact rephrased states that the n–

tuple (A1, ..., An) is not in Hom(Zn, SO(3))1 if and only if (A1, ..., An, I) is not in

Hom(Zn+1, SO(3))1. And the (n + 1)–tuple (A1, ..., Ai−1, I, Ai+1, ..., An) is not in

Hom(Zn+1, SO(3))1, if and only if (A1, ..., Ai−1, Ai+1, ..., An) is not in the space

Hom(Zn, SO(3))1. These arguments suffice to show that

X(2, SO(3)) =
( ⊔
n≥1

(⊔
xn

S3/Q8

))
/ ∼

⊔(⊔
n≥1

Hom(Zn, SO(3))1

)
/ ∼ .

Define a space

X(2, SO(3))1 =
( ⊔
n≥1

Hom(Zn, SO(3))1

)
/ ∼ .

Clearly, the space X(2, SO(3))1 is path–connected. It remains to identify the path

components of the space

( ⊔
n≥1

(⊔
xn

S3/Q8

))
/ ∼ .

Consider the following properties from [Torres Giese and Sjerve, 2008], of paths not

in Hom(Zn, SO(3))1. Let p(t) = (A1(t), ..., An(t)) be a path not in the component

Hom(Zn, SO(3))1. Then the following statements hold:
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1. If some Ai(0) = I, then Ai(t) = I for all t.

2. If Ai(0) = Aj(0), then Ai(t) = Aj(t) for all t.

3. If Ai(0) and Aj(0) are distinct involutions then so are Ai(t), Aj(t) for all t.

4. If Ak(0) = Ai(0)Aj(0), then Ak(t) = Ai(t)Aj(t) for all t.

Therefore, if (A1, ..., An) is an n-tuple not in Hom(Zn, SO(3))1, for which none of

the components is I, and p(t) = (A1(t), ..., An(t)) is a path containing (A1, ..., An),

then none of the Ai(t) is I, for any i and any t. Clearly, such an n–tuple can

be found for any positive integer n. Therefore there are infinitely many path

components in the space

( ⊔
n≥1

(⊔
xn

S3/Q8

))
/ ∼ .

By definition it follows that

(A1, ..., Ai−1, I, Ai+1, ..., An) ∼ (A1, ..., Ai−1, Ai+1, ..., An).

Hence, if none o the m-tuples is in Hom(Zn, SO(3))1, from the statements above it

follows that the component S3/Q8 corresponding to (A1, ..., Ai−1, I, Ai+1, ..., An)

in Hom(Zn+1, SO(3)) is identified with the component S3/Q8 corresponding to

(A1, ..., Ai−1, Ai+1, ..., An) in Hom(Zn, SO(3)). Therefore, the connected compo-

nents of ( ⊔
n≥1

(⊔
xn

S3/Q8

))
/ ∼

are all homotopy equivalent to S3/Q8. Moreover, the number of these components

is countably infinite.

Note that the space SO(3) ×NS1 (S1)n is path–connected, but the on the

other hand the space Hom(Zn, SO(3)) is not path–connected. Hence, the map

θn : SO(3) ×NS1 (S1)n −→ Hom(Zn, SO(3)) is not a surjection. However, the
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image of the map θn surjects onto the connected component Hom(Zn, SO(3))1.

Therefore, there are surjections

θ1
n : SO(3)×NS1 (S1)n −−� Hom(Zn, SO(3))1,

where θ1
n is the same as θn and the only change is the space it lands in. The maps

θ1
n induce a surjection

Θ1 : SO(3)×NS1 J(S1) −−� X(2, SO(3))1.

Proposition 3.38. The fibres of θ1
n have trivial reduced homology when the coef-

ficients are taken to be Z[1
2
].

Proof. The Weyl group of SO(3) is isomorphic to Σ2, which has order 2. Hence,

the proposition follows from Lemma 3.30 since the only condition required in that

same setting, is that θ1
n surjects.

Therefore, the homology groups of X(2, SO(3)) with coefficients in the ring

Z[1
2
] is given as follows

Theorem 3.39. There is an isomorphism of homology groups with coefficients in

Z[1
2
] given by

H∗(X(2, SO(3))1;Z[
1

2
]) ∼=

(
Z[

1

2
]Σ2 ⊗Z[ 1

2
] T [V ]

)
Σ2
.

Proof. The Weyl group W of SO(3) is Σ2, hence, the ring Z[|W |−1] is equal to

Z[1
2
]. The map Θ1

Θ1 : SO(3)×NS1 J(S1) −−� X(2, SO(3))1

is a surjection. Hence, it follows from Proposition 3.38 that there is an isomor-

phism

H∗(SO(3)×NS1 J(S1);Z[
1

2
]) ∼= H∗(X(2, SO(3))1;Z[

1

2
]).
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With the same calculations as in Theorem 3.36, it follows that the homology of

X(2, SO(3)) with coefficients in Z[1
2
] is given by

H∗(X(2, SO(3))1;Z[
1

2
]) ∼=

(
Z[

1

2
]Σ2 ⊗Z[ 1

2
] T [V ]

)
Σ2
,

where V is the reduced homology of S1 as a Σ2–module and T [V ] is the tensor

algebra over V , again as a Σ2–module.

3.6 Homology in general

In this section we state and prove the main theorem of this chapter. The main

observation is that the construction in the proof of Theorem 3.39 holds in general

and is used to prove the main theorem.

Let G be a compact and connected Lie group and T be a maximal torus

of G. Let Hom(Zn, G)1 be the connected component of the trivial representa-

tion (1, ..., 1) in Hom(Zn, G). Since T n consists of commuting n−tuples and is

path-connected, it is a subspace of Hom(Zn, G)1 ⊆ Gn. G acts on the space

Hom(Zn, G)1 by conjugation, that is, there is an action given by

G× Hom(Zn, G)1 −−� Hom(Zn, G)1

g × (t1, ..., tn) = (tg1, ..., t
g
n).

The fixed point set of the action of the maximal torus T is (Hom(Zn, G)1)T = T n.

Therefore, there is a map

G× (Hom(Zn, G)1)T −−� Hom(Zn, G)1

which is a surjection since every point in Hom(Zn, G)1 is fixed by a maximal

torus in G and all the maximal tori in G are conjugate, hence every G orbit must

intersect the T fixed point set (Hom(Zn, G)1)T . This same argument appears in

section 3 in [Baird, 2007] and is valid for a more general setting where the space

of commuting elements is replaced by another G−space X.
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Therefore, there are surjections

θ1
n : G× T n −−� Hom(Zn, G)1

where the maps θ1
n are NT−invariant for all n. Note that if T has a strong

maximal torus, then this follows also from definitions.

Similar to Section 3.3, it can be shown that the maps θ1
n are NT–equivariant.

Hence, there are surjections

θ̂1
n : G×NT T n −−� Hom(Zn, G)1.

Similar to lemma 3.30, the following holds. Note that this result can be also

proved by a direct inspection of the definitions if a strong maximal torus is as-

sumed. Let R = Z[|W |−1].

Lemma 3.40. If G is a connected and compact Lie group with maximal torus T

and Weyl group W , then H∗((θ̂
1
n)−1(g1, ..., gn);R) is isomorphic to the homology

of a point H∗(pt, R).

Proof. The lemma follows from Lemma 3.30 since the only condition required in

that same setting, is that θ̂1
n surjects.

Taking the James reduced product on the second coordinate of the spaces

G×T n to get G×NT J(T ), and the similar construction to get the space X(2, G)1,

there is a surjection

G×NT J(T ) −−� X(2, G)1

where X(2, G)1 is defined to be the space

X(2, G)1 :=
( ⊔
n≥1

Hom(Zn, G)1

)
/ ∼

and ∼ is the single relation that deletes the basepoint. Using Lemma 3.40 and

Theorem 3.31 it follows that
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Theorem 3.41. Let G be a connected and compact Lie group with maximal torus

T and Weyl group W . Then there is an isomorphism in homology

H∗(G×NT J(T );R) ∼= H∗(X(2, G)1;R).

The theorem below summarizes this section.

Theorem 3.42. Let G be a connected and compact Lie group with maximal torus

T and Weyl group W . Then there is an isomorphism in homology

H∗(X(2, G)1;R) ∼=
(
R[W ]⊗R T [V ]

)
W
.

Proof. The homology of G×NT J(T ) with coefficients in the ring R can be com-

puted in exactly the same way as for Theorem 3.36 which is isomorphic to(
R[W ]⊗R T [V ]

)
W
.

Hence, using Theorem 3.41 the result follows.

This theorem applies to all groups considered previously. For example if G =

U(n), SU(n) or Sp(n) it follows from Proposition 3.25 that Hom(Zn, G) is path-

connected for these Lie groups. Thus, X(2, G) is also path-connected and it follows

that X(2, G)1 = X(2, G). Therefore, theorem 3.32 is recovered by theorem 3.42.

Note that as mentioned before, to find the homology groups of X(2, G)1 ex-

plicitly for G a connected and compact Lie group, it is necessary to know the

action of the Weyl group on the tensor product

R[W ]⊗R T [V ].

More precisely, it is necessary to find the coinvariants.(
R[W ]⊗R T [V ]

)
W
.

This again leads the subject to representation theory, which will be discussed in

the next Sections and in Appendix A. Theorem 3.42 can be used to also study the
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cases of the compact and connected simple exceptional Lie groups G2, F4, E6, E7

and E8.

Let R denote the ring R. Let HU
∗ denote ungraded homology and TU [V ] denote

the ungraded tensor algebra over V . It is important to note that if the ungraded

tensor algebra is considered the following theorem holds.

Theorem 3.43. Let G be a connected and compact Lie group with maximal torus

T and Weyl group W . Then there is an isomorphism in ungraded homology

HU
∗ (X(2, G)1;R) ∼= TU [V ].

Proof. From Theorem 3.42 there is an isomorphism in homology given by

H∗(X(2, G)1;R) ∼=
(
H∗(G/T ;R)⊗R T [V ]

)
W
.

If all homology is ungraded, then there are isomorphisms in ungraded homology

given by

HU
∗ (X(2, G)1;R) ∼=

(
RW ⊗R TU [V ]

)
W
∼= RW ⊗RW TU [V ] ∼= TU [V ].

This shows that as an abelian group, without the grading, the homology of

X(2, G)1 with coefficients in R is just the ungraded tensor algebra TU [V ]. The

following is an immediate corollary of Theorem 3.43.

Corollary 3.44. Let G be a connected and compact Lie group with strong maximal

torus T and Weyl group W . Then there is an isomorphism in ungraded homology

HU
∗ (X(2, G);R) ∼= TU [V ].
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3.7 Classical Representations

Let G be a compact and connected Lie group. The homology of the space of

commuting n−tuples Hom(Zn, G) is not well–understood. Homology of the spaces

X(2, G) and X(2, G)1 was studied in Sections 3.4 and 3.6, respectively, with the

goal to understand the homology of Hom(Zn, G). Now let T be the maximal torus

of G and W be the Weyl group. One of the implications of Theorem 3.42 is that

the homology of X(2, G)1, and thus the homology of Hom(Zn, G), is given purely

in terms of classical representation theory, described by the coinvariants

H∗(X(2, G)1;R) ∼=
(
R[W ]⊗R T [V ]

)
W
.

This section is devoted to studying the module structure of the tensor algebra

T [V ], which comes from V having a W–module structure. Here we lay out only

the theoretical methods. Some computations are done in Appendix A.

3.7.1 Poincaré–Birkhoff–Witt theorem

Recall that the Weyl group W acts on J(T ) by conjugation, which induces an

action of W on the tensor algebra H∗(J(T );Z) ∼= T [V ], where V = H̃∗(T ). Let R

denote the ring Z[|W |−1]. If G has rank n, then the tensor algebra is given by

T [V ] = T [
⊕

1≤k≤n

Hk(T ;R)]

which has the structure of a RW–module. Also recall that

T [V ] =
⊕
d≥1

V ⊗d

where the summands V ⊗d are given by

V ⊗d =
⊕

1≤ij≤n

(
Hi1 ⊗Hi2 ⊗ · · · ⊗Hid

)
.

Identifications of the tensor products Hi1⊗Hi2⊗· · ·⊗Hid as representations gives

the structure of V ⊗d as a RW–module, where W acts diagonally.
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Definition 3.45. Let V be a graded free abelian group. The graded free Lie

algebra generated by V is the smallest graded sub–Lie algebra in T [V ] generated

by V . Denote the graded free Lie algebra by L[V ]. The Lie tensors of weight q

are given by Lq[V ] = L[V ] ∩ V ⊗q.

Therefore, it follows that L[V ] =
⊕

q≥1 Lq[V ]. The following theorem is due

to J. Milnor and J. Moore, see [Milnor and Moore, 1965].

Theorem 3.46 (Milnor & Moore). Let V be a free R–module. There is an iso-

morphism of graded abelian groups

S(L[V ]) ∼= T [V ]

where S(L[V ]) is the symmetric algebra on the generators of L[V ].

Assume that V is concentrated in even degrees and that V is a free R–module.

A special case of Theorem 3.46 for the ungraded version is called the Poincaré–

Birkhoff–Witt theorem and is a classical result. A proof of the Poincaré–Birkhoff–

Witt theorem can also be found in [Cohn, 1963].

It is possible to use Theorem 3.46 to compute tensor products as follows.

Recall that S(L[V ]) can be rewritten as

S
(⊕
q≥1

Lq[V ]
)

=
⊗
q≥1

S(Lq[V ]).

The information to keep track of in T [V ] is the number of times each of the

representations appears, as well as the tensor and homological degrees. If V is a

free R–module, then the Poincaré series of the tensor algebra is given by

χ(T [V ]) =
1

1− χ(V )
= χ

(
S
(⊕
q≥1

Lq[V ]
))

=
∞∏
q=1

χ (S(Lq[V ])) .

Detailed calculations for the unitary groups are given in Appendix A.
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A Tensor Algebra Computations

A.1 The unitary group U(2)

The first example we discuss is the unitary group G = U(2) which has maximal

torus T = S1 × S1 and W = Σ2, the symmetric group on two letters. The

calculations here are done over the ring Z instead of the ring R. Let Zsgn denote

the sign representation and Ztriv denote the trivial representation. The reduced

homology of T is given by

H1(T ;Z) ∼= Z⊕ Z ∼= ZΣ2

and

H2(T ;Z) ∼= Z ∼= Zsgn.

Hence, V = H1⊕H2
∼= ZΣ2⊕Zsgn. In an attempt to understand the representation

theory and combinatorics of T [V ] for the group U(2), we compute the first few

tensor products V ⊗d explicitly.

The first tensor product, V ⊗ V equals

(H1 ⊕H2)⊗ (H1 ⊕H2) = (H1 ⊗H1)⊕ (H1 ⊗H2)⊕ (H2 ⊗H1)⊕ (H2 ⊗H2).

Let Σ2 = {1, σ} and H1 have a basis {1, σ} such that σ2 = 1, which makes

H1 = Z · 1 ⊕ Z · σ into a ZΣ2−module. Therefore, the first few tensor products

are given as follows
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H1 ⊗H1
∼= (Z · 1⊕ Z · σ)⊗ (Z · 1⊕ Z · σ)

∼= [Z · 1⊗ (Z · 1⊕ Z · σ)]⊕ [Z · σ ⊗ (Z · 1⊕ Z · σ)]

∼= (Z · 1⊕ Z · σ)⊕ (Z · 1⊕ Z · σ)⊗ Zsgn
∼= ZΣ2 ⊕ (ZΣ2 ⊗ Zsgn)

∼= ⊕2ZΣ2

∼= ⊕22−1ZΣ2

which is two copies of the group ring. Similarly, the other tensor products are

given by

H1 ⊗H2
∼= ZΣ2 ⊗ Zsgn

H2 ⊗H1
∼= ZΣ2 ⊗ Zsgn

H2 ⊗H2
∼= Zsgn ⊗ Zsgn ∼= Ztriv.

Therefore, the 2–fold tensor product V ⊗ V is given by

V ⊗ V = (H1 ⊗H1)⊕ (H1 ⊗H2)⊕ (H2 ⊗H1)⊕ (H2 ⊗H2)

∼= ZΣ2 ⊕ (ZΣ2 ⊗ Zsgn)⊕ ZΣ2 ⊗ Zsgn ⊕ ZΣ2 ⊗ Zsgn ⊕ Ztriv
∼= (⊕2ZΣ2)⊕ ZΣ2 ⊕ ZΣ2 ⊕ Ztriv
∼= (⊕4ZΣ2)⊕ Ztriv

In the next step we compute V ⊗3 = V ⊗ V ⊗ V . In this tensor product we

have summands of the form H⊗i1 ⊗ H
⊗j
2 such that i + j = 3. Since the order of

the tensor product will matter, there are
(

3
j

)
terms for each such product, that is

for each such i, j. First note that for any i ≥ 1, the i–fold tensor product of H1

equals

H⊗i1
∼=
⊕
2i−1

ZΣ2
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and for any j ≥ 1, the j–fold tensor product of H2 equals

H⊗j2
∼= Ztriv or Zsgn

depending on whether j is even or odd. Adopt the convention that (ZG)0 = Ztriv,

for G a finite group. Then, the 3–fold tensor product V ⊗3 splits as a sum of Σ2

representations as follows

V ⊗3 ∼= [⊕(3
0)
H⊗3

1 ]⊕ [⊕(3
1)
H⊗2

1 ⊗H2]⊕ [⊕(3
2)
H1 ⊗H⊗2

2 ]⊕ [⊕(3
3)
H⊗3

2 ]

∼= [⊕(3
0)
⊕4 ZΣ2]⊕ [⊕(3

1)
⊕2 ZΣ2 ⊗ Zsgn]⊕ [⊕(3

2)
ZΣ2]⊕ [⊕(3

3)
Zsgn]

∼= [⊕(3
0)22+(3

1)21+(3
2)20ZΣ2]⊕ Zsgn.

Similarly, for any d ≥ 3 the summands of the d–fold tensor product V ⊗d are

isomorphic as Σ2 representation to representations of the form H⊗k1 ⊗ H
⊗(d−k)
2 ,

for 0 ≤ k ≤ d. Each of these terms appears
(
d
k

)
times in V ⊗d, that is, there are(

d
k

)
isomorphic copies of H⊗k1 ⊗H

⊗(d−k)
2 in V ⊗d. Therefore, we get the following

decomposition of V ⊗d as a direct sum of Σ2 representations

V ⊗d ∼=
⊕

0≤k≤d

[⊕
(dk)

H⊗k1 ⊗H
⊗(d−k)
2

]
∼=
⊕

0≤k≤d

[⊕
(dk)

(⊕
2k−1

ZΣ2

)
⊗H⊗(d−k)

2

]
∼=
( ⊕

1≤k≤d

[⊕
(dk)

(⊕
2k−1

ZΣ2

)
⊗H⊗(d−k)

2

])
⊕ [(ZΣ2)0 ⊗H⊗d2 ]

∼=
( ⊕

1≤k≤d

[⊕
(dk)

(⊕
2k−1

ZΣ2

)])
⊕ [H⊗d2 ]

whereH⊗d2 is either Zsgn or Ztriv depending on whether d is even or odd. Therefore,

in tensor degree d there are

f(d) =
∑

1≤k≤d

(
d

k

)
2k−1
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copies of the group ring ZΣ2, and one copy of Zsgn if d is odd or a copy of Ztriv if

d is even.

Note that the Euler-Poincaré series for the tensor algebra T [V ] is

χ(T [V ]) =
1

1− χ(V )
=
∑
n≥0

(χ(V ))n =
∑
n≥0

(2t+ t2)n

therefore by definition, the rank of the homology concentrated in degree j is the

coefficient of tj in the formal power series. That is given by the sum of the

coefficients of
(
j
i

)
(2t)i(t2)k, such that i + 2k = j, which is

(
j
i

)
2i. Therefore, one

can find the rank of degree j homology in tensor degree d. Recall that V ⊗d has

summands of the form H⊗k1 ⊗ H
⊗(d−k)
2 . One gets homology in degree j only if

1 · k + 2 · (d− k) = 2d− k = j, that is, k = 2d− j. As a remark, since j = 2d− k

and 0 ≤ k ≤ d by definition, one has homology in degree j only in tensor degrees

less than or equal to j, that is d ≤ j.

Now fix the homological degree j and tensor degree d, such that d ≤ j. The

rank of degree j homology in V ⊗d is the rank of H⊗k1 ⊗H
⊗(d−k)
2 , where k = 2d− j,

times the number of its occurrences in V ⊗d.

hd(j) =

(
d

k

)
rankZ(H⊗2d−j

1 ⊗H⊗(d−(2d−j))
2 )

=

(
d

k

)
rankZ(H⊗2d−j

1 ⊗H⊗(j−d)
2 )

=

(
d

k

)
rankZ([

⊕
22d−j−1

ZΣ2]⊗H⊗(d−(2d−j))
2 )

=

(
d

k

)
rankZ[

⊕
22d−j−1

ZΣ2]

=

(
d

k

)
rankZ[

⊕
2·22d−j−1

Z]

=

(
d

2d− j

)
22d−j

Using this calculation, then one can say that the rank of the j−th homology
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in T [V ] is given by
∑

d≤j hd(j). Therefore we get the following formula

h(j) =
∑

0≤i≤j

(
j

i

)
2i =

∑
d≤j

hd(j)

Now, a lower bound for d should be a number such that there is k with 0 ≤

k ≤ d and 2d− k = j. Therefore the lower bound for d is the least upper integer

of j
2
, that is d j

2
e. Hence, we get that for fixed j

h(j) =
∑

0≤i≤j

(
j

i

)
2i =

∑
d j
2
e≤d≤2d−j

(
d

k

)
22d−j

We want to have a tri–graded power series such that it encodes the information

about homological degree, tensor degree and the number of copies of the group

ring ZΣ2, ∑
p,r≥0
q≥1

a(p, q, r)xpyqzr

with p, q, r telling the above quantities respectively, that is, the coefficient a(p, q, r)

records the records the number r of copies of the group ring ZΣ2 concentrated in

tensor degree q and homological degree p. For example, in fixed tensor degree q

and fixed homological degree p = 2q− i there are
(
q
i

)
2i−1 copies of the group ring

ZΣ2, since in V ⊗q there are
(
q
i

)
copies of H⊗i1 ⊗H

⊗(q−i)
2 which has 2(i−1) copies of

the group ring. So one term of the power series should be
(
q
i

)
2i−1x2q−iyqz(qi)2i−1

.

Therefore, in fixed tensor degree q, we have homological degree i only for q ≤ i ≤

2q. Therefore, the term V ⊗q can be described by the sum∑
q≤i≤2q

(
q

i

)
2i−1x2q−iyqz(qi)2i−1

.

Summing over all values of q, it follows that the tri–graded series is equal to

∑
p,r≥0
q≥1

a(p, q, r)xpyqzr =
∑
q≥1

( ∑
q≤i≤2q

(
q

i

)
2i−1x2q−iyqz(qi)2i−1

)
.
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Proposition A.1. Let G = U(2) and V be the reduced homology of the maximal

torus T as a module over the group ring of the Weyl group of G. The coefficient

of the term x2q−iyqz(qi)2i−1

in the power series

f(x, y, z) =
∑
q≥1

( ∑
q≤i≤2q

(
q

i

)
2i−1x2q−iyqz(qi)2i−1

)
.

is the number of copies of the group ring ZΣ2 in tensor degree q and homological

degree 2q − i.

A.2 The unitary group U(3)

Let G be the unitary group U(3). The maximal torus of U(2) is T = S1×S1×S1

and the Weyl group is Σ3. The reduced homology of the maximal torus is as

follows

H1(T ;Z) ∼= ⊕(3
1)
Z ∼= Z

[
Σ3/(Σ1 × Σ2)

] ∼= Z[Z/3]

H2(T ;Z) ∼= ⊕(3
2)
Z ∼= Z

[
Σ3/(Σ2 × Σ1)

] ∼= Z[Z/3]⊗ Zsgn

H3(T ;Z) ∼= ⊕(3
3)
Z ∼= Z

[
Σ3/(Σ3 × Σ0)

] ∼= Zsgn

Thus V = H1 ⊕H2 ⊕H3 and

T [V ] =
⊕
d≥1

(H1 ⊕H2 ⊕H3)⊗d.

The Euler-Poincaré series for T [V ] for the unitary group U(3) is

χ(T [V ]) =
1

1− χ(V )
=
∑
n≥0

(χ(V ))n =
∑
n≥0

(3t+ 3t2 + t3)n.
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The various tensor powers of the homology groups can be calculated to be

H⊗i1 = Z[Σ3/Σ2]
⊕ ⊕

3i−1−1
2

ZΣ3


H⊗j2 = Z[Σ3/Σ2]

⊕ ⊕
3j−1−1

2

ZΣ3


H⊗k3 = either Ztriv if k is even, or Zsgn if k is odd.

Then it follows that the d–fold tensor V ⊗d, up to tensoring with the sign repre-

sentation, is given by

V ⊗d ∼=
⊕

0≤i+j≤d
0≤i,j≤d

(⊕
( di,j)

H⊗i1 ⊗H
⊗j
2 ⊗H

⊗(d−(i+j))
3

)

where

(
d

i, j

)
=

d!

i!j!(d− (i+ j))!
. Hence, the tensor algebra T [V ] is given by

T [V ] ∼=
⊕
d≥1

( ⊕
0≤i+j≤d
0≤i,j≤d

(⊕
( di,j)

H⊗i1 ⊗H
⊗j
2 ⊗H

⊗(d−(i+j))
3

))
.

For i+ j + k = d, the tensor products equal

H⊗i1 ⊗H
⊗j
2 ⊗H

⊗(d−(i+j))
3

∼= Z[Σ3/Σ2]
⊕ ⊕

3i+j−1
2

ZΣ3

 .

Hence,

V ⊗d ∼=
⊕

0≤i+j≤d
0≤i,j≤d

⊕
( di,j)

(
Z[Σ3/Σ2]

⊕( ⊕
3i+j−1

2

ZΣ3

)) .

The goal now is to find a tri–grades series as in Proposition A.1.

The number of copies of the group ring ZΣ3 in tensor degree q and homological

degree t is given by the number of copies ZΣ3 in the term H⊗i1 ⊗H
⊗j
2 ⊗H

⊗(q−(i+j))
3

such that i+ 2j+ 3(q− i− j) = 3q−2i− j = t, multiplied by the number of times
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each term appears (tensors can be rearranged). That is, for fixed tensor degree q

and fixed homological degree 3q − 2i− j, there are(
q

i, j

)
3i+j − 1

2

copies of group ring ZΣ3. Therefore the tri–graded series should have a term of

the form (
q

i, j

)(3i+j − 1

2

)
x3q−2i−jyqz( qi,j)

3i+j−1
2

For fixed tensor degree q there are only homological degrees t that satisfy d ≤ t ≤

3d. Hence, the sum∑
0≤i+j≤q
0≤i,j≤q

(
q

i, j

)(3i+j − 1

2

)
x3q−2i−jyqz( qi,j)

3i+j−1
2

describes the tensor q–fold product V ⊗q concerning the group ring ZΣ3. Therefore,

Lemma A.2. Let G = U(3) and V be the reduced homology of the maximal torus

T as a module over the group ring of the Weyl group of G. The coefficient of the

term (
q

i, j

)(3i+j − 1

2

)
x3q−2i−jyqz( qi,j)

3i+j−1
2

in the power series

f(x, y, z) =
∑
q≥1

 ∑
0≤i+j≤q
0≤i,j≤q

(
q

i, j

)(3i+j − 1

2

)
x3q−2i−jyqz( qi,j)

3i+j−1
2


gives the number of copies of the group ring ZΣ3 in tensor degree q and homological

degree 3q − 2i− j.

We can do a similar computation for the number of Z[Σ3/Σ2]. Clearly, the

tensor product H⊗i1 ⊗H
⊗j
2 ⊗H

⊗(d−(i+j))
3 appears

(
d
i,j

)
times, that is, there are

(
d
i,j

)
isomorphic copies of H⊗i1 ⊗H

⊗j
2 ⊗H

⊗(d−(i+j))
3 in V ⊗d, and each of them has a single

copy of the representation Z[Σ3/Σ2]. Hence, there are
(
d
i,j

)
copies of Z[Σ3/Σ2] in
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tensor degree d and homological degree 3d − 2i − j and in the tri–graded series

there must be a term of the form(
q

i, j

)
x3q−2i−jyqw( qi,j).

Therefore,

Lemma A.3. Assume same conditions as in Lemma A.2. The coefficient of the

term (
q

i, j

)
x3q−2i−jyqw( qi,j)

in the power series

g(x, y, w) =
∑
q≥1

 ∑
0≤i+j≤q
0≤i,j≤q

(
q

i, j

)
x3q−2i−jyqw( qi,j)


gives the number of copies of the group ring Z[Σ3/Σ2] in tensor degree q and

homological degree 3q − 2i− j.

Proposition A.4. Assume same conditions as in Lemma A.2. Then the power

series

p(x, y, z, w) = f(x, y, z) + g(x, y, w)

keeps track of the tensor degree, homological degree and number of copies of the

representations ZΣ3 and Z[Σ3/Σ2], where f(x, y, z) is the series in Lemma A.2

and g(x, y, w) is the power series in Lemma A.3.

In general, for any unitary group U(n), the maximal torus is given by (S1)n

and the Weyl group is Σn. The reduced homology of the maximal torus has the

following W–module structure

H1
∼= Z[Σn/Σn−1]

Hi
∼= Z[Σn/(Σn−i × Σi)]⊗ Zsgn, for 2 ≤ i ≤ n.
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It remains to determine the decomposition of the tensor products

H⊗d1i1
⊗ · · · ⊗H⊗dkik

for 1 ≤ i1 < · · · < ik ≤ n and d1, . . . , dk ≥ 0, as a direct sum of permutation repre-

sentations of the Weyl group Σn. We conclude here this appendix with the remark

that more information will be given later. Counting of these representations is

complicated because of counting of partitions.
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