THE MAYER-VIETORIS SPECTRAL SEQUENCE

MENTOR STAFA

ABSTRACT. In these expository notes we discuss the construction, definition and usage of the Mayer-Vietoris spectral sequence. We make these notes available hoping they are helpful to people looking for a definition or an example of this spectral sequence.

CONTENTS

1.	Introduction	1
2.	$FDG_{\mathbb{Z}} ext{-modules}$	2
3.	Double complexes	2
4.	The exact couple of a $FDG_{\mathbb{Z}}$ -module	3
5.	The double complex of a cover	4
6.	An equivalent description of the spectral sequence	5
6.1	. Nerve of a cover	5
6.2	. A double complex	5
7.	An example with configuration spaces	6
References		

1. INTRODUCTION

The purpose of these notes is to outline a description of the Mayer-Vietoris spectral sequence, which is a spectral sequence constructed to compute the homology of a topological space X given a cover \mathcal{U} . The name is given since the spectral sequence is a generalization of the Mayer-Vietoris long exact sequence for the union of two subspaces, and is thus also called the *generalized Mayer-Vietoris principle*. Note that this name is not standard. The introductory material on the construction of a spectral sequence can be found in any books on spectral sequences or homological algebra, for instance S. Mac Lane's book "*Homology*" [4], and a description of the double complex can be found for example in [2, pp. 166-168] or in [3]. For a version of the cohomology spectral sequence see [1].

The reason for writing these notes is purely expository. After searching the literature for a description of this specific spectral sequence, there was no straight forward reference with definitions and examples. I realized these notes might point the reader in the right direction if they need to use this spectral sequence. Many

Date: May 12, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 55T99.

Key words and phrases. Mayer-Vietoris spectral sequence, configuration space.

Partially supported by DARPA grant number N66001-11-1-4132.

details will be skipped and many proofs will be left to the reader, or a reference will be given where details or proofs can be found.

The reader is warned that these notes are far from complete, self-contained or error-free.

2. $FDG_{\mathbb{Z}}$ -modules

Let M be a differential \mathbb{Z} -graded module over the ring R with $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and a differential $d: M \to M$ of degree -1, i.e. $d(M_n) \subset M_{n-1}$ and $d^2 = 0$. If F is a filtration of M with

$$\cdots \subset F_{p-1}M \subset F_pM \subset F_{p+1}M \subset \cdots \subset M$$

then there is an induced filtration on the modules M_n with

$$\cdots \subset F_{p-1}M_n \subset F_pM_n \subset F_{p+1}M_n \subset \cdots \subset M_n$$

which respects the differential, where $F_pM_n = F_pM \cap M_n$. The filtration F induces a filtration on the graded homology module $H(M) = \{H_n(M)\}_{n \in \mathbb{Z}}$ of M, where $F_pH(M)$ is the image of the homology of F_pM under the map induced by the inclusion of F_pM into M (i.e. $F_pH_q(M)$ is the image of the q-th homology of F_pM). Therefore we obtain a family of \mathbb{Z} -bigraded modules $\{F_pM_{p+q}\}$ called a filtered differential \mathbb{Z} -graded module, or $FDG_{\mathbb{Z}}$ -module.

The filtration F of M is said to be *bounded* if the induced filtration of M_n is finite for all $n \in \mathbb{Z}$. A spectral sequence $(E_{p,q}^r, d^r)$ is said to converge to the graded module $H = \bigoplus_{n \in \mathbb{Z}} H_n$ if there is a filtration F of H such that

$$E_{p,q}^{\infty} \cong F_p H_{p+q} / F_{p-1} H_{p+q}.$$

Theorem 2.1. A filtration F of a $DG_{\mathbb{Z}}$ -module M determines a spectral sequence (E^r, d^r) with natural isomorphisms

$$E_{p,q}^1 \cong H_{p+q}(F_pM/F_{p-1}M).$$

Moreover, if F is bounded then the spectral sequence converges to H(M), that is there are isomorphisms

$$E_{p,q}^{\infty} \cong F_p(H_{p+q}A)/F_{p-1}(H_{p+q}A)$$

Proof. See [4, Chapter 16, Theorem 3.1]

3. Double complexes

A double complex (or bicomplex) N is a \mathbb{Z} -bigraded module $\{N_{p,q}\}$ with two differentials $\partial', \partial'' : N \to N$ with the properties that

$$\partial': N_{p,q} \to N_{p-1,q}, \qquad \partial'': N_{p,q} \to N_{p,q-1},$$

and relations

 $(\partial')^2 = 0,$ $(\partial'')^2 = 0,$ $\partial'\partial'' = 0.$

The second homology H'' of N is defined in the usual way by

$$H_{p,q}''(N) = ker(\partial'': N_{p,q} \to N_{p,q-1}) / im(\partial'': N_{p,q+1} \to N_{p,q}).$$

Then there is an induced differential ∂' on the big raded second homology H'' and we define the homology groups $H'_pH''_q$ as follows

$$H'_pH''_q(N)=ker(\partial'':H'_{p,q}\rightarrow H''_{p-1,q})/im(\partial':H''_{p+1,q}\rightarrow H''_{p,q})$$

to obtain a bigraded module. Similarly, one can with defining the first homology H'of N and use the induced differential ∂'' to define the homology groups H''H'(N).

A double complex N determines a total complex Tot(N) with

$$Tot(N)_k = \bigoplus_{p+q=k} N_{p,q}$$

with differential $\partial = \partial' + \partial''$, which makes Tot(N) a differential graded module. Define the first filtration F of Tot(N) by

$$F_p Tot(N)_k = \bigoplus_{h \le p} N_{h,k-h}.$$

This gives the so called *first spectral sequence*.

Theorem 3.1. The first spectral sequence of a double complex N with associated total complex Tot(N) is given by

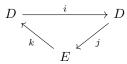
$$E_{p,q}^2 = H'_p H''_q(N).$$

 $\mathcal{L}_{p,q} = H_p^{\cdot} H_q^{\prime\prime}(N).$ If $N_{p,q} = 0$ for p < 0, then E^2 converges to the homology of the total complex Tot(N).

Proof. See [4, Chapter 16, Theorem 6.1]

4. The exact couple of a $FDG_{\mathbb{Z}}$ -module

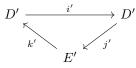
An alternative way to describe a spectral sequence is via exact couples. Let Dand E be $FDG_{\mathbb{Z}}$ -modules. Than an *exact couple* is a pair of modules D, E and three homomorphisms i, j, k forming an exact triangle



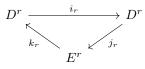
meaning at each vertex the kernel equals the image. Set $d = jk : E \to E$ and

$$E' = ker(d)/im(d), D' = i(D), i'(a) = i(a), j'(ia) = [ja], k[e] = ke_{i}$$

then it can be shown that the new derived triangle



is also exact. This is called the *derived couple* of the couple D, E with the maps. Iterating this construction we get



a sequence of derived couples.

Lemma 4.1. An exact couple of \mathbb{Z} -bigraded modules D, E with maps of degrees

$$deg(i) = (1, -1), \ deg(j) = (0, 0), \ deg(k) = (-1, 0),$$

determines a spectral sequence (E^r, d^r) with $d^r = j_r k_r$, for $r = 1, 2, 3 \dots$

Proof. Note that the exact couple after r iterations has

$$deg(i_r) = (1, -1), \ deg(j_r) = (-r + 1, r - 1), \ deg(k_r) = (-1, 0).$$

Thus $deg(d^r) = (-r, r - 1)$, so each E^{r+1} is the homology of E^r with respect to a differential d^r of the bidegree appropriate to a spectral sequence. For further details see [4, Corollary 5.3].

Each filtration F of a \mathbb{Z} -graded differential module A determines an exact couple as follows. The short exact sequence of complexes

$$F_{p-1}A \hookrightarrow F_pA \twoheadrightarrow F_pA/F_{p-1}A$$

gives the usual long exact sequence in homology

$$\cdots \to H_n(F_{p-1}A) \xrightarrow{i} H_n(F_pA) \xrightarrow{j} H_n(F_pA/F_{p-1}A) \xrightarrow{k} H_{n-1}(F_{p-1}A) \to \cdots$$

where i is induced by the inclusion, j by the projection, and k is the homology connecting homomorphism. These sequences then give an exact couple with bigraded D, E defined by

$$D_{p,q} = H_{p+q}(F_pA), \ E_{p,q} = H_{p+q}(F_pA/F_{p-1}A),$$

and the degrees of i, j, k are given as above. Call this the *exact couple of the filtration* F.

Theorem 4.2. The spectral sequence of the filtration F is isomorphic to the spectral sequence of the exact couple determined by F.

Proof. See [4, Chapter 16, Theorem 5.4]

Let X be a simplicial complex and $\mathcal{U} = \{U_i\}_{i \in I}$ be a cover of X. Define a double complex $E^0 = \{E_{p,q}^0\}_{p,q \in \mathbb{Z}}$, where $E_{p,q}^0$ is the q-chains in a p-fold intersection of elements in the cover \mathcal{U} . That means

$$E_{p,q}^{0} = C_q \bigg[\bigcup_{\substack{J \subseteq I \\ |J| = p}} \bigg(\bigcap_{j \in J} U_j \bigg) \bigg],$$

together with two differential maps d^0 and d^1 , where $d^0: E^0_{p,q} \to E^0_{p,q-1}$ is the boundary map on the chains and $d^1: E^0_{p,q} \to E^0_{p-1,q}$ explained as follows in [3]: "For any particular $J \subseteq I$, and any particular $j' \in J$, there is an inclusion map $\bigcap_{j \in J} U_j \to \bigcap_{j \in J-\{j'\}} U_j$. If we multiply each such inclusion map with the sign of the corresponding term $J \to J - \{j'\}$ of the nerve complex boundary map and sum the maps up for all j', we get the map d^1 ."

Note that $(d^0)^2 = 0$, $(d^1)^2 = 0$, and $d^0d^1 = 0$ which makes E^0 a double complex. Let $T_{\mathcal{U}}$ denote the total complex of E^0 with

$$(T_{\mathfrak{U}})_n = \bigoplus_{p+q=n} E_{p,q}^0.$$

Theorem 5.1. There are isomorphisms of homology groups $H_*(T_U) \cong H_*(X)$.

Proof. See [3, Theorem 1].

Define a filtration F of $T_{\mathcal{U}}$ by setting

$$F_t T_{\mathcal{U}} = \bigoplus_{h \le t} E^0_{h,n-h}; \quad F_t(T_{\mathcal{U}})_k = \bigoplus_{h \le t} E^0_{h,k-h}.$$

Then with the filtration F it follows from Theorem 3.1 that there is a spectral sequence converging to the homology of X.

Theorem 5.2 (Mayer-Vietoris spectral sequence). The spectral sequence of the filtration of $T_{\mathcal{U}}$ converges to the homology of X.

Proof. Follows directly from Theorem 5.1 and 3.1.

6. An equivalent description of the spectral sequence

This description was adapted from K. Brown [2, pp. 166-168].

6.1. Nerve of a cover. Let X be a simplicial complex and $\mathcal{U} = \{U_i\}_{i \in I}$ be a cover of X. The *nerve* of the cover \mathcal{U} , denoted $N(\mathcal{U})$ is an abstract simplicial complex defined as the collection of subsequences $\sigma \subseteq I$ with the property that $\sigma \in N(\mathcal{U})$ if and only if $X_{\sigma} := \bigcap_{i \in \sigma} U_i \neq \phi$. Such a collection clearly is an abstract simplicial complex.

6.2. A double complex. Let $N_p(\mathcal{U})$ be the set of *p*-simplices in $N(\mathcal{U})$. We define a chain complex *C* with

$$C_k = \bigoplus_{\sigma \in N_k(\mathfrak{U})} C(X_{\sigma}) = \bigoplus_{\sigma \in N_k(\mathfrak{U})} C(\cap_{i \in \sigma} U_i)$$

and with boundary map $\partial: C_k \to C_{k-1}$ given by

$$\partial \sigma = \partial \{j_0 < \dots < j_k\} = \sum_{i=0}^k (-1)^i \{j_0 < \dots < \hat{j_i} < \dots < j_k\}$$

extending linearly over the direct sum. Now define a double complex C with

$$C_{pq} = \bigoplus_{\sigma \in N_p(\mathfrak{U})} C_q(X_{\sigma}) = \bigoplus_{\sigma \in N_p(\mathfrak{U})} C_q(\cap_{i \in \sigma} U_i)$$

and the boundary map $\partial':C_{p,q}\to C_{p,q-1}$ the standard boundary map in simplicial homology.

Let $E_{pq}^1 = H_q(C_p) = \bigoplus_{\sigma \in N_p(\mathcal{U})} H_q(X_{\sigma})$ be homology of the double complex C with respect to the boundary ∂ . There is an induced boundary map ∂' on E^1 with homology the spectral sequence

$$E_{pq}^{2} = H_{p}(E_{pq}^{1}) = H_{p}\bigg(\bigoplus_{\sigma \in N_{p}(\mathfrak{U})} H_{q}(X_{\sigma})\bigg).$$

It can be shown that $E_{pq}^2 \Rightarrow H_{p+q}(X)$. This is called the *Mayer-Vietoris spectral sequence*, a name which is not entirely standard.

7. An example with configuration spaces

The example that follows is most probably not the most enlightening example, but gives a nice application of this spectral sequence. For this example the reader can also look at [5, Section 3.1].

Let R_n be the connected tree with n edges and with exactly one vertex with valence n and the other vertices of valence 1, see Figure 1.

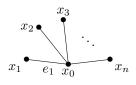


FIGURE 1. R_4 , deg $(x_0) = n$

Note that for $n \geq 3$ we can write $R_n = R_{n-1} \vee_{x_0} e_1$, where e_1 is the first edge in the figure and R_{n-1} is the union of the other edges. We assume that $n \geq 3$ since for n = 2 we get the unit interval, which is well understood in the following construction.

Recall that the space of ordered k-configurations of a topological space X is defined by

$$Conf(X,n) = \{(t_1,\ldots,t_k) \in X^k : x_i \neq x_j \text{ if } i \neq j\}.$$

There is a cover of the space of ordered 2-configurations $Conf(R_n, 2)$, given by $U = \{U_{11}, U_{12}, U_{21}, U_{22}\}$, where

$$U_{11} = Conf(e_1, 2), \qquad U_{12} = e_1 \times R_{n-1} - \{(x_0, x_0)\}, U_{22} = Conf(R_{n-2}, 2), \qquad U_{21} = R_{n-1} \times e_1 - \{(x_0, x_0)\}.$$

Consider the intersection poset P_U of the cover, that is the poset consisting of all the elements of U and their inclusions partially ordered by inclusion. One can check that all the inclusions are cofibrations. Moreover, by inspection we get the following lemma.

Lemma 7.1. The elements in the cover U satisfy the following:

 $\begin{array}{ll} (1) \ e_1 - \{x_0\} \simeq *, \\ (2) \ R_{n-1} - \{x_0\} \simeq \{*_1, \dots, *_n\}, \\ (3) \ U_{11} \simeq \{*_1, *_2\}, \\ (4) \ U_{12} \simeq U_{21} \simeq *, \\ (5) \ U_{11} \cap U_{12} \simeq U_{11} \cap U_{21} \simeq *, \\ (6) \ U_{12} \cap U_{22} \simeq U_{21} \cap U_{22} \simeq \{*_1, \dots, *_{n-1}\}. \end{array}$

Proof. Proof is left an exercise, or see [5, Section 3.1].

Hence, the Mayer-Vietoris spectral sequence for $Conf(R_n, 2)$ and P_U has the following properties. Recall the definition of the first page of this spectral sequence from the preceding discussion. Thus the first page E^1 of the homology spectral sequence is given by:

(1)
$$E_{0,0}^1 = H_0(U_{11}) \oplus H_0(U_{12}) \oplus H_0(U_{21}) \oplus H_0(U_{22}) \cong (\oplus_4 \mathbb{Z}) \oplus H_0(Conf(R_{n-1},2), \mathbb{Z})$$

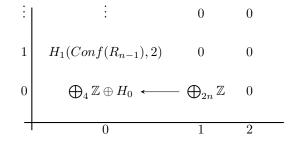


FIGURE 2. E^1 page of the Mayer-Vietoris spectral sequence

- (2) $E_{1,0}^1 = H_0(U_{11} \cap U_{12}) \oplus H_0(U_{11} \cap U_{21}) \oplus H_0(U_{12} \cap U_{22}) \oplus H_0(U_{21} \cap U_{22}) \cong \oplus_{2n} \mathbb{Z},$
- (3) $E_{0,q}^1 = H_q(Conf(R_{n-1}, 2) \text{ for } q \ge 1,$
- (4) $E_{p,q}^1 = 0$ otherwise.

There will be a difference in the treatment of this spectral sequence depending on the value of the number of edges n. Recall that the differential $d_{p,q}^r$ is a map

$$d_{p,q}^r: E_{p,q}^r \to E_{p-r,q+r-1}^r$$

When n = 3 the only possibly nonzero differential has the following image and kernel.

Lemma 7.2. If n = 3 then $Im(d_{1,0}^1) \cong \bigoplus_5 \mathbb{Z}$ and $Ker(d_{1,0}^1) \cong \mathbb{Z}$.

Proof. Note that the configuration space $Conf(R_2, 2) \simeq \{*_1, *_2\}$. Assume that the homology groups, which are free abelian groups, have the following generators:

$H_0(U_{11}) = \langle f_1, f_2 \rangle,$	$H_0(U_{12}) = \langle h_1 \rangle,$
$H_0(U_{22}) = \langle g_1, g_2 \rangle,$	$H_0(U_{21}) = \langle h_2 \rangle,$
$H_0(U_{11} \cap U_{12}) = \langle a_1 \rangle,$	$H_0(U_{12} \cap U_{22}) = \langle b_1, b_2 \rangle,$
$H_0(U_{11} \cap U_{21}) = \langle a_2 \rangle,$	$H_0(U_{21} \cap U_{22}) = \langle c_1, c_2 \rangle.$

Notice that the differential is induced by the inclusion maps of the intersection in the poset P_U . One can check the following:

$d_{1,0}^1(a_1) = f_1 - h_1,$	$d_{1,0}^1(a_2) = f_2 - h_2,$
$d_{1,0}^1(b_1) = h_1 - g_1,$	$d_{1,0}^1(b_2) = h_2 - g_2,$
$d_{1,0}^1(c_1) = h_2 - g_1,$	$d_{1,0}^1(c_2) = h_2 - g_2.$

Therefore, the image of $d_{1,0}^1$ is generated by

 ${f_1 - h_1, f_2 - h_2, h_1 - g_1, h_2 - g_2, h_2 - g_1, h_2 - g_2},$

which has dimension 5. Finally the kernel has dimension 1.

Hence, we have that $E_{0,0}^2 \cong Ker(d_{1,0}^1)/Im(d_{1,0}^1) \cong \mathbb{Z}$, and $Conf(R_3, 2)$ is path connected. By an induction hypothesis it follows that $Conf(R_n, 2)$ is path connected for all $n \geq 3$.

Lemma 7.3. If $n \ge 4$ then $Im(d_{1,0}^1) \cong \bigoplus_4 \mathbb{Z}$ and $Ker(d_{1,0}^1) \cong \bigoplus_{2(n-2)} \mathbb{Z}$.

Proof. This is almost the same as the previous proof. Assume the configuration space $Conf(R_n, 2)$ is connected for $n \geq 3$ Assume that the homology groups of the poset, which are free abelian groups, have the following generators:

$H_0(U_{11}) = \langle f_1, f_2 \rangle,$	$H_0(U_{12}) = \langle h_1 \rangle,$
$H_0(U_{22}) = \langle h_3 \rangle,$	$H_0(U_{21}) = \langle h_2 \rangle,$
$H_0(U_{11} \cap U12) = \langle a_1 \rangle,$	$H_0(U_{12} \cap U_{22}) = \langle b_1, \dots, b_{n-1} \rangle,$
$H_0(U_{11} \cap U21) = \langle a_2 \rangle,$	$H_0(U_{21} \cap U_{22}) = \langle c_1, \dots, c_{n-1} \rangle.$

Notice that the differential is induced by the inclusion maps of the intersection in the poset P_U . One can check the following:

$$\begin{aligned} d_{1,0}^1(a_1) &= f_1 - h_1, \\ d_{1,0}^1(b_i) &= h_1 - h_3, \text{ for all } i, \end{aligned} \qquad \begin{aligned} d_{1,0}^1(a_2) &= f_2 - h_2, \\ d_{1,0}^1(c_i) &= h_2 - h_3, \text{ for all } i. \end{aligned}$$

Therefore, the image of $d_{1,0}^1$ is generated by

$${f_1 - h_1, f_2 - h_2, h_1 - h_3, h_2 - h_3},$$

which has dimension 4. Finally the kernel has dimension 2n - 4 = 2(n - 2).

It follows from the spectral sequence that if $n \geq 3$, then

- (1) $H_0(Conf(R_n, 2); \mathbb{Z}) = \mathbb{Z},$
- (2) $H_1(Conf(R_n,2);\mathbb{Z}) = \bigoplus_{2(n-2)} \mathbb{Z} \oplus H_1(Conf(R_{n-1},2))$ and
- (3) $H_k(Conf(R_n, 2) = H_1(Conf(R_{n-1}, 2)).$

Theorem 7.4. If $n \ge 3$ The homology of $Conf(R_n, 2)$ is given by

(7.1)
$$H_k(Conf(R_n, 2); \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } k = 0 \\ \bigoplus_{(n-1)(n-2)-1} \mathbb{Z} & \text{if } k = 1 \\ 0 & \text{otherwise} \end{cases}$$

Proof. Follows from Lemmas 7.2 and 7.3, and the iterations:

$$H_1(Conf(R_n, 2); \mathbb{Z}) = \bigoplus_{2(n-2)} \mathbb{Z} \oplus H_1(Conf(R_{n-1}, 2))$$
$$= \bigoplus_{2(n-2)+2(n-3)} \mathbb{Z} \oplus H_1(Conf(R_{n-2}, 2))$$
$$= \dots = \bigoplus_{(n-1)(n-2)-1} \mathbb{Z},$$

and for $k\geq 2$

$$H_k(Conf(R_n, 2) = H_k(Conf(R_{n-1}, 2)) = H_k(Conf(R_{n-2}, 2))$$

= \dots = H_k(Conf(R_2, 2)) = 0.

References

- [1] BOTT, R. AND TU, L. W. Differential forms in algebraic topology. *Graduate texts in Mathematics* 82 (1982).
- [2] BROWN, K. S. Cohomology of groups. GTM 87. Springer-Verlag, New York, 1982.
- [3] LIPSKY, D., SKRABA, P., AND VEJDEMO-JOHANSSON, M. A spectral sequence for parallelized persistence. arXiv:1112.1245 (2011).
- [4] MAC LANE, S. Homology. Classics in Mathematics. Springer, 1995.
- [5] SUN, Q. Configuration Spaces of Singular Spaces. PhD thesis, University of Rochester, 2011.

Department of Mathematics, Tulane University, New Orleans, LA 70118 $E\text{-}mail \ address: mstafa@tulane.edu$