
THE MAYER-VIETORIS SPECTRAL SEQUENCE

MENTOR STAFA

Abstract. In these expository notes we discuss the construction, definition

and usage of the Mayer-Vietoris spectral sequence. We make these notes avail-

able hoping they are helpful to people looking for a definition or an example
of this spectral sequence.
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1. Introduction

The purpose of these notes is to outline a description of the Mayer-Vietoris spec-
tral sequence, which is a spectral sequence constructed to compute the homology of
a topological space X given a cover U. The name is given since the spectral sequence
is a generalization of the Mayer-Vietoris long exact sequence for the union of two
subspaces, and is thus also called the generalized Mayer-Vietoris principle. Note
that this name is not standard. The introductory material on the construction of a
spectral sequence can be found in any books on spectral sequences or homological
algebra, for instance S. Mac Lane’s book “Homology” [4], and a description of the
double complex can be found for example in [2, pp. 166-168] or in [3]. For a version
of the cohomology spectral sequence see [1].

The reason for writing these notes is purely expository. After searching the
literature for a description of this specific spectral sequence, there was no straight
forward reference with definitions and examples. I realized these notes might point
the reader in the right direction if they need to use this spectral sequence. Many
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2 MENTOR STAFA

details will be skipped and many proofs will be left to the reader, or a reference
will be given where details or proofs can be found.

The reader is warned that these notes are far from complete, self-contained or
error-free.

2. FDGZ-modules

Let M be a differential Z-graded module over the ring R with M =
⊕

n∈ZMn

and a differential d : M →M of degree -1, i.e. d(Mn) ⊂Mn−1 and d2 = 0. If F is
a filtration of M with

· · · ⊂ Fp−1M ⊂ FpM ⊂ Fp+1M ⊂ · · · ⊂M
then there is an induced filtration on the modules Mn with

· · · ⊂ Fp−1Mn ⊂ FpMn ⊂ Fp+1Mn ⊂ · · · ⊂Mn

which respects the differential, where FpMn = FpM ∩Mn. The filtration F induces
a filtration on the graded homology module H(M) = {Hn(M)}n∈Z of M , where
FpH(M) is the image of the homology of FpM under the map induced by the
inclusion of FpM into M (i.e. FpHq(M) is the image of the q-th homology of
FpM). Therefore we obtain a family of Z-bigraded modules {FpMp+q} called a
filtered differential Z-graded module, or FDGZ-module.

The filtration F of M is said to be bounded if the induced filtration of Mn is
finite for all n ∈ Z. A spectral sequence (Erp,q, d

r) is said to converge to the graded
module H =

⊕
n∈ZHn if there is a filtration F of H such that

E∞p,q
∼= FpHp+q/Fp−1Hp+q.

Theorem 2.1. A filtration F of a DGZ-module M determines a spectral sequence
(Er, dr) with natural isomorphisms

E1
p,q
∼= Hp+q(FpM/Fp−1M).

Moreover, if F is bounded then the spectral sequence converges to H(M), that is
there are isomorphisms

E∞p,q
∼= Fp(Hp+qA)/Fp−1(Hp+qA).

Proof. See [4, Chapter 16, Theorem 3.1] �

3. Double complexes

A double complex (or bicomplex ) N is a Z-bigraded module {Np,q} with two
differentials ∂′, ∂′′ : N → N with the properties that

∂′ : Np,q → Np−1,q, ∂′′ : Np,q → Np,q−1,

and relations

(∂′)2 = 0, (∂′′)2 = 0, ∂′∂′′ = 0.

The second homology H ′′ of N is defined in the usual way by

H ′′p,q(N) = ker(∂′′ : Np,q → Np,q−1)/im(∂′′ : Np,q+1 → Np,q).

Then there is an induced differential ∂′ on the bigraded second homology H ′′ and
we define the homology groups H ′pH

′′
q as follows

H ′pH
′′
q (N) = ker(∂′′ : H ′p,q → H ′′p−1,q)/im(∂′ : H ′′p+1,q → H ′′p,q)
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to obtain a bigraded module. Similarly, one can with defining the first homology H ′

of N and use the induced differential ∂′′ to define the homology groups H ′′H ′(N).
A double complex N determines a total complex Tot(N) with

Tot(N)k =
⊕
p+q=k

Np,q

with differential ∂ = ∂′ + ∂′′, which makes Tot(N) a differential graded module.
Define the first filtration F of Tot(N) by

FpTot(N)k =
⊕
h≤p

Nh,k−h.

This gives the so called first spectral sequence.

Theorem 3.1. The first spectral sequence of a double complex N with associated
total complex Tot(N) is given by

E2
p,q = H ′pH

′′
q (N).

If Np,q = 0 for p < 0, then E2 converges to the homology of the total complex
Tot(N).

Proof. See [4, Chapter 16, Theorem 6.1] �

4. The exact couple of a FDGZ-module

An alternative way to describe a spectral sequence is via exact couples. Let D
and E be FDGZ-modules. Than an exact couple is a pair of modules D,E and
three homomorphisms i, j, k forming an exact triangle

D D

E

i

jk

meaning at each vertex the kernel equals the image. Set d = jk : E → E and

E′ = ker(d)/im(d), D′ = i(D), i′(a) = i(a), j′(ia) = [ja], k[e] = ke,

then it can be shown that the new derived triangle

D′ D′

E′

i′

j′k′

is also exact. This is called the derived couple of the couple D,E with the maps.
Iterating this construction we get

Dr Dr

Er

ir

jrkr

a sequence of derived couples.

Lemma 4.1. An exact couple of Z-bigraded modules D,E with maps of degrees

deg(i) = (1,−1), deg(j) = (0, 0), deg(k) = (−1, 0),

determines a spectral sequence (Er, dr) with dr = jrkr, for r = 1, 2, 3 . . . .
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Proof. Note that the exact couple after r iterations has

deg(ir) = (1,−1), deg(jr) = (−r + 1, r − 1), deg(kr) = (−1, 0).

Thus deg(dr) = (−r, r − 1), so each Er+1 is the homology of Er with respect to
a differential dr of the bidegree appropriate to a spectral sequence. For further
details see [4, Corollary 5.3]. �

Each filtration F of a Z-graded differential module A determines an exact couple
as follows. The short exact sequence of complexes

Fp−1A ↪→ FpA� FpA/Fp−1A

gives the usual long exact sequence in homology

· · · → Hn(Fp−1A)
i−→ Hn(FpA)

j−→ Hn(FpA/Fp−1A)
k−→ Hn−1(Fp−1A)→ · · ·

where i is induced by the inclusion, j by the projection, and k is the homology con-
necting homomorphism. These sequences then give an exact couple with bigraded
D,E defined by

Dp,q = Hp+q(FpA), Ep,q = Hp+q(FpA/Fp−1A),

and the degrees of i, j, k are given as above. Call this the exact couple of the
filtration F .

Theorem 4.2. The spectral sequence of the filtration F is isomorphic to the spectral
sequence of the exact couple determined by F .

Proof. See [4, Chapter 16, Theorem 5.4] �

5. The double complex of a cover

Let X be a simplicial complex and U = {Ui}i∈I be a cover of X. Define a double
complex E0 = {E0

p,q}p,q∈Z, where E0
p,q is the q-chains in a p-fold intersection of

elements in the cover U. That means

E0
p,q = Cq

[ ⋃
J⊆I
|J|=p

( ⋂
j∈J

Uj

)]
,

together with two differential maps d0 and d1, where d0 : E0
p,q → E0

p,q−1 is the

boundary map on the chains and d1 : E0
p,q → E0

p−1,q explained as follows in [3]:
“ For any particular J ⊆ I, and any particular j′ ∈ J , there is an inclusion map
∩j∈JUj → ∩j∈J−{j′}Uj. If we multiply each such inclusion map with the sign of
the corresponding term J → J − {j′} of the nerve complex boundary map and sum
the maps up for all j′ , we get the map d1.”

Note that (d0)2 = 0, (d1)2 = 0, and d0d1 = 0 which makes E0 a double complex.
Let TU denote the total complex of E0 with

(TU)n =
⊕
p+q=n

E0
p,q.

Theorem 5.1. There are isomorphisms of homology groups H∗(TU) ∼= H∗(X).

Proof. See [3, Theorem 1]. �
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Define a filtration F of TU by setting

FtTU =
⊕
h≤t

E0
h,n−h; Ft(TU)k =

⊕
h≤t

E0
h,k−h.

Then with the filtration F it follows from Theorem 3.1 that there is a spectral
sequence converging to the homology of X.

Theorem 5.2 (Mayer-Vietoris spectral sequence). The spectral sequence of the
filtration of TU converges to the homology of X.

Proof. Follows directly from Theorem 5.1 and 3.1. �

6. An equivalent description of the spectral sequence

This description was adapted from K. Brown [2, pp. 166-168].

6.1. Nerve of a cover. Let X be a simplicial complex and U = {Ui}i∈I be a cover
of X. The nerve of the cover U, denoted N(U) is an abstract simplicial complex
defined as the collection of subsequences σ ⊆ I with the property that σ ∈ N(U)
if and only if Xσ := ∩i∈σUi 6= φ. Such a collection clearly is an abstract simplicial
complex.

6.2. A double complex. Let Np(U) be the set of p-simplices in N(U). We define
a chain complex C with

Ck =
⊕

σ∈Nk(U)

C(Xσ) =
⊕

σ∈Nk(U)

C(∩i∈σUi)

and with boundary map ∂ : Ck → Ck−1 given by

∂σ = ∂{j0 < · · · < jk} =

k∑
i=0

(−1)i{j0 < · · · < ĵi < · · · < jk}

extending linearly over the direct sum. Now define a double complex C with

Cpq =
⊕

σ∈Np(U)

Cq(Xσ) =
⊕

σ∈Np(U)

Cq(∩i∈σUi)

and the boundary map ∂′ : Cp,q → Cp,q−1 the standard boundary map in simplicial
homology.

Let E1
pq = Hq(Cp) =

⊕
σ∈Np(U)Hq(Xσ) be homology of the double complex C

with respect to the boundary ∂. There is an induced boundary map ∂′ on E1 with
homology the spectral sequence

E2
pq = Hp(E

1
pq) = Hp

( ⊕
σ∈Np(U)

Hq(Xσ)

)
.

It can be shown that E2
pq ⇒ Hp+q(X). This is called the Mayer-Vietoris spectral

sequence, a name which is not entirely standard.
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7. An example with configuration spaces

The example that follows is most probably not the most enlightening example,
but gives a nice application of this spectral sequence. For this example the reader
can also look at [5, Section 3.1].

Let Rn be the connected tree with n edges and with exactly one vertex with
valence n and the other vertices of valence 1, see Figure 1.

• ••

• •

x0
x1 e1

x2

x3

. . .

xn

Figure 1. R4, deg(x0) = n

Note that for n ≥ 3 we can write Rn = Rn−1 ∨x0
e1, where e1 is the first edge

in the figure and Rn−1 is the union of the other edges. We assume that n ≥ 3
since for n = 2 we get the unit interval, which is well understood in the following
construction.

Recall that the space of ordered k-configurations of a topological space X is
defined by

Conf(X,n) = {(t1, . . . , tk) ∈ Xk : xi 6= xj if i 6= j}.
There is a cover of the space of ordered 2-configurations Conf(Rn, 2), given by
U = {U11, U12, U21, U22}, where

U11 = Conf(e1, 2), U12 = e1 ×Rn−1 − {(x0, x0)},
U22 = Conf(Rn−2, 2), U21 = Rn−1 × e1 − {(x0, x0)}.

Consider the intersection poset PU of the cover, that is the poset consisting of
all the elements of U and their inclusions partially ordered by inclusion. One can
check that all the inclusions are cofibrations. Moreover, by inspection we get the
following lemma.

Lemma 7.1. The elements in the cover U satisfy the following:

(1) e1 − {x0} ' ∗,
(2) Rn−1 − {x0} ' {∗1, . . . , ∗n},
(3) U11 ' {∗1, ∗2},
(4) U12 ' U21 ' ∗,
(5) U11 ∩ U12 ' U11 ∩ U21 ' ∗,
(6) U12 ∩ U22 ' U21 ∩ U22 ' {∗1, . . . , ∗n−1}.

Proof. Proof is left an exercise, or see [5, Section 3.1]. �

Hence, the Mayer-Vietoris spectral sequence for Conf(Rn, 2) and PU has the
following properties. Recall the definition of the fist page of this spectral sequence
from the preceding discussion. Thus the first page E1 of the homology spectral
sequence is given by:

(1) E1
0,0 = H0(U11)⊕H0(U12)⊕H0(U21)⊕H0(U22) ∼= (⊕4Z)⊕H0(Conf(Rn−1, 2),
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...
... 0 0

1 H1(Conf(Rn−1), 2) 0 0

0
⊕

4 Z⊕H0

⊕
2n Z 0

0 1 2

Figure 2. E1 page of the Mayer-Vietoris spectral sequence

(2) E1
1,0 = H0(U11 ∩U12)⊕H0(U11 ∩U21)⊕H0(U12 ∩U22)⊕H0(U21 ∩U22) ∼=
⊕2nZ,

(3) E1
0,q = Hq(Conf(Rn−1, 2) for q ≥ 1,

(4) E1
p,q = 0 otherwise.

There will be a difference in the treatment of this spectral sequence depending
on the value of the number of edges n. Recall that the differential drp,q is a map

drp,q : Erp,q → Erp−r,q+r−1.

When n = 3 the only possibly nonzero differential has the following image and
kernel.

Lemma 7.2. If n = 3 then Im(d11,0) ∼=
⊕

5 Z and Ker(d11,0) ∼= Z.

Proof. Note that the configuration space Conf(R2, 2) ' {∗1, ∗2}. Assume that the
homology groups, which are free abelian groups, have the following generators:

H0(U11) = 〈f1, f2〉, H0(U12) = 〈h1〉,
H0(U22) = 〈g1, g2〉, H0(U21) = 〈h2〉,
H0(U11 ∩ U12) = 〈a1〉, H0(U12 ∩ U22) = 〈b1, b2〉,
H0(U11 ∩ U21) = 〈a2〉, H0(U21 ∩ U22) = 〈c1, c2〉.

Notice that the differential is induced by the inclusion maps of the intersection
in the poset PU . One can check the following:

d11,0(a1) = f1 − h1, d11,0(a2) = f2 − h2,
d11,0(b1) = h1 − g1, d11,0(b2) = h2 − g2,
d11,0(c1) = h2 − g1, d11,0(c2) = h2 − g2.

Therefore, the image of d11,0 is generated by

{f1 − h1, f2 − h2, h1 − g1, h2 − g2, h2 − g1, h2 − g2},
which has dimension 5. Finally the kernel has dimension 1. �

Hence, we have that E2
0,0
∼= Ker(d11,0)/Im(d11,0) ∼= Z, and Conf(R3, 2) is path

connected. By an induction hypothesis it follows that Conf(Rn, 2) is path con-
nected for all n ≥ 3.
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Lemma 7.3. If n ≥ 4 then Im(d11,0) ∼=
⊕

4 Z and Ker(d11,0) ∼=
⊕

2(n−2) Z.

Proof. This is almost the same as the previous proof. Assume the configuration
space Conf(Rn, 2) is connected for n ≥ 3 Assume that the homology groups of the
poset, which are free abelian groups, have the following generators:

H0(U11) = 〈f1, f2〉, H0(U12) = 〈h1〉,
H0(U22) = 〈h3〉, H0(U21) = 〈h2〉,
H0(U11 ∩ U12) = 〈a1〉, H0(U12 ∩ U22) = 〈b1, . . . , bn−1〉,
H0(U11 ∩ U21) = 〈a2〉, H0(U21 ∩ U22) = 〈c1, . . . , cn−1〉.

Notice that the differential is induced by the inclusion maps of the intersection
in the poset PU . One can check the following:

d11,0(a1) = f1 − h1, d11,0(a2) = f2 − h2,
d11,0(bi) = h1 − h3, for all i, d11,0(ci) = h2 − h3, for all i.

Therefore, the image of d11,0 is generated by

{f1 − h1, f2 − h2, h1 − h3, h2 − h3},
which has dimension 4. Finally the kernel has dimension 2n− 4 = 2(n− 2). �

It follows from the spectral sequence that if n ≥ 3, then

(1) H0(Conf(Rn, 2);Z) = Z,
(2) H1(Conf(Rn, 2);Z) =

⊕
2(n−2) Z⊕H1(Conf(Rn−1, 2)) and

(3) Hk(Conf(Rn, 2) = H1(Conf(Rn−1, 2).

Theorem 7.4. If n ≥ 3 The homology of Conf(Rn, 2) is given by

(7.1) Hk(Conf(Rn, 2);Z) =


Z if k = 0⊕

(n−1)(n−2)−1 Z if k = 1

0 otherwise

Proof. Follows from Lemmas 7.2 and 7.3, and the iterations:

H1(Conf(Rn, 2);Z) =
⊕

2(n−2)

Z⊕H1(Conf(Rn−1, 2))

=
⊕

2(n−2)+2(n−3)

Z⊕H1(Conf(Rn−2, 2))

= · · · =
⊕

(n−1)(n−2)−1

Z,

and for k ≥ 2

Hk(Conf(Rn, 2) = Hk(Conf(Rn−1, 2) = Hk(Conf(Rn−2, 2)

= · · · = Hk(Conf(R2, 2) = 0.

�
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