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Abstract. We study the two dimensional primitive equations in the presence
of multiplicative stochastic forcing. We prove the existence and uniqueness
of solutions in a fixed probability space. The proof is based on finite dimen-
sional approximations, anisotropic Sobolev estimates, and weak convergence
methods.

1. Introduction. The Primitive equations are a ubiquitous model in the study
of geophysical fluid dynamics. They can be derived from the compressible Navier-
Stokes equations by taking advantage of various properties common to geophysical
flows. In particular, one uses the Boussinesq approximation, that fluctuations in
the density of the fluid are much smaller than the mean density throughout. A
scale analysis relying on the relative shallowness of the ocean at geophysical scales is
employed to show that the pressure and the gravitational forces are the only relevant
terms in the vertical momentum equation. This is referred to as the hydrostatic
approximation. For further background and detailed physical derivations see [9] or
[27], for example.

The mathematical study of the Primitive equations was initiated in the early
1990’s with the work of Lions, Temam and Wang [21], [20], [19]. In these initial
works the existence of global weak solutions and weak attractors were established
and numerical schemes were developed. The case of local strong solutions was ad-
dressed by Guillén-González, Masmoudi, and Rodŕıguez-Bellido [14] and by Hu,
Temam and Ziane [15]. Also see the survey article of Temam and Ziane[30]. Re-
cent breakthroughs have yielded global existence of strong solutions in three space
dimensions. The case of Neumann boundary conditions was addressed by Cao and
Titi [6] and later independently by Kobelkov [17]. In subsequent work of Kukavica
and Ziane [18] a different proof was discovered which covers the case of physically
relevant boundary conditions.

For the two dimensional deterministic setting we mention the work of Petcu,
Temam, and Wirosoetisno in [28] and Bresch, Kazhikhov and Lemoine [4] where
both the cases of weak and strong solutions are considered. The 2-D primitive
equations seem to be more difficult mathematically than the 2-D Navier-Stokes
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equations. For instance, it is still an open problem whether weak solutions of the
Primitive equations in the deterministic setting are unique. This is an easy exercise
for the 2-D Navier Stokes equations.

The addition of white noise driven terms to the basic governing equations for
a physical system is natural for both practical and theoretical applications. For
example, these stochastically forced terms can be used to account for numerical
and empirical uncertainties and thus provide a means to study the robustness of
a basic model. Specifically in the context of fluids, complex phenomena related to
turbulence may also be produced by stochastic perturbations. For instance, in the
recent work of Mikulevicius and Rozovsky [25] such terms are shown to arise from
basic physical principals.

A wide body of mathematical literature exists for the stochastic Navier-Stokes
equations. This analytic program dates back to the early 1970’s with the work of
Bensoussan and Temam [2]. For the study of well-posedness new difficulties related
to compactness often arise due to the addition of a probabilistic parameter. For
situations where continuous dependence on initial data remains open (for example
in d = 3 when the initial data merely takes values in L2) it has proven fruitful
to consider Martingale solutions. Here one constructs a probabilistic basis as part
of the solution. For this context we refer the reader to the works of Cruzeiro
[8], Capinski and Gatarek [7], Flandoli and Gatarek [13] and of Mikulevicius and
Rozovskii [23].

On the other hand, when working in spaces where continuous dependence on the
initial data can be expected, existence of solutions can sometimes be established on
a preordained probability space. Such solutions are often referred to as “strong”
or “pathwise” solutions. In the two dimensional setting, Da Prato and Zabczyk
[11] and later Breckner [3] as well as Menaldi and Sritharan [22] established the
existence of pathwise solutions where u ∈ L∞([0, T ], L2), P − a.s. On the other
hand, Bensoussan and Frehse [1] have established local solutions in 3-d for the class
Cβ([0, T ]; H2s) where 3/4 < s < 1 and β < 1− s. In the works of Mikulevicius and
Rozovsky [26] and of Brzezniak and Peszat [5] the case of arbitrary space dimensions
for local solutions evolving in Sobolev spaces of type W 1,p for p > d is addressed.

It is with this background in mind that we present the following examination
of the two dimensional Primitive equations in the presence of multiplicative white
noise terms on a preordained probability space. In the first section we introduce
the model, providing an overview of the relevant function spaces and establish
some anisotropic Sobolev type estimates on the nonlinear terms of the equation. A
variational definition for solutions is then presented. We next turn to the Galerkin
scheme. Since the best estimates for the nonlinear terms are closer to those currently
available for the three dimensional Navier Stokes equations we need to make use of
special cancellation properties available for the z direction. In this way we are able
to infer uniform bounds for ∂zu(n) in Lp(Ω; L2(0, T ; V ) ∩ L∞(0, T ; H)) along with
those typical for u(n). To establish existence we apply weak convergence methods to
identify a limit system. A comparison technique is then employed taking advantage
of the additional regularity established for u(n). This allows us to identify certain
point-wise limits from which we conclude that the system is indeed the desired
equation. Uniqueness is established to conclude the final section.

2. A model for the stochastic primitive equations in two space dimen-
sions. The two dimensional Primitive equations can be formally derived from the
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full three dimensional system under the assumption of invariance with respect to
the second horizontal variable y. As such we will assume that the initial data and
the external forcing are independent of y. By adding a second external forcing term
driven by a white noise, we arrive at the following non-linear stochastic evolution
system:

∂tu − ν∆u + u∂xu + w∂zu + ∂xp = f + g(u, t)Ẇ (t) (1a)

∂xu + ∂zw = 0. (1b)

In this formulation we have ignored the coupling with the temperature and salinity
equations in order to focus our attention towards difficulties arising from the non-
linear term (see [4]). This omission will be remedied in future work. The unknowns
(u, w), p represent the field of the flow and the pressure respectively. The fluid fills
a domain M = [0, L]× [0,−h] % (x, z). Note that p does not depend on the vertical
variable z.

We partition the boundary into the top Γi = {z = 0}, the bottom Γb = {z = −h}
and the sides Γs = {x = 0} ∪ {x = L}. Regarding the boundary conditions, we
assume the Dirichlet condition u = 0 on Γs, while on Γi ∪ Γb we posit the free
boundary condition ∂zu = 0, w = 0. We further suppose with no loss of generality
that:

∫ 0

−h
f dz = 0,

∫ 0

−h
g dz = 0,

∫ 0

−h
u dz = 0. (2)

Due to (1b) we have that1:

w(x, z) = −
∫ z

−h
∂xu(x, z̃)dz̃. (3)

The stochastic term can be written in the expansion:

g(u, t)Ẇ (t) =
∑

k

gk(u, t)β̇k(t). (4)

The β̇k are the formal time derivatives of a collection of independent standard
Brownian motions βk relative to some ambient, filtered, right continuous, probabil-
ity space (Ω,F , (Ft)t≥0, P). The series converges in the appropriate function spaces
and is subject to uniform Lipschitz conditions in u. All of this will be formulated
rigorously below.

3. Definitions. We will be working on the Hilbert spaces:

H =

{

v ∈ L2(M) :

∫ 0

−h
v dz = 0

}

(5)

and

V =

{

v ∈ H1(M) :

∫ 0

−h
v dz = 0, v = 0 on Γs

}

. (6)

These spaces are endowed with the L2 and H1 norms which we respectively denote
by | · | and ‖ · ‖. We shall also need the intermediate space:

X = {v ∈ H : ∂zv ∈ H} (7)

1In the geophysical literature w is often referred as a diagnostic variable as its value is com-
pletely determined by u
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with the norm |u|X = (|u|2 + |∂zu|2)1/2. Take V ′ to be the dual of V with the
pairing notated by 〈·, ·〉. The Leray operator PH is the orthogonal projection of
L2(M) onto H . The action of this operator is given explicitly by:

PHv = v −
1

h

∫ 0

−h
v dz. (8)

It will also be useful to consider:

V =

{

v ∈ C∞(M̄) :

∫ 0

−h
v dz = 0, v = 0 on Γs, ∂zv = 0 on Γb ∪ Γi

}

(9)

which is a dense subset of H , X and V .
We would now like to make (1) precise as an equation in V ′. To this end, we

define a Stokes-type operator A as a bounded map from V to V ′ via:

〈v, Au〉 = ((v, u)).

A can be extended to an unbounded operator from H to H according to Au =
−PH∆u with the domain:

D(A) =

{

v ∈ H2(M) :

∫ 0

−h
v dz = 0, v = 0 on Γs, ∂zv = 0 on Γb ∪ Γi

}

. (10)

By applying the theory of symmetric compact operators for A−1, one can prove
the existence of an orthonormal basis {ek} for H of eigenfunctions of A. Here the
associated eigenvalues {λk} form an unbounded, increasing sequence. Define:

Hn = span{e1, . . . , en}

and take Pn to be the projection from H onto this space. Let Qn = I − Pn.

Remark 1. For u ∈ D(A):
∫ 0

−h
∂xxu dz = ∂xx

∫ 0

−h
u dz = 0,

∫ 0

−h
∂zzu dz = ∂zu]z=0

z=−h = 0.

Thus, as in the case of periodic boundary conditions, we have −PH∂xx = −∂xx

and −PH∂zz = −∂zz and therefore that −PH∆ = −∆ on D(A). The eigenvalue
problem for A reduces to:

∆u = λu
∫ 0

−h
u dz = 0

u(0, z) = 0 = u(L, z), ∂zu(x,−h) = 0 = ∂zu(x, 0).

As such, the eigenfunctions and associated eigenvalues can be explicitly identified:
{

2√
hL

sin(
k1πx

L
) cos(

k2πz

h
)

}

k1,k2≥1

,

{

π2

(

k2
1

L2
+

k2
2

h2

)}

k1,k2≥1

.

This has the useful consequence that when j += l:

〈∂zzej , el〉 = 0 (11)

and hence:

Pn(−∂zzv) = −∂zzv whenever v ∈ Hn. (12)
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Next we address the nonlinear term. In accordance with (3) we take:

W(v)(x, z) := −
∫ z

−h
∂xv(x, z̃)dz̃ v ∈ V

and let:

B(u, v) := PH(u∂xv + W(u)∂zv).

Below it will sometimes be convenient to denote B(u) := B(u, u). One would like
to establish that B is a well defined and continuous mapping from V × V → V ′

according to:

〈B(u, v),φ〉 = b(u, v,φ)

where the associated trilinear form is given by:

b(u, v,φ) :=

∫

M

(u∂xvφ −W(u)∂zvφ) dM := b1(u, v,φ) − b2(u, v,φ).

This and more is contained in the following lemma:

Lemma 3.1.

(i) b is a continuous linear form on V × V × V and:

|b(u, v,φ)| ≤ C
(

|u|1/2‖u‖1/2‖v‖|φ|1/2‖φ‖1/2 + |∂xu||∂zv||φ|1/2‖φ‖1/2
)

(13)

for any u, v,φ ∈ V
(ii) b satisfies the cancellation property b(u, v, v) = 0
(iii) b is also a continuous form on D(A) × D(A) × H
(iv) For u ∈ D(A) we have the additional cancellation property:

〈B(u), ∂zzu〉 = 0

(v) Moreover, for any ε > 0:

|〈B(u), ∂xxu〉| ≤ C(|∂xu|2‖∂xu‖ + |∂xu|1/2‖∂xu‖3/2|∂zu|1/2‖∂zu‖1/2)

≤ ε‖∂xu‖2 + C(ε)(|∂xu|4 + |∂xu|2|∂zu|2‖∂zu‖2)
(14)

(vi) If u, v ∈ V and ∂zv ∈ V then:

|B(u, v)|V ′ ≤ C((|u| + |∂zu|)|∂xv| + |u|‖∂zv‖ + |u||∂zv|1/2‖∂zv‖1/2) (15)

Proof. Fix u, v,φ ∈ V . The first term b1 admits the classical 2-D estimate:

|b1(u, v,φ)| ≤ C|u|1/2‖u‖1/2‖v‖|φ|1/2‖φ‖1/2.

The second term is estimated anisotropically:

|b2(u, v,φ)|

≤
∫ L

0

(

sup
z∈[−h,0]

{
∫ z

−h
∂xu dz̄

}
∫ L

0
|∂zvφ| dz

)

dx

≤C

∫ L

0

(
∫ 0

−h
|∂xu|2 dz ·

∫ 0

−h
|∂zv|2 dz ·

∫ 0

−h
|φ|2 dz

)1/2

dx

≤C sup
x∈[0,L]

(
∫ 0

−h
|φ|2 dz

)1/2 ∫ L

0

(
∫ 0

−h
|∂xu|2 dz ·

∫ 0

−h
|∂zv|2 dz

)1/2

dx

≤C|∂xu||∂zv||φ|1/2‖φ‖1/2.
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For the final inequality we make use of the boundary conditions:

sup
x∈[0,L]

{
∫ 0

−h
|φ|2 dz

}

= sup
x∈[0,L]

{
∫ x

0
∂x

∫ 0

−h
φ2 dz dx

}

≤ 2|φ|‖φ‖.

To establish the cancellation property in (ii):

b(u, v, v) = −
1

2

∫

M

∂xuv2 dM−
1

2

∫

M

(
∫ z

−h
∂xudz̃

)

∂z(v
2) dM

= −
1

2

∫

M

∂xuv2 dM +
1

2

∫

M

∂xuv2 dM = 0.

Property (iii) is a direct application of Hölder’s Inequality and Sobolev embed-
ding inequalities and is omitted.

For (iv), noting that −PH∂zz = −∂zz on D(A):

〈B(u), ∂zzu〉 =

∫

M

(−∂xu(∂zu)2 − u∂xzu∂zu +
1

2
∂xu(∂zu)2) dM = 0.

The inequality given in (v) is addressed by estimating:

|〈B(u), ∂xxu〉| ≤
1

2
|∂xu|3L3(M) +

∣

∣

∣

∣

∫

M

(W(u)∂zxu∂xu + ∂xW(u)∂zu∂xu) dM
∣

∣

∣

∣

≤ |∂xu|3L3(M) +

∫

M

|∂xW(u)∂zu∂xu| dM.

For the first term above we use the Sobolev embedding H1/3 ⊂ L3. For the second
term we have H1/2 ⊂ L4 which justifies the estimate:

∫

M

|∂xW(u)∂zu∂xu| dM ≤ C|∂xxu||∂zu|L4 |∂xu|L4

≤ C|∂xu|1/2‖∂xu‖3/2|∂zu|1/2‖∂zu‖1/2.

The second inequality is just an application of ε-Young.
For the final item (vi) fix φ ∈ V . In this case we estimate b1 anisotropically:

b1(u, v,φ) =

∫ L

0

∫ 0

−h
u∂xvφ dM

≤C

∫ L

0

(
∫ 0

−h
(|∂zu| + |u|)2dz ·

∫ 0

−h
|∂xv|2dz ·

∫ 0

−h
|φ|2dz

)1/2

dx

≤C(|∂zu| + |u|)|∂xv||φ|1/2‖φ‖1/2.

(16)

For b2, by integrating by parts in, x we find:

b2(u, v,φ) =

∫ L

0

∫ 0

−h

(
∫ z

−h
∂xu dz̄

)

∂zvφ dM

= −
∫ L

0

∫ 0

−h

(
∫ z

−h
u dz̄

)

∂zxvφ dM

−
∫ L

0

∫ 0

−h

(
∫ z

−h
u dz̄

)

∂zv∂xφ dM

:=T1(u, v,φ) + T2(u, v,φ).

(17)
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For T1 the anisotropic estimates yield:

|T1(u, v,φ)| ≤C

∫ L

0

(
∫ 0

−h
|u|2dz ·

∫ 0

−h
|∂zxv|2dz ·

∫ 0

−h
|φ|2dz

)1/2

dx

≤|u|‖∂zv‖|φ|1/2‖φ‖1/2.

(18)

The estimate for T2 is similar except that we make the L∞
x estimate on the middle

term:

|T2(u, v,φ)| ≤C

∫ L

0

(
∫ 0

−h
|u|2dz ·

∫ 0

−h
|∂zv|2dz ·

∫ 0

−h
|∂xφ|2dz

)1/2

dx

≤C|u||∂zv|1/2‖∂zv‖1/2‖φ‖.
(19)

It remains to examine the stochastically forced term g = {gk}k≥1 in order to make
precise the Lipschitz condition alluded to above. For this purpose we introduce some
notation. Suppose U is any (separable) Hilbert space. One defines (2(U) via the
inner product:

(h, g)"2(U) =
∑

k

(hk, gk)U .

For any normed space Y , we say that g : Y × [0, T ] × Ω → (2(U) is uniformly
Lipschitz with constant KY if:

|g(x, t,ω) − g(y, t,ω)|"2(U) ≤ KY |x − y|Y for x, y ∈ Y (20)

and
|g(x, t,ω)|"2(U) ≤ KY (1 + |x|Y ) (21)

where KY is independent of t and ω. We denote the collection of all such map-
pings Lipu(Y, (2(U)). For the analysis below we will frequently assume that g ∈
Lipu(H, (2(H)) ∩ Lipu(X, (2(X)). It is worth noting at this juncture that the con-
dition imposed on g is not overly restrictive by considering some examples where
the above conditions are satisfied:

Example 3.2.

• (Independently Forced Modes) Suppose (κk(t,ω)) is any sequence uniformly
bounded in L∞([0, T ]× Ω). We force the modes independently defining:

gk(v, t,ω) = κk(t,ω)(v, ek)ek.

In this case the Lipschitz constants can be taken to be KH = KX = KV =
supω,k,t |κk(t,ω)|.

• (Uniform Forcing) Given a uniformly square summable sequence ak(t,ω) we
can take:

gk(v, t,ω) = ak(t,ω)v

with KH = KX = KV = (supt,ω

∑

k ak(t,ω)2)1/2 as the Lipschitz constants.
• (Additive Noise) We can also include the case when the noise term does not

depend on the solution:

gk(v, t,ω) = gk(t,ω)

Here the uniform constants can be taken to be KU := supt,ω

(
∑

k |gk(t,ω)|2U
)1/2

for U = H, X, V as desired.
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With the above framework in place we now give a variational definition for so-
lutions of the system (1). Note that weak refers to the spatial-temporal regularity
of the solutions. Strong refers to the fact that the probabilistic basis is given in
advance (see Remark 2 below).

Definition 3.3 (Weak-Strong Solutions). Suppose that (Ω, P,F , (Ft)t≥0, (βk)) is a
fixed stochastic basis, T > 0 and p ∈ [2,∞]. For the data assume that u0 ∈ Lp(Ω; H)
and is F0-measurable. We suppose that f and g are respectively H and (2(H)
valued, predictable processes with:

f ∈ Lp(Ω, L2(0, T ; V ′)), g ∈ Lipu(H, (2(H)). (22)

We say that an Ft adapted process u is a weak-strong solution to the stochastically
forced primitive equation if:

u ∈ C([0, T ]; H) a.s. u ∈ Lp(Ω; L∞([0, T ]; H) ∩ L2([0, T ]; V )) (23)

and satisfies:

d〈u(t), v〉 + 〈νAu + B(u), v〉dt = 〈f, v〉dt +
∞
∑

k=1

〈gk(u, t), v〉dβk

〈u(0), v〉 = 〈u0, v〉
(24)

for any v ∈ V .

Several remarks are in order regarding this definition:

Remark 2.

• Note that, as in the theory of the Navier-Stokes equations, the pressure dis-
appears in the variational formulation. Suppose that ∂xp in (1) is integrable
and does not depend on the vertical variable z. Then:

∫ L

0

∫ 0

−h
∂xpv dz dx =

∫ L

0
∂xp

(
∫ 0

−h
v dz

)

dx = 0 (25)

for every v ∈ V .
• For the probabilistically ’strong’ solutions we consider, the stochastic basis

is given in advance. Such solutions can be understood pathwise. This is in
contrast to the theory of Martingale solutions considered for many non linear
systems where the underlying probability space is constructed as part of the
solution. See [10] chapter 8 or [24].

• One has to check that each of the terms given in (24) are well defined. In
particular, the stochastic terms deserve special attention. Recall that the
collection M2(0, T ) of continuous square integrable martingales is a Banach
space under the norm:

‖X‖M2 =

(

E sup
0≤t≤T

|X(t)|2
)1/2

.

Applying standard Martingale inequalities and making use of the uniform
Lipschitz assumption one establishes that:

∑

k

〈gk(u, t), v〉dβk for all v ∈ V

converges in this space. See [16] or [10] for further details on the general
construction of stochastic integrals.
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4. The Galerkin systems and a priori estimates. We now introduce the
Galerkin systems associated to the original equation and establish some uniform
a priori estimates.

Definition 4.1 (The Galerkin System). An adapted process u(n) in C(0, T ; Hn) is
a solution to the Galerkin System of Order n if for any v ∈ Hn:

d〈u(n), v〉 + 〈νAu(n) + B(u(n)), v〉dt = 〈f, v〉dt +
∞
∑

k=1

〈gk(u(n), t), v〉dβk

〈u(n)(0), v〉 = 〈u0, v〉.

(26)

These systems also be written as equations in Hn:

du(n) + (νAu(n) + PnB(u(n)))dt = Pnfdt +
∞
∑

k=1

Pngk(u(n), t)dβk

u(n)(0) = Pnu0.

(27)

We note that the second formulation (27) allows one to treat u(n) as a process
in Rn. As such one can apply the finite dimensional Itô calculus to the Galerkin
systems above.

We next establish some uniform estimates on u(n) (independent of n). To simplify
notation we drop the (n) superscript for the remainder of the section.

Lemma 4.2 (A Priori Estimates).

(i) Assume that u is the solution of the Galerkin System of Order n. Suppose
that p ≥ 2 and:

g ∈ Lipu(H, (2(H)), f ∈ Lp(Ω; L2(0, T ; V ′)), u0 ∈ Lp(Ω, H) (28)

then:

E

(

sup
t∈[0,T ]

|u|p +

∫ T

0
‖u‖2|u|p−2dt

)

≤ CW (29)

and:

E

(

∫ T

0
‖u‖2dt

)p/2

≤ CW (30)

for an appropriate constant

CW = CW (p, ν,λ1, E|u0|p, T, |f |Lp(Ω;L2(0,T ;V ′)), KH),

that does not depend on n.
(ii) Given the additional assumptions on the data:

g ∈ Lipu(X, (2(X)), ∂zf ∈ Lp(Ω; L2(0, T ; V ′)), ∂zu0 ∈ Lp(Ω; H) (31)

then:

E

(

sup
t∈[0,T ]

|∂zu|p +

∫ T

0
‖∂zu‖2|∂zu|p−2dt

)

≤ CI (32)

where CI = CI(p, ν,λ1, E|∂zu0|p, T, |∂zf |Lp(Ω;L2(0,T ;V ′)), KX), independent of
n.
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(iii) Finally assume that in addition to (28):

g ∈ Lipu(V, (2(V )), f ∈ Lp(Ω; L2(0, T ; H)), u0 ∈ Lp(Ω, V ). (33)

If τ is a stopping time taking values in [0, T ], and M a positive constant so
that:

∫ τ

0
(‖u‖2 + |∂zu|2‖∂zu‖2)dt ≤ M (34)

then:

E

(

sup
t∈[0,τ ]

‖u‖p +

∫ τ

0
|Au|2‖u‖p−2dt

)

≤ CSeCSM (35)

where CS = CS(p, ν, E‖u0‖p, T, |f |Lp(Ω;L2(0,T ;H)), KV ).

Proof. By applying Itô’s formula one finds a differential for |u|2 and then for eφ|u|p:

deφ|u|p + pνeφ‖u‖2|u|p−2dt

=peφ〈f, u〉|u|p−2dt +
p

2
eφ

∞
∑

k=1

|Pngk(u, t)|2|u|p−2dt

+
p(p − 2)

2
eφ

∞
∑

k=1

〈gk(u, t), u〉2|u|p−4dt

+ peφ
∞
∑

k=1

〈gk(u, t), u〉|u|p−2dβk + φ′|u|peφdt.

(36)

Here, φ is a non-positive element in C1(0, T ) to be determined below. This function

will be used to cancel off terms involving
∫ T
0 eφ|u|pdt. For the deterministic external

forcing term we estimate:
∫ T

0
peφ〈f, u〉|u|p−2dt

≤C(ν, p,λ1)

∫ T

0
eφ|f |2V ′ |u|p−2 dt +

νp

2

∫ T

0
eφ‖u‖2|u|p−2 dt

≤C(ν, p,λ1)

(

sup
t∈[0,T ]

(e(p−2)φ/p|u|p−2)

)

∫ T

0
|f |2V ′dt

+
νp

2

∫ T

0
eφ‖u‖2|u|p−2 dt

≤
1

4
sup

t∈[0,T ]
(eφ|u|p) +

pν

2

∫ T

0
eφ‖u‖2|u|p−2 dt

+ C(ν, p,λ1)|f |pL2(0,T ;V ′).

(37)

Taking advantage of the Lipschitz condition assumed for g:
∞
∑

k=1

∫ T

0
eφ|gk(u, t)|2|u|p−2dt

≤KH

∫ T

0
eφ(1 + |u|2)|u|p−2dt

≤
1

4
sup

t∈[0,T ]
(eφ|u|p) + C(p, KH , T )

(

1 +

∫ T

0
eφ|u|p dt

)

.

(38)
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Applying the above estimates, absorbing terms and rearranging one deduces:

sup
t∈[0,T ]

(eφ|u|p) + pν

∫ T

0
eφ‖u‖2|u|p−2dt

≤C(p, ν,λ1)
(

|u0|p + |f |pL2(0,T ;V ′) + 1
)

+ C1(p, KH , T )

∫ T

0
eφ|u|pdt + 2

∫ T

0
φ′eφ|u|pdt

+ 2p sup
t∈[0,T ]

∣

∣

∣

∣

∣

∫ t

0
eφ

∞
∑

k=1

〈gk(u, t), u〉|u|p−2dβk

∣

∣

∣

∣

∣

.

(39)

For the final term involving the Itô integral we apply the Burkholder-Davis-Gundy
(BDG) inequality (see [16]). This yields the following:

2pE sup
t∈[0,T ]

∣

∣

∣

∣

∣

∞
∑

k=1

∫ t

0
eφ〈gk(u, s), u〉|u|p−2dβk

∣

∣

∣

∣

∣

≤C(p)E

(

∫ T

0
e2φ

∞
∑

k=1

〈gk(u, t), u〉2|u|2(p−2)dt

)1/2

≤C(KH , p)E

(

∫ T

0
e2φ(1 + |u|2)|u|2(p−1)dt

)1/2

≤
1

4
E

(

sup
t∈[0,T ]

(eφ|u|p)

)

+ C2(p, T, KH)E

(

1 +

∫ T

0
eφ|u|pdt

)

(40)

Note that the constants in estimates above are independent of φ. Set φ(t) = −(C1+
C2)t, where C1, C2 are the constants arising in (39) and (40) respectively. This
choice, used in conjunction with the preceding estimates implies (29).

From (36) with p = 2 and φ = 0, one deduces that for any r > 2:

E

(

∫ T

0
‖u‖2dt

)r/2

≤ CE

(

1 + |u0|r + |f |rL2(0,T ;V ′) + sup
t∈[0,T ]

|u|r
)

+ CE sup
t∈[0,T ]

∣

∣

∣

∣

∣

∫ t

0

∞
∑

k=1

〈gk(u, t), u〉dβk

∣

∣

∣

∣

∣

r/2

.

(41)

For the second term we again employ BDG and infer:

CE sup
t∈[0,T ]

∣

∣

∣

∣

∣

∞
∑

k=1

∫ t

0
〈gk(u, s), u〉dβk

∣

∣

∣

∣

∣

r/2

≤CE

(

∫ T

0

∞
∑

k=1

〈gk(u, t), u〉2dt

)r/4

≤CE

(

sup
t∈[0,T ]

|u|r + 1

)

+
1

2
E

(

∫ T

0
‖u‖2

)r/2

.

(42)

Absorbing terms and applying estimates already obtained in (29) yields (30).
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To obtain the desired estimates in (ii) we make use of the commutativity of Pn

and ∂zz on D(A) (see Remark 1). In particular, note that vertical cancellation
property established in Lemma 3.1 along with this commutativity means that:

〈PnB(u), ∂zzu〉 = 〈B(u), ∂zzu〉 = 0.

Thus, when we apply Itô’s formula for |∂zv|2, the nonlinear term disappears as
above. Bootstrapping to p ≥ 2 with a second application of Itô we arrive at the
differential:

d|∂zu|p + pν‖∂zu‖2|∂zu|p−2dt

=p〈f, ∂zzu〉|∂zu|p−2dt

+
p

2

∞
∑

k=1

|∂zPngk(u, t)|2|∂zu|p−2dt

+
p(p − 2)

2

∞
∑

k=1

〈gk(u, t),−∂zzu〉2|∂zu|p−4dt

+ p
∞
∑

k=1

〈gk(u, t),−∂zzu〉|∂zu|p−2dβk.

(43)

We bound the first term on the right hand side of (43) as in (37). For the second
term we utilize the Lipschitz condition imposed in (31) and the uniform bound (30)
established in the previous case:

p

2
E

∫ T

0

∞
∑

k=1

|∂zPngk(u, t)|2|∂zu|p−2dt

≤C(p)E

∫ T

0

∞
∑

k=1

|∂zgk(u, t)|2|∂zu|p−2dt

≤C(KX , p)E

∫ T

0
(‖u‖2 + 1)|∂zu|p−2dt

≤C(KX , p)E

(

∫ T

0
(‖u‖2 + 1) dt

)p/2

+
1

8
E

(

sup
t∈[0,T ]

|∂zu|p
)

.

(44)

The third term in (43) is estimated in the same manner. The final term is handled
using BDG:

pE sup
t∈[0,T ]

∣

∣

∣

∣

∣

∞
∑

k=1

∫ t

0
〈gk(u, s),−∂zzu〉|∂zu|p−2dβk

∣

∣

∣

∣

∣

≤C(p)E

(

∫ T

0

∞
∑

k=1

〈∂zgk(u, t), ∂zu〉2|∂zu|2(p−2)dt

)1/2

≤C(p, KX)E

(

∫ T

0
(1 + |u|2X)|∂zu|2(p−1)dt

)1/2

≤
1

8
E

(

sup
t∈[0,T ]

|∂zu|p
)

+ C(p, KX)E

(

∫ T

0
(1 + ‖u‖2)dt

)p/2

.

(45)
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For the (iii), we do not have cancellation in the nonlinear term. Here the differ-
ential reads:

deφ‖u‖p + pνeφ|Au|2‖u‖p−2dt

=peφ〈f − B(u), Au〉‖u‖p−2dt

+
p

2
eφ

∞
∑

k=1

|∇Pngk(u, t)|2‖u‖p−2dt

+
p(p − 2)

2
eφ

∞
∑

k=1

(∇gk(u, t),∇u)2‖u‖p−4dt

+ peφ
∞
∑

k=1

(∇gk(u, t),∇u)‖u‖p−2dβk + φ′‖u‖peφdt.

(46)

Once again φ will be a non-positive function chosen further on to cancel off terms.
Integrating up to t ∧ τ , then taking a supremum in t and estimating terms as
previously reveals:

E

(

sup
t∈[0,τ ]

(‖u‖peφ) + pν

∫ τ

0
eφ|Au|2‖u‖p−2dt

)

≤CE(‖u0‖p + |f |pL2(0,T ;H))

+ 2E

∫ τ

0
eφ|(B(u), ∂xxu)|‖u‖p−2dt

+ C3(p, KV )E

∫ τ

0
eφ‖u‖pdt + 2E

∫ τ

0
φ′eφ‖u‖pdt.

(47)

We apply Lemma 3.1, (v) with ε = pν/4 inferring:
∫ τ

0
eφ|(B(u), ∂xxu)|‖u‖p−2dt

≤
pν

4

∫ τ

0
eφ|Au|2‖u‖p−2dt

+ C4(ν, p)

∫ τ

0
eφ‖u‖p(‖u‖2 + |∂zu|2‖∂zu‖2)dt.

(48)

Taking the previous estimates into account we set:

φ(t) = −C4

∫ t

0
(‖u‖2 + |∂zu|2‖∂zu‖2) − tC3

where C3 and C4 are the constants appearing in (47) and (48) respectively. Given
the assumption (34), eφ(τ) ≥ C(ν, p, T )e−CM . With this we can apply (48) to (47)
and conclude the final bound (35).

Remark 3. If one could find a subsequence nk, a stopping time τ with P(τ > 0) = 1
and a positive constant M such that:

sup
nk

∫ τ

0
(‖u(nk)‖2 + |∂zu

(nk)|2‖∂zu
(nk)‖2)ds ≤ M a.s (49)

then the existence of solutions taking values in Lp(Ω; L2([0, T ]; D(A))∩L∞([0, T ]; V ))
would follow.
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We conclude this section with some comments concerning the existence and
uniqueness of solutions to the Galerkin systems. Regarding existence one uses that
B is locally Lipschitz in conjunction with the a priori bounds established above.
These properties taken together allows one to establish global existence on any
compact time interval via Picard iteration methods. See [12] for detailed proofs.
Uniqueness is established as below for the full infinite dimensional system.

5. Existence and uniqueness of solutions. With the uniform estimates on the
solutions of the Galerkin systems in hand, we proceed to identify a (weak) limit
u. This element is shown to satisfy a stochastic differential (54) with unknown
terms corresponding to the nonlinear portions of the equation. Next we prove a
comparison lemma that establishes a sufficient condition (67) for the identification
of the unknown portions of the differential. This lemma, in conjunction with some
further estimates, provides the final step in the main theorem concerning existence
below.

We will assume the following conditions on the data throughout this section:

f, ∂zf ∈ Lp(Ω; L2(0, T ; V ′)), g ∈ Lipu(H, (2(H)) ∩ Lipu(X, (2(X))

u0, ∂zu0 ∈ Lp(Ω; H).
(50)

Here p ≥ 4 so that the sequence PnB(u(n)) will have a weakly convergent subse-
quence. These assumptions may be weakened slightly for several of the lemmas
leading up to the main result. In particular the limit system (54) can be obtained
by merely assuming:

u0 ∈ Lp(Ω; H), f ∈ Lp(Ω; L2(0, T ; V ′)), g ∈ Lipu(H, (2(H)). (51)

Lemma 5.1 (Limit System). There exists adapted processes u, B∗ and g∗ with the
regularity:

u ∈ Lp(Ω, L2(0, T ; V ) ∩ L∞(0, T ; H))
∂zu ∈ Lp(Ω, L2(0, T ; V ) ∩ L∞(0, T ; H))

u ∈ C(0, T ; H) a.s.
(52)

and:

B∗ ∈ L2(Ω; L2(0, T ; V ′)), g∗ ∈ L2(Ω; L2(0, T ; (2(H))) (53)

such that u, B∗ and g∗ satisfy:

d〈u, v〉 + 〈νAu + B∗, v〉dt = 〈f, v〉dt +
∞
∑

k=1

〈g∗k(t), v〉dβk

〈u(0), v〉 = 〈u0, v〉
(54)

for any test function v ∈ V .

Remark 4. We use the following elementary facts regarding weakly convergent
sequences in the proof below.

(i) Suppose B1, B2 are Banach spaces and that L : B1 → B2 is a bounded linear
mapping. If xn ⇀ x in B1 then Lxn ⇀ Lx in B2.

(ii) For p ∈ [1,∞) take:

L1(w)(t) =

∫ t

0
wds w ∈ Lp(Ω × [0, T ]).

If xn ⇀ x in Lp(Ω × (0, T )) and then L1(xn) ⇀ L1(x) in the same space.
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(iii) Take:

L2(v)(t) =
∑

k

∫ t

0
vkdβk

for v = {vk} ∈ L2(Ω, L2(0, T ; (2)). Given that vn ⇀ v in this space then
L2(vn) ⇀ L2(v) in L2(Ω; L2(0, T ))

(Proof- Lemma 5.1). Applying the estimate (29) with Alaoglu’s theorem we de-
duce the existence of a subsequence of Galerkin elements u(n) and an element
u ∈ Lp(Ω, L2(0, T ; V ) ∩ L∞(0, T ; H)) so that:

u(n) ⇀ u in Lp(Ω; L2(0, T ; V )) (55)

and:

u(n) ⇀∗ u in Lp(Ω; L∞(0, T ; H)). (56)

To deduce the desired regularity for ∂zu we apply the uniform estimates given in
(32) and thin our subsequence again so that ∂zu ∈ Lp(Ω, L2(0, T ; V )∩L∞(0, T ; H))
with:

∂zu
(n) ⇀ ∂zu in Lp(Ω, L2(0, T ; V )) (57)

as well as:

∂zu
(n) ⇀∗ ∂zu in Lp(Ω, L∞(0, T ; H)). (58)

By an application of (13):

E

∫ T

0
|PnB(u(n))|2V ′dt

≤CE



 sup
t∈[0,T ]

(|u(n)|4 + |∂zu
(n)|4) +

(

∫ T

0
‖u(n)‖2dt

)2


 .

(59)

The later quantity is uniformly bounded as a consequence of (30) and (32). Thinning
u(n) as necessary we find an element B∗ ∈ L2(Ω; L2(0, T ; V ′)) so that:2

PnB(u(n)) ⇀ B∗ in L2(Ω; L2(0, T ; V ′)). (60)

Finally the Lipschitz assumption along with the Poincaré inequality imply:

E

∫ T

0

∞
∑

k=1

|Pngk(t, u(n))|2dt ≤ CE

(

∫ T

0
(‖u(n)‖2 + 1)dt

)

. (61)

This gives the uniform bounds needed to infer g∗ ∈ L2(Ω; L2(0, T ; (2(H))) and
implies that:

Png(u(n)) ⇀ g∗ in L2(Ω; L2(0, T ; (2(H))). (62)

We next establish that u satisfies (54). To this end, fix any measurable set
E ⊂ Ω × [0, T ] and v ∈ V . By applying (55) and using that each u(n) is a solution

2Given only the weaker assumptions on the initial data (51) one can still show that B∗ ∈
L4/3(Ω; L2(0, T ;V ′)) with the estimate:

E

∫ T

0
|PnB(u(n)))|4/3

V ′
dt ≤ CE

[

sup
t∈[0,T ]

|u(n)|2 +

(
∫ T

0
‖u(n)‖2dt

)3/2
]

.
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to an associated Galerkin system we infer:

E

∫ T

0
χE(u, v)dt = lim

n→∞
E

∫ T

0
χE(u(n), v)dt

= lim
n→∞

(

E

∫ T

0
χE(Pnu0, v)dt

− E

∫ T

0
χE

[
∫ t

0
〈νAu(n) + PnB(u(n)) − Pnf, v〉ds

]

dt

+ E

∫ T

0
χE

[

∞
∑

k=1

∫ t

0
〈Pngk(u(n), s), v〉dβk(s)

]

dt

)

=E

∫ T

0
χE

[

(u0, v) −
∫ t

0
〈νAu + B∗ − f, v〉ds

]

dt

+ E

∫ T

0
χE

[

∞
∑

k=1

∫ t

0
〈g∗k(s), v〉dβk(s)

]

dt

(63)

For the final equality above we use Remark 4. Observe that:

〈PnB(u(n)), v〉⇀ 〈B∗, v〉 in L2(Ω × [0, T ]) (64)

〈Au(u), v〉⇀ 〈Au, v〉 in L2(Ω × [0, T ]) (65)

along with:

[(Pngk(u(n)), v)]k≥1 ⇀ [(g∗k, v)]k≥1 in L2(Ω; L2([0, T ], (2)). (66)

Since E is arbitrary in (63), the equality (54) follows up to a set of measure zero.
Referring then to results in [29], chapter 2 we find that u has modification so that
u ∈ C([0, T ]; H) a.s.

With a candidate solution in hand, it remains to show that B(u) = B∗ and
g∗ = g(u). A sufficient condition for these equalities, at least up to a stopping time,
is captured in the following:

Lemma 5.2. If 0 ≤ τ ≤ T is any stopping time such that:

E

∫ τ

0
‖u − u(n)‖2dt → 0 (67)

then, λ× P-a.e.3:
B(u(t))11t≤τ = B∗(t)11t≤τ (68)

and for every k:
gk(u, t)11t≤τ = g∗k(t)11t≤τ . (69)

Proof. Let E, a measurable subset of Ω× [0, T ] and v ∈ V be given. It is sufficient
to show that:

E

∫ T

0
χE〈(B(u(t)) − B∗(t))11t≤τ , v〉dt = 0 (70)

and that for any k:

E

∫ T

0
χE〈(gk(u(t), t) − g∗k(t))11t≤τ , v〉dt = 0 (71)

3On [0, T ] we use the Lebesgue measure λ.
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where χE is the characteristic function of E. Due to the weak convergence (60)
established above:

E

∫ T

0
χE〈(PnB(u(n)(t)) − B∗(t))11t≤τ , v〉dt → 0 as n → ∞. (72)

Using that:

|〈B(u) − PnB(u(n)), v〉|

≤C‖u‖2‖Qnv‖ + C(‖u‖‖u − u(n)‖ + ‖u(n)‖‖u − u(n)‖)‖v‖
(73)

we estimate:
∣

∣

∣

∣

E

∫ T

0
χE〈(PnB(u(n), t) − B(u, t))11t≤τ , v〉ds

∣

∣

∣

∣

≤C‖(I − Pn)v‖E

[

∫ T

0
‖u‖2ds

]

+ C‖v‖

[

E

∫ T

0
(‖u‖ + ‖u(n)‖)2ds

]1/2
[

E

∫ τ

0
‖u − u(n)‖2ds

]1/2

(74)

which, also vanishes as n → ∞. These estimates imply the first item.
For the second item (71) we again exploit the weak convergence in (62) to infer

that for every k:

E

∫ T

0
χE〈Pn(gk(u(n), t) − g∗k(t))11t≤τ , v〉dt → 0 as n → ∞. (75)

Also:
∣

∣

∣

∣

∣

E

∫ T

0
χE〈Qng(u, t)11t≤τ , v〉dt

∣

∣

∣

∣

∣

≤ KH |Qnv|E
∫ T

0
(1 + |u|)dt → 0 as n → ∞. (76)

Finally by the assumption (67), the Lipschitz continuity of g and the Poincaré
Inequality:

E

∫ T

0
χE〈Pn(gk(u(n), t) − gk(u, t))11t≤τ , v〉 dt

≤C(KH , T )|v|
(

E

∫ τ

0
|u(n) − u|2 dt

)1/2

→ 0

(77)

as n → ∞. Combining (75), (76) and (77) provides the second equality (69).

With this lemma in mind we compare u to the sequence u(n) of Galerkin estimates
to show that (67) is satisfied for a sequence of stopping times τn. Since we are able
to choose τn so that τn ↑ T a.s., this is sufficient to deduce the existence result.
Here we are adapting techniques used in [3].

Theorem 5.3 (Existence of Weak-Strong Solutions). Suppose that p ≥ 4 and
f, ∂zf ∈ Lp(Ω; L2(0, T ; V ′)), g ∈ Lipu(H, (2(H)) ∩ Lipu(X, (2(X)) and u0, ∂zu0 ∈
Lp(Ω; H). Then there exists an H continuous weak-strong solution u with the ad-
ditional regularity:

∂zu ∈ Lp(Ω, L2(0, T ; V ) ∩ L∞(0, T ; H)). (78)
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Proof. The needed regularity conditions for u follow from Lemma 5.1. Moreover we
found that u satisfies the differential (54). Thus it remains only to show that for
almost every t,ω:

B(u) = B∗ gk(u) = g∗k. (79)

To this end, for R > 0, define:

τR = inf
r∈[0,T ]

{

sup
s∈[0,r]

|u|2 + sup
s∈[0,r]

|∂zu|2 +

∫ r

0
‖u‖2 + ‖∂zu‖2 ds > R

}

∧ T. (80)

Notice that τR is increasing as a function of R > 0 and that moreover:

P(τR ≤ T ) ≤ P

(

sup
s∈[0,T ]

|u|2 + sup
s∈[0,T ]

|∂zu|2 +

∫ T

0
‖u‖2 + ‖∂zu‖2 ds ≥ R

)

. (81)

Thus, as a consequence of (52) τR → T , almost surely.
We now fix R and show that τR satisfies (67). Since by the dominated convergence

theorem:

lim
n→∞

∫ τR

0
‖u − Pnu‖2 dt = 0 (82)

it is sufficient to compare Pnu and u(n). The difference of these terms satisfies the
differential:

d(Pnu − u(n)) + [νA(Pnu − u(n)) + PnB∗ − PnB(u(n))]dt

=
∞
∑

k=1

Pn(g∗k − gk(u(n)))dβk.

By applying Itô’s lemma we find that:

d(|Pnu − u(n)|2eψ) + 2ν‖Pnu − u(n)‖2eψdt

=2〈B(u(n)) − B∗, Pnu − u(n)〉eψdt

+ 2
∞
∑

k=1

〈g∗k(t) − gk(un, t), Pnu − u(n)〉eψdβk

+
∞
∑

k=1

|Pn(g∗k(t) − gk(un, t))|2eψdt

+ ψ′|Pnu − u(n)|2eψdt.

(83)

As in the a priori estimates for Lemma 4.2, ψ is a C1 function chosen further on to
cancel off terms. The first term on the right hand side of (83) is estimated using
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the cancellation property, (13) and (15):

〈B(u(n)) − B∗, Pnu − u(n)〉

=〈B(u(n) − Pnu, Pnu) + (B(Pnu) − B(u)) + (B(u) − B∗), Pnu − u(n)〉

≤C(|u(n) − Pnu|‖u(n) − Pnu‖‖Pnu‖

+ |u(n) − Pnu|1/2‖u(n) − Pnu‖3/2|∂zPnu|)

+ (|B(Pnu − u, Pnu)|V ′ + |B(u, Pnu − u)|V ′)‖Pnu − u(n)‖

+ 〈B(u) − B∗, Pnu − u(n)〉

≤ν‖Pnu − u(n)‖2 + C1(ν)|un − Pnu|2(‖u‖2 + |∂zu|4)

+ C2(ν)(|B(Pnu − u, u)|2V ′ + |B(u, Pnu − u)|2V ′)

+ 〈B(u) − B∗, Pnu − u(n)〉.

(84)

For the last term involving g and g∗, using the basic properties of the (2 inner
product and the Lipschitz conditions for g we infer:

|Pn(g∗ − g(u(n)))|2"2(H)

=2(g∗ − g(u), Pn(g∗ − g(u(n))))"2(H)

+ |Pn(g(u) − g(u(n)))|2"2(H) − |Pn(g∗ − g(u))|2"2(H)

≤2(g∗ − g(u), Pn(g∗ − g(u(n))))"2(H) + 4K2
H(|Pnu − u(n)|2 + |Pnu − u|2).

(85)

With estimates (84) and (85) in mind we now take:

ψ(t) = −C1

∫ t

0
(‖u‖2 + |∂zu|4)ds − 4K2

Ht (86)

where C1 is the constant from the last inequality in (84) and KH is the Lipschitz
constant associated with g. By examining (80) we notice:

eψ(τR) ≥ e−C1(R+R2)−4K2

HT a.s. (87)

The estimates given in (84) and (85) can now be applied to (83). After integrating
up to the stopping time τR, taking expectations and rearranging one finds:

E

(
∫ τR

0
‖Pnu − u(n)‖2dt

)

≤CE

∫ τR

0

(

〈B(u) − B∗, Pnu − u(n)〉 + (g∗ − g(u), Pn[g∗ − g(un)])"2
)

eψdt

+ CE

∫ τR

0
(|Qnu|2 + |B(Pnu − u, u)|2V ′ + |B(u, Pnu − u)|2V ′)dt

(88)

where the numerical constant C depends on R and T . Note that since:

E

(

eψ(τR)

∫ τR

0
‖Pnu − u(n)‖2dt

)

≤ E

∫ τR

0
eψ(t)‖Pnu − u(n)‖2dt. (89)

and taking into account (87) we see that the term eφ can be absorbed into the
constants on the right hand side of (88).

Due to (55) one infers that Pnu−u(n) ⇀∗ 0 in Lp(Ω; L2(0, T ; V )). Similarly (62)
implies that Png∗−Png(u(n)) ⇀ 0 in the space L2(Ω; L2(0, T ; (2(H))). As such, the
first terms on the right hand side of (88) vanish in the limit as n → ∞. The term
involving |Qnu| approaches zero in this limit as a consequence of the dominated
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convergence theorem. For the final terms we apply the estimate on B in V ′ given
in (15) and make further use of τR to conclude:

E

∫ τR

0
|B(Pnu − u, u)|2V ′dt

≤CE

∫ τR

0
(|∂z(Pnu − u)|2 + |Pnu − u|2)‖u‖2dt

+ CE

∫ τR

0
|(Pnu − u)|2‖∂zu‖2dt.

(90)

Moreover:

E

∫ τR

0
|B(u, Pnu − u)|2V ′dt

≤CE

∫ τR

0

(

(|∂zu|2 + |u|2)|∂x(Pnu − u)|2 + |u|2‖∂z(Pnu − u)‖2dt
)

≤CE

(

( sup
t∈[0,τR]

|∂zu|2 + sup
t∈[0,τR]

|u|2)
∫ τR

0
‖(Pnu − u)‖2dt

)

+ CE

(

sup
t∈[0,τR]

|u|2
∫ τR

0
‖∂z(Pnu − u)‖2dt

)

≤C(R)E

(
∫ τR

0
(‖Pnu − u‖2 + ‖∂z(Pnu − u)‖2) dt

)

.

(91)

Thus, again by the dominated convergence theorem, the final two terms also con-
verge to zero as n → ∞. We can now conclude that τR satisfies Lemma 5.2.

Fixing arbitrary (t,ω) off of an appropriately chosen set of measure zero, there
is an R so that t ≤ τR(ω). As such (79) for holds the given pair, completing the
proof.

Having established existence we next turn to the question of uniqueness:

Theorem 5.4 (Uniqueness). Suppose that u1 and u2 are weak-strong solutions in
the sense of Definition 3.3 and that u1(0) = u2(0) a.s. in H. Assume moreover
that:

∂zu2 ∈ L4([0, T ]; H) a.s. (92)

Then:

P(u1(t) = u2(t)∀t ∈ [0, T ]) = 1. (93)

In particular, the solutions constructed in Theorem 5.3 are unique since they belong
(almost surely) to L∞([0, T ]; H) which is included in L4([0, T ]; H)

Proof. Subtracting we find the u1 − u2 satisfies the differential:

d〈u1 − u2, v〉 + 〈νA(u1 − u2), v〉dt

=〈B(u1, u2 − u1) + B(u2 − u1, u2), v〉dt

+
∑

k

〈gk(u1, t) − gk(u2, t), v〉dβk

〈u1(0) − u2(0), v〉 = 〈u0,1 − u0,2, v〉.

(94)
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We apply Itô’s lemma and deduce:

d(|u1 − u2|2eφ) + 2ν‖u1 − u2‖2eφdt

=2〈B(u1 − u2, u2), u2 − u1〉eφdt

+
∑

k

〈gk(u1, t) − gk(u2, t), u1 − u2〉eφdβk

+
∑

k

|gk(u1, t) − gk(u2, t)|2eφdt

+ φ′|u1 − u2|2eφ dt.

(95)

Once again φ will be chosen judiciously to cancel off terms below. Applying (13)
with Young’s inequality one finds:

|〈B(u1 − u2, u2), u2 − u1〉|

≤ν‖u1 − u2‖2 + C(ν)|u1 − u2|2(‖u2‖2 + |∂zu2|4).
(96)

Taking KH to be the Lipschitz constant associated with g and C(ν) from the pre-
ceding inequality, set:

φ(t) = −C(ν)

∫ t

0
(‖u2‖2 + |∂zu2|4) dt − K2

Ht. (97)

Given the regularity conditions assumed for u2 we infer, as in Theorem 5.3 that
eφ(t) > 0 almost surely. Integrating (95) up to t taking expected values and making
use of the estimates on B and g one concludes that for any t ∈ [0, T ]:

E(|u1(t) − u2(t)|2eφ(t)) ≤ E(|u1(0) − u2(0)|2) = 0. (98)

This implies:
P(u1(t) = u2(t), ∀t ∈ [0, T ] ∩ Q) = 1.

However since both u1 and u2 take values in C([0, T ]; H) (93) follow immediately.
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