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Abstract. This article examines a class of singular perturbation systems in
the presence of a small white noise. Modifying the renormalization group pro-
cedure developed by Chen, Goldenfeld and Oono [6] , we derive an associated
reduced system which we use to construct an approximate solution that sepa-
rates scales. Rigorous results demonstrating that these approximate solutions
remain valid with high probability on large time scales are established. As a
special case we infer new small noise asymptotic results for a class of processes
exhibiting a physically motivated cancellation property in the nonlinear term.
These results are applied to some concrete perturbation systems arising in geo-
physical fluid dynamics and in the study of turbulence. For each system we
exhibit the associated renormalization group equation which helps decouple
the interactions between the different scales inherent in the original system.

1. Introduction. Perturbation theory has long played an important role in ap-
plied analysis. Perturbed systems can provide the relevant setting for the study of
physical phenomena exhibiting multiple spatial and temporal scales. In the field of
climatology, for example, the basic momentum equations naturally exhibit multiple
orders of magnitude, with the largest order being driven by the Coriolis term arising
from to the earth’s rotation.

A basic challenge in the study of perturbed dynamical systems is that the unper-
turbed problem may exhibit fundamentally different quantitative and qualitative
behaviors, particularly for large time scales or near certain boundaries. Such dif-
ficulties were appreciated as early as the 18th century in the study of multi-body
problems in celestial mechanics. Needless to say such “singular” systems are noto-
riously challenging to analyze.

A variety of asymptotic methods have been developed, each germane to different
types of singular perturbation problems. These methods seek to find approximate
solutions to perturbed systems that separate scales and remain valid over long time
intervals. See the recent texts of Verhulst [21], [22] for a broad introductory survey
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for deterministic systems. For the stochastic setting see Freidlin and Wentzell [11]
or Skorokhod, Hoppensteadt and Habib [18] for an overview.

One approach, the renormalization group method has enjoyed considerable suc-
cess in recent investigations of singularly perturbed systems. The method was first
developed by Chen, Goldenfeld and Oono in the context of perturbative quantum
field theory. See [6] or [7] and references therein. Subsequently the work of Ziane
[23] and later the work of DeVille, Harkin, Holzer, Josić, and Kaper [9] put the
subject on a firm mathematical foundation. Using this technique, Moise, Simonnet,
Temam, and Ziane [15] conducted a series of Numerical simulations of ordinary dif-
ferential equations arising in geophysical fluid dynamics. In the context of partial
differential equations the method has been applied to Navier-Stokes type systems
by Moise and Ziane [17] and Moise and Temam [16]. The two-dimensional Navier-
Stokes equations perturbed by a small additive white noise was addressed using this
method by Blömker, Gugg, and Maier-Paape [4]. We should also mention a related
work to ours which concerns the stochastic normal form by Arnold and Imkeller [1],
Arnold, Namachchivay, and Shenk-Hoppé [2] and Namachchiavayv and Lin [19], see
also the book by Arnold [3] and the references therein. These authors seek coor-
dinate transformations that decouple slow and fast modes, and the emphasis is on
computing Lyapunov exponents as opposed to pathwise estimates considered in our
atricle.

In any physical system uncertainties (measurement error, unresolved scales or
interactions, numerical inaccuracies, etc.) arise that are hard to account for in the
basic model. One would like to be able to quantify the robustness of a model, par-
ticularly one involving singular perturbations, in the presence of these uncertainties.
As such, it is natural to incorporate small white noise driven perturbations into ex-
isting singular models. As far as we are aware [4] is the only investigation to apply
Renormalization group techniques to a stochastically driven system. In particular
the crucial case of highly oscillatory systems remains unaddressed up to the present
article.

In this work we investigate a class of stochastic equations taking the form

dXǫ +
1

ǫ
AXǫdτ = F (Xǫ)dτ + ǫmG(τ, τ/ǫ)dW, (1)

where A is a linear operator which is assumed to be either symmetric positive
semidefinite or antisymmetric. F is a nonlinear operator, but may exhibit important
cancellation properties that arise physically. dW is a white noise process in the
appropriate sense. The parameter m is a real number measuring the strength of
the noise term. In most cases we restrict m > 0. In the case of strictly dissipative
systems we are also able to address the case of a noise term of moderate strength,
−1/2 < m ≤ 0.

Following the classical techniques we attempt to find an approximate solution
via a naive perturbation expansion of the solution, setting uǫ ≈ u(0) + ǫu(1). This
can (and usually does) break down due to resonances between the nonlinear term
F and the semi-group generated by A. Additionally we face the new difficulty of
accounting for intermediate scale diffusion introduced by the small noise term. To
compensate for this we derive the renormalized system

dV ǫ = R(V ǫ)dτ + ǫmH(τ, τ/ǫ)dW. (2)
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The solution V ǫ of (2) defines an approximate solution X̄ǫ = e−τ/ǫAV ǫ. Indeed, we
will prove that if the behavior of V ǫ is reasonable, namely that if for some K > 0

P

(

sup
τ∈[0,T ]

‖V ǫ(τ)‖ > K

)

ǫ→0−−−→ 0, (3)

then X̄ǫ is a valid approximation in the sense that

P

(

sup
τ∈[0,T ]

‖X̄ǫ(τ) −Xǫ(τ)‖ > Cǫγ

)

ǫ→0−−−→ 0. (4)

Here, γ > 0, and depends on m as well as the structure of A and H . Note that
beyond establishing convergence in probability, typical for such results, we have
also managed to establish a rate of convergence. The system (2) greatly simplifies
the original equations. The structure of H depends on A and the desired rate of
convergence for the approximate solution. In particular, we show that we can take
H to be identically zero at the cost of a reduced rate of convergence. Even for
cases where H is non-zero, sending ǫ to zero reduces to a more tractable small noise
asymptotic problem. One interesting consequence of these results is that when
A ≡ 0 in the original system (1), (4) can be interpreted as a small noise asymptotic
result. While such results are classical for systems with Lipschitz nonlinear terms
(see [11] or [8]) our result allows us to address the physically important case when
one can only expect cancellations in the nonlinear portion of the equation.

We next turn to some concrete examples. In particular we consider stochastic
versions of a meteorological model developed by Lorenz in [14] and of a simple
model for turbulent flow proposed by Temam in [20]. In each case we exhibit the
renormalization group which decouples the two scale inherent in the original system.
Current work in preparation by the first author seeks to apply the results in this
work to a series of numerical studies of these and other systems.

The final section collects some general results concerning slowly varying stochas-
tic processes. The estimates that we establish in this section form the analytical
core of the main approximation results and may hold independent interest for other
studies of stochastic singular perturbation systems. Appendices collect further small
noise asymptotic results and as well as some mostly classical estimates on stochastic
convolutions terms arising in the proof of the main theorems.

2. The stochastic singular perturbation system and the derivation of the
renormalization group. For α ∈ R, we consider the singularly perturbed system
given by the stochastic differential equation in C

n

dY ǫ(τ) +
1

ǫ
ĀY ǫ(τ) dτ = F̄ (Y ǫ(τ)) dτ + ǫαḠ(τ, τ/ǫ) dW,

Y ǫ(0) = Y ǫ
0 .

(5)

We assume that Ā is a diagonalizable matrix. Below we will analyze both the case
when Ā is antisymmetric and when Ā is positive semidefinite. The nonlinear term
F̄ is a assumed, for the sake of simplicity, to be a polynomial. W = (W 1, . . . ,Wn)⊥

is a standard n dimensional Brownian motion relative to some underlying filtered
probability space (Ω,F , (Fτ )τ≥0,P). Ḡ takes values in Mn×n and is bounded in the
Frobenius norm independently of τ and τ/ǫ

sup
τ≥0

‖Ḡ(τ, τ/ǫ)‖2 = sup
τ≥0

∑

j,k

|Ḡj,k(τ, τ/ǫ)|2 <∞. (6)
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Further assumptions will be imposed on Ḡ when we consider the case when Ā is
positive semidefinite. In what follows T is a fixed large time. The goal will be to
study the behavior of Xǫ on the time interval [0, T ] when ǫ is small and in the limit
as ǫ→ 0.

For the analysis below we shall work in a different basis. Let Q be an orthogonal
matrix diagonalizing Ā, and let

Xǫ(τ) := QY ǫ(τ), F (x) := QF̄ (Q∗x), G(τ, τ/ǫ) := QḠ(τ, τ/ǫ). (7)

Multiplying (5) by Q gives the following evolution system for Xǫ

dXǫ(τ) +
1

ǫ
AXǫ(τ) dτ = F (Xǫ(τ)) dτ + ǫαG(τ, τ/ǫ) dW,

Xǫ(0) = Xǫ
0,

(8)

where A is a diagonal matrix. Note that in this basis Xǫ may evolve in C
n. The

results below are easily translated back to the original coordinate frame for the
system (5). See Remark 1.

The next step is to write Xǫ in a naive perturbation expansion in powers of ǫ.
The goal is to derive a reduced system that approximates (8) on large time intervals
and that separates scales. To this end, we consider (8) on a new time scale t = τ/ǫ

dXǫ(t) +AXǫ(t) dt = ǫF (Xǫ(t)) dt+ ǫm+1/2G(ǫt, t) dW̃ ,

Xǫ(0) = Xǫ
0.

(9)

Below we set β = m + 1/2. Note that W̃ , also a standard Brownian motion, is a
rescaling of W given by

W̃ (t) =
1√
ǫ
W (ǫt) =

1√
ǫ
W (τ). (10)

When β < 2, the perturbation expansion has the form1

Xǫ(t) = X(0)(t) + ǫβX(β) + ǫX(1)(t) + O(ǫ2),

Xǫ
0 = X(0)(0).

(11)

We plug (11) into (9) and match power of ǫ to formally derive the coupled system
of equations

dX(0) = −AX(0)dt; X(0)(0) = Xǫ
0,

dX(β) = −AX(β)dt+GdW̃ ; X(β)(0) = 0,

dX(1) =
(

−AX(1) + F (X(0))
)

dt; X(1)(0) = 0,

which admits the solution

X(0)(t) = e−AtXǫ
0,

X(β)(t) =

∫ t

0

e−A(t−s)G(ǫs, s) dW̃ ,

X(1)(t) =

∫ t

0

e−A(t−s)F (e−AsXǫ
0) ds.

(12)

1Note however that no such restriction on β is needed for Proposition 1 or Proposition 2 below.
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We have therefore derived the approximate solution

X̄ǫ(t) =e−At

(

Xǫ
0 + ǫ

∫ t

0

eAsF (e−AsXǫ
0) ds+ ǫβ

∫ t

0

eAsG(ǫs, s) dW̃

)

+ O(ǫ2)

=e−At

(

Xǫ
0 + ǫ

∫ t

0

eAsF (e−AsXǫ
0) ds

)

+ ǫβ
∫ t

0

e−A(t−s)G(ǫs, s) dW̃ + O(ǫ2).

(13)

The approximation (13) assumes that X(1) remains O(1) with high probability on
the time scale 1/ǫ (see Definition (2.1) below). This may breakdown in X(1) due
to resonances with F , as analyzed in [23]. In contrast to previous investigations
we also need to account for the role of the noise term in (13). As we shall see
below, when the noise is “small” (i.e. when m > 0 in the original system (5) or
(8)) a approximate solution without stochastic terms can be shown to be valid on
the time scale 1/ǫ. In the case of strictly dissipative systems where A is (strictly)
positive definite we shall see that the noise can be even taken to be of intermediate
strength (for example m = 0). On the other hand we also show that including
some or all of the noise terms in the approximate solution leads to a faster rate of
convergence between the real and the approximate solutions. We end this section
by formalizing the O(·) statement.

Definition 2.1. Suppose that δ1(·), δ2(·) : [0, ǫ0] → [0,∞) are monotonically de-
creasing functions. We say that a collection of processes Xǫ(·) : Ω × [0,∞) → Cn

are O(δ1(ǫ)) with high probability on time scale 1/δ2(ǫ) if for all T > 0, there exists
a K > 0, so that

P

(

sup
t∈[0,T/δ2(ǫ)]

‖Xǫ(t)‖ > Kδ1(ǫ)

)

ǫ↓0−−→ 0. (14)

2.1. Resonance analysis for the nonlinear term. We split F into its resonant
and non-resonant parts with respect to the semi-group generated by A. Since F is
a polynomial of degree d, we can write

F (u) =

n
∑

j=1





∑

|α|≤d

Cj
αu

α



 ej.

Here ej the jth standard basis element in C
n. Let Λ = {λ1, . . . , λn} be the ei-

genvalues of A. Given any multindex α = (α1, . . . , αn), we adopt the notation
(Λ, α) :=

∑n
i=1 αiλi. Let

N j
r = {α ∈ N

n : |α| ≤ d, (Λ, α) = λj}. (15)

The resonant terms in F are given by

R(u) =

n
∑

j=1





∑

α∈Nj
r

Cj
αu

α



 ej , (16)

and note that for any u ∈ Cn

eAtR(e−Atu) = R(u). (17)
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Let

FNR(u) = F (u) −R(u) =

n
∑

j=1





∑

α6∈Nj
r

Cj
αu

α



 ej (18)

and

S(t, u) = etAFNR(e−tAu) =

n
∑

j=1





∑

α6∈Nj
r

Cj
αe

t(λj−(Λ,α))uα



 ej. (19)

We have the decompositions

eAtF (e−Atu) = R(u) + S(t, u),

F (u) = e−AtR(eAtu) + FNR(u) = R(u) + FNR(u).
(20)

Applying (20) to (13), we find

X̄ǫ =e−At

(

Xǫ
0 + ǫtR(Xǫ

0) + ǫ

∫ t

0

S(s,Xǫ
0) ds+ ǫβ

∫ t

0

eAsG(ǫs, s) dW̃

)

+ O(ǫ2)

=e−At

(

Xǫ
0 + ǫtR(Xǫ

0) + ǫ

∫ t

0

S(s,Xǫ
0) ds

)

+ ǫβ
∫ t

0

e−A(t−s)G(ǫs, s) dW̃ + O(ǫ2).

(21)

In order to estimate terms arising in the expression of X̄ǫ, and to show that the
last term is nonresonant (bounded) in the probabilistic sense, we need the following
lemma whose proof is an easy application of Ito’s formula, Burkholder-Davis-Gundy
inequality, and therefore will be given in an Appendix for the sake of completeness.

Lemma 2.2. Suppose that H takes values in Mn×n1 , that W = (W1, . . . ,Wn1
)T

is a standard n1 dimensional Brownian motion and that A in Mn×n is symmetric
non-negative definite or antisymmetric. Assume that H is uniformly bounded in
time

sup
t>0

‖H(t)‖ = sup
t>0





∑

j,k

|Hk,j(t)|2




1/2

<∞. (22)

Given constants K,T0 > 0

P

(

sup
t∈[0,T0]

∥

∥

∥

∥

∫ t

0

e−A(t−s)H(s)dW

∥

∥

∥

∥

> K

)

≤ CT0

K2
, (23)

where C := C(‖H‖).
Suppose now that β > 1/2 (equivalently m > 0 in the original time scale). For

γ < β − 1/2, Lemma 2.2 implies that

P

(

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

ǫβ
∫ t

0

e−A(t−s)G(ǫs, s) dW̃

∥

∥

∥

∥

> ǫγ

)

≤ CTǫ2(β−γ)−1 ǫ↓0−−→ 0. (24)

As such ǫβ
∫ t

0
e−A(t−s)G(ǫs) dW̃ is O(ǫγ) with high probability on the time scale

1/ǫ. Referring back to (21) we arrive at the renormalized system

dV ǫ(t) = ǫR(V ǫ)dt,

V ǫ(0) = V ǫ
0 ,

(25)
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with the associated approximate solution taking the form

X̄ǫ(t) = e−At

(

V ǫ(t) + ǫ

∫ t

0

S(s, V ǫ(s)) ds

)

. (26)

This is exactly the form the approximate solution takes in other works ([23], [17],
[15], [4] etc.) However by applying Proposition 3, one can show that

∫ t

0

e−AtS(s, V ǫ)ds =

∫ t

0

e−A(t−s)FNR(e−sAV ǫ)ds (27)

remains O(1) with high probability on time scale 1/ǫ as long as V ǫ remains O(1)
with high probability on this time scale. We are therefore justified in simplifying
the approximate solution to

X̄ǫ(t) = e−AtV ǫ(t). (28)

This approximate solution satisfies

dX̄ǫ +AX̄ǫdt = ǫR(X̄ǫ)dt,

X̄ǫ(0) = X̄ǫ
0 = V ǫ

0 .
(29)

In the original time scale, the renormalization group equation takes the form

dV ǫ(τ) = R(V ǫ(τ))dτ,

V ǫ(0) = V ǫ
0 ,

(30)

and the approximate solution is given by

X̄ǫ(τ) = e−(τ/ǫ)AV ǫ(τ) (31)

which solves

dX̄ǫ +
1

ǫ
AX̄ǫdτ = R(X̄ǫ)dτ

X̄ǫ(0) = X̄ǫ
0 = V ǫ

0 .
(32)

Note that the approximate solution in (31) splits the dynamics into two scales with
the (possibly) intermediate scale introduced by the diffusion term of no consequence
to the asymptotic validity of the approximation. Employing the estimate (24) we
are able to establish that X̄ǫ converges to Xǫ with high probability on time scale 1
with a convergence rate ǫγ for any γ < m. More precisely we show that

P

(

sup
τ∈[0,T ]

‖X̄ǫ(τ) −Xǫ(τ)‖ > Cǫγ

)

ǫ→0−−−→ 0, (33)

for any such γ < m. In order to improve these convergence rates we may wish
to include some stochastic terms in the renormalization group. The analysis must
consider the antisymmetric and positive semidefinite cases separately.

2.2. The antisymmetric case: Improved convergence rates. Suppose that
A is antisymmetric along with the standing assumption that β > 1/2 (i.e. m > 0).
If we include all of the noise in the renormalized system we obtain

dV ǫ(t) = ǫR(V ǫ)dt+ ǫβetAG(ǫt, t)dW̃ ,

V ǫ(0) = V ǫ
0 ,

(34)

which reads as

dV ǫ(τ) = R(V ǫ)dτ + ǫαe(τ/ǫ)AG(τ, τ/ǫ)dW,

V ǫ(0) = V ǫ
0 ,

(35)
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in the original time scale. Since A is antisymmetric, (6) implies that

sup
τ>0

‖e(τ/ǫ)AG(τ, τ/ǫ)‖ <∞.

As such the small noise asymptotic results established below (c.f. Remark 3) show
that for a large class of physically motivated systems, if the deterministic renor-
malized system in (30) is O(1) with high probability on time scale 1 then so is the
solution of (35). We are justified, as in the previous case, in assuming that V ǫ is a
slowly varying process in the sense of (111), (112) and (113). Once again Proposi-
tion 3 justifies simplifying the approximate solution X̄ǫ according to (28) (or (31)
in the original time scale). In this case X̄ǫ satisfies

dX̄ǫ +AX̄ǫdt = ǫR(X̄ǫ)dt+ ǫβG(ǫt, t)dW̃ ,

X̄ǫ(0) = X̄ǫ
0 = V ǫ

0 ,
(36)

and in time scale τ, it written in the form

dX̄ǫ +
1

ǫ
AX̄ǫdτ = R(X̄ǫ)dτ + ǫmG(τ, τ/ǫ)dW,

X̄ǫ(0) = X̄ǫ
0 = V ǫ

0 .
(37)

When comparing this system to (8), the stochastic terms cancel. The approximate
solution thus enjoys a faster rate of convergence to the original system (8). In
particular we prove below that

P

(

sup
τ∈[0,T ]

‖X̄ǫ(τ) −Xǫ(τ)‖ > Cǫ

)

ǫ→0−−−→ 0. (38)

Remark 1. In some applications, particularly for the antisymmetric case, the gov-
erning equations (5) are given in a non-diagonalized basis, relative to the dominant
linear term. The renormalized systems defined by (30) or (35) can be translated
back to this original basis. Let

U ǫ = Q∗V ǫ, R̄(·) = Q∗R(Q·), Ȳ ǫ = Q∗X̄ǫ. (39)

If V ǫ is defined by (30), then in the original basis U ǫ solves

dU ǫ(τ) = R̄(U ǫ(τ))dτ,

U ǫ(0) = U ǫ
0 .

(40)

On the other hand if we include stochastic forcing in the renormalized system as in
(35) then

dU ǫ(τ) = R̄(U ǫ(τ))dτ + ǫαeτ/ǫĀḠ(τ, τ/ǫ)dW,

U ǫ(0) = U ǫ
0 .

(41)

In both cases, the approximate solution is given by

Ȳ ǫ(τ) = e−(τ/ǫ)ĀU ǫ(τ). (42)

In the first case Ȳ ǫ is the solution of

dȲ ǫ +
1

ǫ
ĀȲ ǫdτ = R̄(Ȳ ǫ)dτ,

Ȳ ǫ(0) = Ȳ ǫ
0 = U ǫ

0 ,
(43)
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whereas

dȲ ǫ +
1

ǫ
ĀȲ ǫdτ = R̄(Ȳ ǫ)dτ + ǫαG̃(ǫt, t)dW,

Ȳ ǫ(0) = Ȳ ǫ
0 = U ǫ

0 ,
(44)

in the second case. The results in Proposition 1 apply when we replace V ǫ, Xǫ and
X̄ǫ with U ǫ, Y ǫ and Ȳ ǫ respectively.

2.3. The positive semidefinite case: Improved convergence rates and the
case of large noise. We next consider the case when A is positive semidefinite.
Here, beyond the uniform time bounds in (6) we assume that G is in Mn×n and
diagonal. Let M, N be the projections onto ker(A) and ker(A)⊥ respectively.
Applying this decomposition to (21) we obtain

X̄ǫ =e−At

(

Xǫ
0 + ǫtR(Xǫ

0) + ǫ

∫ t

0

S(s,Xǫ
0) ds+ ǫβ

∫ t

0

MG(ǫs, s)dW̃

)

+ ǫβ
∫ t

0

e−A(t−s)NG(ǫs, s) dW̃ + O(ǫ2).

(45)

In order to control the last term in the expression above we need the following
lemma whose proof is given in an Appendix.

Lemma 2.3. Suppose that A and H(·) are diagonal with supt>0 ‖H(t)‖ <∞, and
the spectrum of A real and non-negative. For q ≥ 2 we have

P

(

sup
t∈[0,T0]

∥

∥

∥

∥

∫ t

0

e−A(t−s)NH(s)dW

∥

∥

∥

∥

> K

)

≤ CT0

Kq
, (46)

where C := C(q,H) and N is the projection onto ker(A)⊥.

Suppose that β > 0 (i.e. m > −1/2 in the original time scale). By applying
Lemma 2.3, we have the estimate

P

(

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

ǫβ
∫ t

0

e−A(t−s)NG(ǫs, s)dW

∥

∥

∥

∥

> ǫγ

)

≤ C(q)T ǫq(β−γ)−1, (47)

for any 0 < γ < β. By choosing q > max{(β − γ)−1, 2}, we see that the stochastic

integral ǫβ
∫ t

0
e−A(t−s)G(ǫs)dW remains O(ǫγ) with high probability on a time scale

of order 1/ǫ. With this in mind we define the renormalization group equation

dV ǫ(t) = ǫR(V ǫ(t))dt + ǫβMG(ǫt, t)dW̃ ,

V ǫ(0) = V ǫ
0 ,

(48)

which gives

dV ǫ(τ) = R(V ǫ(τ))dτ + ǫmMG(τ, τ/ǫ)dW,

V ǫ(0) = V ǫ
0 ,

(49)

in the original time scale. Note that in order to apply either Proposition 3 or
Remark 3 to this renormalized system, we must require either that M = 0 (equiva-
lently that A is strictly positive definite) or that m > 0. The approximate solution
is defined in either case by X̄ǫ(t) = e−tAV ǫ which is the solution of

dX̄ǫ +AX̄ǫdt = ǫR(X̄ǫ)dt+ ǫβMG(ǫt, t)dW̃ ,

X̄ǫ(0) = X̄ǫ
0 = V ǫ

0

(50)
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Returning to the original time scale we have X̄ǫ(τ) = e−(τ/ǫ)AV ǫ(τ) which solves

dX̄ǫ +
1

ǫ
AX̄ǫdτ = R(X̄ǫ)dτ + ǫmMG(τ, τ/ǫ)dW,

X̄ǫ(0) = X̄ǫ
0 = V ǫ

0 .
(51)

Relying on the stronger estimates available for the stochastic convolution due to
the dissipation in the system (c.f. (47) above) we are able to show that

P

(

sup
τ∈[0,T ]

‖X̄ǫ(τ) −Xǫ(τ)‖ > Cǫγ

)

ǫ→0−−−→ 0, (52)

where γ < m+ 1/2.

3. Rigorous approximation results. We now rigorously state and prove the
main results legitimating X̄ǫ as an approximate solution of (8). We start with the
highly oscillatory case.

Proposition 1. Assume that Xǫ solves (8) with A antisymmetric and m > 0.
Suppose that V ǫ solves either (30) or (35), and that for any T > 0 there exists
K > 0 such that

P

(

sup
τ∈[0,T ]

‖V ǫ(τ)‖ > K

)

:= φ1(ǫ)
ǫ→0−−−→ 0, (53)

Additionally, we assume that

P (‖V ǫ
0 −Xǫ

0‖ > Kǫ) := φ2(ǫ)
ǫ→0−−−→ 0. (54)

(i) Let V ǫ be as in (30) and therefore X̄ǫ is as in (31), then for any γ < m

P

(

sup
τ∈[0,T ]

‖X̄ǫ(τ) −Xǫ(τ)‖ > Cǫγ

)

ǫ→0−−−→ 0, (55)

where C = C(K,F ).
(ii) If V ǫ solves (35) and X̄ǫ is given by (37) then

P

(

sup
τ∈[0,T ]

‖X̄ǫ(τ) −Xǫ(τ)‖ > Cǫ

)

ǫ→0−−−→ 0. (56)

Remark 2. As in [4], T can be replaced with Tǫ := T log(1/ǫ) in (53), (55) and
(56) (or in (87), (89), (90) below) with no additional complications.

Proof. Throughout the following, we work on the time scale t. Let Zǫ(t) = eAtXǫ(t).
This process satisfies

dZǫ = ǫeAtF (e−AtZǫ) + ǫβeAtG(ǫt, t)dW̃ ; Zǫ(0) = Xǫ
0. (57)

Since A is antisymmetric

‖V ǫ(t) − Zǫ(t)‖ = ‖X̄ǫ(t) −Xǫ(t)‖, t ≥ 0. (58)

Thus, we are justified to consider the error process

Eǫ(t) := V ǫ(t) − Zǫ(t). (59)
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For the case (i), using (20)

Eǫ(t) =Eǫ
0 + ǫ

∫ t

0

(

R(V ǫ) − eAsF (e−AsZǫ)
)

ds− ǫβ
∫ t

0

eAsG(ǫs, s)dW̃

=Eǫ
0 + ǫ

∫ t

0

(

eAsF (e−AsV ǫ) − eAsF (e−As(V ǫ − Eǫ)
)

ds

− ǫ

∫ t

0

S(s, V ǫ)ds− ǫβ
∫ t

0

eAsG(ǫs, s)dW̃ .

(60)

However, in the case (ii), there is no stochastic integral term, and we have

Eǫ(t) = Eǫ
0 + ǫ

∫ t

0

(

R(V ǫ) − eAsF (e−AsZǫ)
)

ds

= Eǫ
0 + ǫ

∫ t

0

(

eAsF (e−AsV ǫ) − eAsF (e−As(V ǫ − Eǫ)
)

ds

− ǫ

∫ t

0

S(s, V ǫ)ds.

(61)

Notice that in both cases V ǫ has the form (111) and satisfies the conditions (112)

and (113). For α 6∈ N j
R, let Kα,j be the constant arising in Proposition 3 with

f(u) = Cj
αu

α. Define

C1 =

n
∑

j=1

∑

α6∈Nj
r

Kα,j . (62)

Applying Proposition 3, we estimate

P

(

sup
t∈[0,T/ǫ]

ǫ

∥

∥

∥

∥

∫ t

0

S(s, V ǫ)ds

∥

∥

∥

∥

> C1ǫ

)

≤
∑

1≤j≤n

α6∈Nj
R

P

(

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

∫ t

0

et(λj−(Λ,α))Cj
α(V ǫ)αds

∥

∥

∥

∥

> Kα,j

)

ǫ↓0−−→ 0.
(63)

For case (i) we need to estimate the stochastic integral term in (60). Lemma 2.2
implies

P

(

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

ǫβ
∫ t

0

eAsG(ǫs, s)dW̃

∥

∥

∥

∥

> ǫγ

)

= P

(

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

∫ t

0

e−A(t−s)G(ǫs, s)dW̃

∥

∥

∥

∥

> ǫγ−β

)

≤ CTǫ2(β−γ)−1 = CTǫ2(m−γ) ǫ↓0−−→ 0.

(64)

By the mean value theorem, we have

‖F (e−AtV ǫ) − F (e−AtV ǫ(t) − e−AtEǫ(t))‖
≤ sup

σ∈[0,1]

‖D(F )(e−AtV ǫ(t) − σe−AtEǫ(t))‖‖Eǫ(t)‖. (65)

Let

ηǫ(t) = sup
σ∈[0,1]

‖D(F )(e−AtV ǫ(t) − σe−AtEǫ(t))‖. (66)



1252 NATHAN GLATT-HOLTZ AND MOHAMMED ZIANE

Note that
∥

∥

∥

∥

∫ t

0

eAs
(

F (e−AsV ǫ) − F (e−As(V ǫ − Eǫ)
)

ds

∥

∥

∥

∥

≤ Ξǫ(t), (67)

where

Ξǫ(t) =

∫ t

0

ηǫ(s)‖Eǫ(s)‖ds. (68)

Define

Gǫ = {‖Eǫ
0‖ ≤ Kǫ} ∩

{

sup
t∈[0,T/ǫ]

ǫ

∥

∥

∥

∥

∫ t

0

S(s, V ǫ)ds

∥

∥

∥

∥

≤ C1ǫ

}

∩
{

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

ǫβ
∫ t

0

eAsG(ǫs, s)dW̃

∥

∥

∥

∥

≤ ǫγ

} (69)

in case (i) and

Gǫ = {‖Eǫ
0‖ ≤ Kǫ} ∩

{

sup
t∈[0,T/ǫ]

ǫ

∥

∥

∥

∥

∫ t

0

S(s, V ǫ)ds

∥

∥

∥

∥

≤ C1ǫ

}

(70)

for (ii). Due to (54) and (63) and in the first case (64), we have

P(GC
ǫ )

ǫ→0−−−→ 0. (71)

We complete the proof for either (i) or (ii) using a maximal argument. We give
the details for (i), the other case is nearly identical. Let C2 = K +C1 +1. We have
for any sample ω coming from Gǫ

‖Eǫ(t, ω)‖ ≤ ǫγC2 + ǫΞ(t, ω). (72)

Thus
dΞǫ(t, ω)

dt
= ηǫ(t, ω)‖Eǫ(t, ω)‖ ≤ ǫγ(C2 + Ξǫ(t, ω))ηǫ(t, ω). (73)

The Gronwall’s inequality implies

Ξǫ(t, ω) ≤ ǫγC2 exp

(∫ t

0

ǫγη(s, ω)ds

)∫ t

0

η(s, ω)ds. (74)

For ω ∈ Gǫ, define Iǫ(ω) ⊂ [0, T/ǫ] to be the maximal interval so that ‖Eǫ(s, ω)‖ ≤ 1
for every s ∈ Iǫ(ω). Note that for ǫ < K−1, the definition of Gǫ insures that this
interval is nontrivial for almost every ω ∈ Gǫ. Let

C3 := sup
t∈R

+

‖x‖≤K,‖y‖≤1

(

sup
σ∈[0,1]

‖D(F )(e−At(x− σy))‖
)

. (75)

By using the estimate (74) we obtain

‖Eǫ(s, ω)‖ ≤ ǫγ(C2e
ǫγTC3TC3) ≤ ǫγC4, (76)

for any s ∈ I(ω). Note that C4 can be chosen independently of ω and ǫ. As such

for ǫ <
(

1
C4

)1/γ

, it follows that Iǫ = [0, T/ǫ]. The proof is complete.

A special case of Proposition 1, (i) can be interpreted as a small noise asymptotic
result
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Corollary 1. Suppose that for ǫ > 0, Xǫ solves

dXǫ = F (Xǫ)dτ + ǫmG(τ, τ/ǫ)dW ; Xǫ(0) = Xǫ
0. (77)

and that xǫ is the solution of the associated deterministic system

dxǫ = F (xǫ)dτ ; xǫ(0) = xǫ
0. (78)

Assume that G(·, ·) is uniformly bounded as in (6), that

〈F (u), u〉 ≤ 0 for all u ∈ R
n, (79)

that

P (‖Xǫ
0 − xǫ

0‖ > Kǫm)
ǫ→0−−−→ 0, (80)

and finally that

P (‖xǫ
0‖ > K)

ǫ→0−−−→ 0. (81)

Then for any γ < m

P

(

sup
τ∈[0,T ]

‖Xǫ(τ) − xǫ(τ)‖ > Cǫγ

)

ǫ→0−−−→ 0. (82)

Where C := C(F,K).

Proof. Notice that (78) is in the form of (5)2 for A ≡ 0. Defining R according
to (16) we find that F (u) = R(u) and that the renormalization group derived in
Section 2.1 is given by (78). Due to (79) we have

‖xǫ(τ)‖2 = ‖xǫ
0‖2 + 2

∫ τ

0

〈F (xǫ), xǫ〉dτ ≤ ‖xǫ
0‖2. (83)

By applying (81) we find that the condition (53) holds for xǫ. The conclusion (82)
therefore follows from Proposition 1, (i).

Remark 3.

(i) One important class of systems that satisfy (79) arise when

F (u) = Lu+B(u, u), (84)

where L is linear and either antisymmetric or positive semidefinite and B is
a bilinear form satisfying the cancellation property 〈B(u, v), v〉 = 0.

(ii) Small noise asymptotic results involving Lipschitz continuous nonlinear terms
are classical and have been studied by many authors (see [11] and [8]). As
noted, Corollary 1 covers the physically important case when we can only ex-
pect cancellations in the nonlinear portion of the equation. In Section 7 below
we provide a different proof of Corollary 1 that covers the case of multiplica-
tive noise and also establishes convergence to the deterministic limit system
in Lp(Ω) for p ≥ 2.

(iii) Corollary 1 can sometimes be used to verify (53) for V ǫ, the solution of (35).
Suppose that according to (16) R(u) = Lu + B(u, u), so that 〈R(u), u〉 ≤ 0.
Take

dvǫ = R(vǫ)dτ ; vǫ(0) = vǫ
0. (85)

2In this case, (5) and (8) are identical



1254 NATHAN GLATT-HOLTZ AND MOHAMMED ZIANE

If V ǫ
0 − vǫ

0 satisfies (80) and vǫ
0 fulfills (81), each with constant κ, then Corol-

lary 1 and the calculation in (83) imply

P

(

sup
τ∈[0,T ]

|V ǫ(τ)| > κ+ 1

)

≤P

(

sup
τ∈[0,T ]

|V ǫ(τ) − vǫ(τ)| > 1

)

+ P

(

sup
τ∈[0,T ]

|vǫ(τ)| > κ

)

ǫ↓0−−→ 0.

(86)

In a similar manner one may verify (87) for V ǫ satisfying (49) in Proposition 2
below.

We next address the positive semidefinite case.

Proposition 2. Assume that Xǫ solves (8) with A positive semidefinite. Suppose
that V ǫ is a solution of either (30) or (49) so that for T > 0 there is a constant
K > 0 such that

P

(

sup
τ∈[0,T ]

‖V ǫ(τ)‖ > K

)

:= φ1(ǫ)
ǫ→0−−−→ 0. (87)

Additionally, suppose that the initial data V ǫ
0 approximates Xǫ

0 with high probability
for small ǫ

P (‖V ǫ
0 −Xǫ

0‖ > Kǫ) := φ2(ǫ)
ǫ→0−−−→ 0. (88)

(i) If m > 0 in (8) and V ǫ solves (30) then there is a positive constant C =
C(K,F ) so that whenever γ ≤ m

P

(

sup
τ∈[0,T ]

‖X̄ǫ(τ) −Xǫ(τ)‖ > Cǫγ

)

ǫ→0−−−→ 0, (89)

where X̄ǫ(τ) := e−( τ
ǫ )AV ǫ(τ).

(ii) In addition to the uniform bound (6), suppose that G(·, ·) is diagonal. If m > 0
in (8) and V ǫ is the solution of (49) then

P

(

sup
τ∈[0,T ]

‖X̄ǫ(τ) −Xǫ(τ)‖ > Cǫγ

)

ǫ→0−−−→ 0, (90)

for any γ < m+ 1/2.
(iii) If, moreover, A is (strictly) positive definite (i.e. σ(A) is strictly positive)

then if m > −1/2, (90) holds for γ < m+ 1/2.

Proof. As in the proof of Proposition 1 we work on time scale t. Here we define the
error process by Eǫ(t) = X̄ǫ(t) − Xǫ(t). Subtracting (29) from (9) in case (i), or
(50) from (9) in cases (ii) and (iii), we arrive at the system

dEǫ +AEǫdt = ǫ
(

R(X̄ǫ) − F (Xǫ)
)

dt− ǫβPG(ǫt, t)dW ; Eǫ(0) = V ǫ
0 −Xǫ

0. (91)
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In case (i) P = I while in the later cases P = N , the projection on ker(A)⊥. We
have

Eǫ(t) =e−AtEǫ
0 + ǫ

∫ t

0

e−A(t−s)
(

R(X̄ǫ) − F (Xǫ)
)

ds

− ǫβ
∫ t

0

e−A(t−s)PG(ǫt, t)dW

=e−AtEǫ
0 + ǫ

∫ t

0

e−A(t−s)
(

e−AsR(eAsX̄ǫ) − F (Xǫ)
)

ds

− ǫβ
∫ t

0

e−A(t−s)PG(ǫt, t)dW

=e−AtEǫ
0 + ǫ

∫ t

0

e−A(t−s)
(

F (X̄ǫ) − F (X̄ǫ − Eǫ)
)

ds

− ǫ

∫ t

0

e−A(t−s)FNR(X̄ǫ)ds− ǫβ
∫ t

0

e−A(t−s)PG(ǫt, t)dW.

(92)

First we estimate the term
∫ t

0

e−A(t−s)FNR(X̄ǫ)ds =
n
∑

k=1

∑

α6∈Nj
r

(∫ t

0

e−λj(t−s)Cj
α(X̄ǫ)αds

)

ej

=

n
∑

k=1

∑

α6∈Nj
r

(∫ t

0

e−λj(t−s)e−s(Λ,α)Cj
α(V ǫ)αds

)

ej .

(93)

Here λj = Ajj ≥ 0 (since A is assumed diagonal, this is the jth eigenvalue of A) and
(Λ, α) =

∑

k αkλk. Recalling (15) we have λj 6= (Λ, α), for each α 6∈ N j
r . Notice

that for cases (i) and (iii) V ǫ takes the form (111) trivially since both (25) and
(48) are deterministic systems (since σ(A) > 0 in the later case M = 0). On the
other hand, for case (ii), β > 1/2 in (48). Combining these observations with the
boundedness condition (87) we see that each of the terms in (93) satisfy Lemma 3
(ii). Similarly to (62) and (63) we infer a constant C1, depending on Cj

αu
α and λj

in (93), so that

P

(

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

ǫ

∫ t

0

e−A(t−s)FNR(X̄ǫ)ds

∥

∥

∥

∥

> C1ǫ

)

ǫ↓0−−→ 0. (94)

We next address the stochastic integral terms. For case (i) we estimate

P

(

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

ǫβ
∫ t

0

e−A(t−s)G(ǫt, t)dW

∥

∥

∥

∥

> ǫγ

)

≤ CTǫ2(β−γ)−1 ǫ↓0−−→ 0, (95)

using Lemma 2.2. On the other hand for cases (ii) and (iii) we apply Lemma 2.3,
choosing q > max{(β − γ)−1, 2} so that

P

(

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

ǫβ
∫ t

0

e−A(t−s)NG(ǫt, t)dW

∥

∥

∥

∥

> ǫγ

)

≤ C(q)T ǫq(β−γ)−1 ǫ↓0−−→ 0. (96)

The final step is to estimate the term

ǫ

∫ t

0

e−A(t−s)
(

F (X̄ǫ) − F (X̄ǫ − Eǫ)
)

ds. (97)
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By the mean value theorem

‖F (X̄ǫ) − F (X̄ǫ − Eǫ)‖
≤ sup

σ∈[0,1]

‖D(F )(X̄ǫ(s) − Eǫ(s))‖‖Eǫ(t)‖. (98)

Let

ηǫ(t) = sup
σ∈[0,1]

‖D(F )(e−AsV ǫ(s) − σEǫ(s))‖, (99)

and as in the proof of Proposition 1, define

Ξǫ(t) =

∫ t

0

ηǫ(s)‖Eǫ(s)‖ds (100)

and

Gǫ =

{

sup
t∈[0,T/ǫ]

‖e−AtEǫ
0‖ ≤ Kǫ

}

∩
{

sup
t∈[0,T/ǫ]

ǫ

∥

∥

∥

∥

∫ t

0

e−A(t−s)FNR(X̄ǫ)ds

∥

∥

∥

∥

≤ C1ǫ

}

∩
{

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

ǫβ
∫ t

0

e−A(t−s)NG(ǫs)dW̃

∥

∥

∥

∥

≤ ǫγ

}

,

(101)

or

Gǫ =

{

sup
t∈[0,T/ǫ]

‖e−AtEǫ
0‖ ≤ Kǫ

}

∩
{

sup
t∈[0,T/ǫ]

ǫ

∥

∥

∥

∥

∫ t

0

e−A(t−s)FNR(X̄ǫ)ds

∥

∥

∥

∥

≤ C1ǫ

}

∩
{

sup
t∈[0,T/ǫ]

∥

∥

∥

∥

ǫβ
∫ t

0

e−A(t−s)G(ǫs)dW̃

∥

∥

∥

∥

≤ ǫγ

}

.

(102)

The maximal argument is then employed exactly as in Proposition 1 to complete
the proof.

4. Applications: Some examples from fluid dynamics. With the results de-
veloped above in hand, we now consider several examples of stochastically perturbed
multi-scale systems. These simple models were first considered in the deterministic
setting in [15] and are motivated by the numerical study of geophysical fluid flow
and turbulence. For each example below observe that the renormalized system de-
couples the fast and slow components of the original system. The stochastically
forced renormalized systems are seen to satisfy (53) (or (87)) for a large class of
initial conditions by Remark 3. We further remark that for the first two examples
the perturbation systems are written in the non-diagonalized form (5). As such we
exhibit the deterministic and stochastic renormalized system according to (40) and
(41) respectively. See Remark 1. A future article which develops applications of
the results in this work to the numerical integration of singular stochastic systems
will consider the examples below in more detail.
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Example 1 (Linear Renormalization Group Equation). For the first example we
consider a nonlinear equation that exhibits a linear renormalization group equation.

dY1 + (λ1Y1 −
1

ǫ
Y2 − Y1Y3) dτ =

√
ǫdW1,

dY2 +

(

λ2Y2 +
1

ǫ
Y1 + Y2Y3

)

dτ =
√
ǫdW2,

dY3 +
(

λ3Y3 + Y 2
1 − Y 2

2

)

dτ =
√
ǫdW3,

(103)

where λ1, λ2, λ3 are fixed constants. After some routine computations we conclude
that the renormalization group equation has the form

dU1+
1

2
(λ1 + λ2)U1 dτ = 0,

dU2+
1

2
(λ1 + λ2)U2 dτ = 0,

dU3+λ3U3 dτ = 0.

(104)

The stochastic counterpart is given by

dU1+
1

2
(λ1 + λ2)U1 dτ =

√
ǫ cos(τ/ǫ)dW1 −

√
ǫ sin(τ/ǫ)dW2,

dU2+
1

2
(λ1 + λ2)U2 dτ =

√
ǫ sin(τ/ǫ)W1 +

√
ǫ cos(τ/ǫ)dW2,

dU3+λ3U3 dτ =
√
ǫdW3.

(105)

Example 2 (The Lorenz System). We next consider a system introduced by E.
Lorenz (see [14]) with a small additive noise. Let λ1, λ2 and b be fixed positive
parameters.

dY1 = (−λ1Y1 − Y2Y3 + bY2Y5)dτ +
√
ǫdW1,

dY2 = (−λ1Y2 + 2Y1Y3 − 2bY1Y5)dτ +
√
ǫdW2,

dY3 = (−λ1Y3 − Y1Y2)dτ +
√
ǫdW3,

dY4 =

(

−λ2Y4 −
1

ǫ
Y5

)

dτ +
√
ǫdW4,

dY5 =

(

−λ2Y4 +
1

ǫ
Y4 + bY1Y2

)

dτ +
√
ǫdW5.

(106)

In this case the renormalization group equation is given by

dU1 =(−λ1U1 − U2U3) dτ,

dU2 =(−λ1U2 + 2U1U3) dτ,

dU3 =(−λ1U3 − U1U2) dτ,

dU4 = − λ2U4 dτ,

dU5 = − λ2U5 dτ

(107)
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and by

dU1 =(−λ1U1 − U2U3) dτ +
√
ǫdW1,

dU2 =(−λ1U2 + 2U1U3) dτ +
√
ǫdW2,

dU3 =(−λ1U3 − U1U2) dτ +
√
ǫdW3,

dU4 = − λ2U4 dτ +
√
ǫ cos(τ/ǫ)dW4 −

√
ǫ sin(τ/ǫ)dW5,

dU5 = − λ2U5 dτ +
√
ǫ sin(τ/ǫ)dW4 +

√
ǫ cos(τ/ǫ)dW5.

(108)

Example 3 (A Symmetric Positive Semidefinite). The final example addresses the
dissipative case.

dX1 + (X1 +X1X2)dτ =
√
ǫdW1,

dX2 +

(

1

ǫ
X2 −X2

1

)

=
√
ǫdW2.

(109)

This system was studied in [20] as a simple model for the numerical simulation of
turbulent fluid flows. Here we have replaced the external forcing terms with a small
white noise. The renormalized system has the form

dV1 + V1 dτ =
√
ǫdW1,

dV2 = 0.
(110)

5. Large time estimates for slowly varying processes. The following general
result establishes that time integrals of slowly varying processes against oscillatory
or dissipative terms remain O(1) with high probability on large time scales.

Proposition 3. Suppose that, for ǫ > 0, Zǫ ∈ Cn solves

dZǫ = ǫΦ(t, Zǫ)dt+ ǫβΨ(t, Zǫ)dW ; Zǫ(0) = Zǫ
0. (111)

Here we suppose that β > 1/2, Φ and Ψ are uniformly bounded in time for bounded
subsets of Cn in the sense that, for any R > 0

sup
t>0,‖x‖≤R

‖Φ(t, x)‖ <∞, sup
t>0,‖x‖≤R

‖Ψ(t, x)‖ <∞, (112)

and assume that for some constant K > 0

P

(

sup
t∈[0,T/ǫ]

‖Zǫ(t)‖ > K

)

:= φ(ǫ)
ǫ↓0−−→ 0. (113)

Then

(i) For any σ ∈ R \ {0} and any analytic function f : Cn → C

P

(

sup
t∈[0,T/ǫ]

∣

∣

∣

∣

∫ t

0

eiσsf(Zǫ)ds

∣

∣

∣

∣

> C

)

ǫ↓0−−→ 0, (114)

where C := C(f, σ, T ).
(ii) Suppose that Zǫ take values in Rn, and assume that λ, σ ≥ 0 with σ 6= λ.

Then for any C2 function f : Rn → R

P

(

sup
t∈[0,T/ǫ]

∣

∣

∣

∣

∫ t

0

e−λ(t−s)e−σsf(Zǫ)ds

∣

∣

∣

∣

> C

)

ǫ↓0−−→ 0, (115)

where C := C(f, σ, T ).
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Proof. In both cases the Itô formula gives

df(Zǫ) =ǫ

n
∑

k=1

∂f(Zǫ)

∂zk
Φk(t, Zǫ)dt+ ǫβ

n
∑

k=1

∂f(Zǫ)

∂zk
(Ψ(t, Zǫ)dW )k

+
ǫ2β

2

n
∑

k,l,j=1

(

∂2f(Zǫ)

∂zk∂zl
Ψk,j(t, Z

ǫ)Ψl,j(t, Z
ǫ)

)

dt

:=ǫHD(t, Zǫ)dt+ ǫβHS(t, Zǫ)dW + ǫ2βHC(t, Zǫ)dt.

(116)

For (i), integrating by parts and using (116), we have

∫ t

0

eiσsf(Zǫ)ds =
eiσtf(Zǫ(t)) − f(Zǫ(0))

iσ

+ ǫ

∫ t

0

eiσs

iσ
(HD(s, Zǫ) + ǫ2β−1HC(s, Zǫ))ds

+ ǫβ
∫ t

0

eiσs

iσ
HS(s, Zǫ)dW.

(117)

Define

C1 :=
2

|σ| sup
‖z‖≤K

|f(z)|,

C2 :=
T

|σ| sup
t>0,‖z‖≤K

(|HD(t, z)| + |HC(t, z)|),

C3 :=
1

|σ| sup
t>0,‖z‖≤K

‖HS(t, Zǫ)‖.

(118)

Note that (112) assures that these constants are finite. For the first term in (117),
we have

P

(

sup
t∈[0,T/ǫ]

∣

∣

∣

∣

eiσtf(Zǫ(t)) − f(Zǫ(0))

iσ

∣

∣

∣

∣

> C1

)

≤ φ(ǫ). (119)

Next

P

(

sup
t∈[0,T/ǫ]

∣

∣

∣

∣

ǫ

∫ t

0

eiσs

iσ
(HD(s, Zǫ) + ǫ2β−1HC(s, Zǫ))ds

∣

∣

∣

∣

> C2

)

≤P

(

sup
t∈[0,T/ǫ]

ǫ

|σ|

∫ t

0

(|HD(s, Zǫ)| + |HC(s, Zǫ)|)ds > C2

)

≤P

(

sup
t∈[0,T/ǫ]

T (|HD(t, Zǫ(t))| + |HC(t, Zǫ(t))|)
|σ| > C2

)

≤ φ(ǫ).

(120)

For the final term from (117), define the stopping time

ξǫ,K := inf
t≥0

{‖Zǫ(t)‖ > K}. (121)
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Splitting the integral and making use of Doob’s inequality

P

(

sup
t∈[0,T/ǫ]

∣

∣

∣

∣

ǫβ
∫ t

0

eiσs

iσ
HS(s, Zǫ)dW (s)

∣

∣

∣

∣

> C3

)

≤P

(

sup
t∈[0,T/ǫ]

∣

∣

∣

∣

ǫβ
∫ t

0

eiσs

iσ
HS(s, Zǫ)11ξǫ,K>sdW (s)

∣

∣

∣

∣

> C3

)

+ P(ξǫ,K ≤ T/ǫ)

≤ ǫ
2β

C2
3

E

∫ T/ǫ

0

11ξǫ,K>s

∥

∥

∥

∥

eiσs

iσ
HS(s, Zǫ)

∥

∥

∥

∥

2

ds+ ψ(ǫ)

≤ ǫ
2β

C2
3

E

∫ T/ǫ

0

11ξǫ,K>sC
2
3ds+ ψ1(ǫ) ≤ ǫ2β−1T + ψ(ǫ).

(122)

Setting C = C1+C2+C3 and applying (119), (120) and (122) with (117), we obtain
the desired result.

For item (ii), the integration by parts gives

e−λt

∫ t

0

e(λ−σ)sf(Zǫ)ds

=
e−σtf(Zǫ(t)) − e−λtf(Zǫ(0))

λ− σ

+ ǫ

∫ t

0

e−λ(t−s)e−sσ

λ− σ
(HD(s, Zǫ) + ǫ2β−1HC(s, Zǫ))ds

+ ǫβ
∫ t

0

e−λ(t−s)e−sσ

λ− σ
HS(s, Zǫ)dW.

(123)

We define constants C1 and C2 similarly to the previous case

C1 :=
2

|λ− σ| sup
‖z‖≤K

|f(z)|,

C2 :=
T

|λ− σ| sup
‖z‖≤K,t>0

(|HD(t, Zǫ)| + |HS(t, Zǫ)|).
(124)

The estimates for the first two terms on the left hand side of (123) are carried out in
the same manner as (119) and (120). For the stochastic integral terms we consider
two cases. First when λ > 0, we take C3 = 1, and we have

P

(

sup
t∈[0,T/ǫ]

∣

∣

∣

∣

ǫβ
∫ t

0

e−λ(t−s)

λ− σ
e−σsHS(s, Zǫ)dW (s)

∣

∣

∣

∣

> 1

)

≤ P

(

sup
t∈[0,T/ǫ]

∣

∣

∣

∣

∫ t

0

e−λ(t−s)

λ− σ
11ξǫ,K>se

−σsHS(s, Zǫ)dW (s)

∣

∣

∣

∣

> ǫ−β

)

+ P(ξǫ,K ≤ T/ǫ)

≤ CTǫ2β−1 + φ(ǫ),

(125)

where we applied Lemma 2.2 with G(t) = 11ξǫ,K>te
−σtHS(t, Zǫ) for the second

inequality. On the other hand, if λ = 0, then σ > 0 and we take C3 as in (118).
The stochastic integral estimate can be made as in (122).
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6. Appendix I: Stochastic convolution estimates. We give here the proofs of
Lemmas (2.2) and(2.3) which were used to estimate terms arising in the proof of
Proposition 1, (i) and Proposition 2.

Proof of Lemma (2.2). Recall that

X(t) =

∫ t

0

e−A(t−s)H(s)dW (126)

is the solution of

dX +AXdt = HdW ; X(0) = 0. (127)

Itô’s lemma implies that

d‖X‖2 + 2〈AX,X〉 = 2
∑

j

〈H·,j , X〉dWj + ‖H‖2dt. (128)

Using the Burkholder-Davis-Gundy inequality (c.f. [13], Theorem 3.28), we estimate

E



 sup
t∈[0,T0]

∣

∣

∣

∣

∣

∣

2
∑

j

∫ t

0

〈H·,j , X〉dWj

∣

∣

∣

∣

∣

∣



 ≤CE





∫ T0

0

∑

j

〈H·,j, X〉2ds





1/2

≤CE

(

∫ T0

0

‖H‖2‖X‖2ds

)1/2

≤1

2
E sup

t∈[0,T0]

‖X‖2 + CE

∫ T0

0

‖H‖2ds.

(129)

This estimate and (128) imply

E

(

sup
t∈[0,T0]

‖X‖2

)

≤ C

∫ T0

0

‖H‖2ds. (130)

The Chebyshev inequality therefore implies (23).

Proof of Lemma (2.3). Since the proof is very similar to Lemma 5.1 in [5], we
shall be brief in details. The factorization method relies on the identity

∫ t

s

(t− σ)θ−1(σ − s)−θdσ =
π

sin(πθ)
, (131)

which is valid for θ ∈ (0, 1) and for any s < t. From (131) and the stochastic Fubini
Theorem (see [8], Theorem 4.18) we infer

∫ t

0

e−A(t−s)NH(s)dWs

=
sin(πθ)

π

∫ t

0

e−A(t−s)

(∫ t

s

(t− σ)θ−1(σ − s)−θdσ

)

NH(s)dWs

=
sin(πθ)

π

∫ t

0

(t− σ)θ−1e−A(t−σ)N
(
∫ σ

0

(σ − s)−θe−A(σ−s)NH(s)dWs

)

dσ.

(132)
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Let λmp = min{Ajj > 0}. By applying the decomposition (132) with the Chebyshev
and Hölder inequalities we find that for any q > 2

P

(

sup
t∈[0,T0]

∥

∥

∥

∥

∫ t

0

e−A(t−s)NH(s)dW

∥

∥

∥

∥

> K

)

≤ C(θ, q, λmp)
T0

Kq

(

sup
σ>0

E

∥

∥

∥

∥

∫ σ

0

(σ − s)−θe−A(σ−s)NH(s)dW

∥

∥

∥

∥

q)

,

(133)

where we can take

C(θ, q, λmp) =

(

sin(πθ)

π

)q
(

∫ ∞

0

e−(q′λmp)σ

σq′(1−θ)
dσ

)q/q′

. (134)

Note that this constant is finite for any choice of θ > 1/q. To complete the proof
we estimate the moments of

M(σ) :=

∫ σ

0

(σ − s)−θe−A(σ−s)NH(s)dW. (135)

This process is Gaussian with mean zero and covariance matrix

V θ
jk(σ) = δjk

∫ σ

0

(σ − s)−2θe−2λj(σ−s)NjjHjj(s)
2ds. (136)

Since q > 2, we can chose θ ∈ (1/q, 1/2) arbitrarily. Let θ be fixed in this range,
and take, Vj(σ) = V θ

jj(σ). Notice that

V ∗
j = sup

σ>0
Vj(σ) <∞. (137)

For appropriately small values of s, the moment generating function of M(σ) is
given by

φ(s) = E(exp(s‖M(σ)‖2) =
∏

λj 6=0

E(exp(s|Mjj(σ)|2)

=
∏

λj 6=0

(2πVj(σ))−1/2

∫ ∞

−∞

exp

(

−1 − 2Vj(σ)s

2Vj(σ)
x2

j

)

dxj

= exp



−1

2

n
∑

j=1

∞
∑

m=1

(2sVj(σ))m

m



 .

(138)

Differentiating φ(s), we find

E(|M(σ)|2k) = φk(0) ≤ C(k)





n
∑

j=1

V ∗
j





k

. (139)

Applying (139) with 2k > q to (133), one infers (46).

7. Appendix II: Small noise asymptotic results. In this section we present
an alternative proof of the small noise asymptotic result in Corollary 1. Note that
while the approach below is closer in spirit to classical work (see [11], for example)
we are able to address the case of multiplicative noise.

Consider stochastically perturbed system

dXǫ + [LXǫ +B(Xǫ, Xǫ)] dt = ǫmσ(t, ǫ,Xǫ)dW,

Xǫ(0) = Xǫ
0

(140)



THE RENORMALIZATION GROUP WITH STOCHASTIC FORCING 1263

where m > 0. The related deterministic system is given by

dx

dt
+ [Lx+B(x, x)] = 0,

x(0) = x0.
(141)

We assume that L is linear and either non-negative definite or anti-symmetric.
B(., .) is a bilinear form with the cancellation property

〈B(y, x), x〉 = 0. (142)

As in the previous sections, W = (W 1, . . . ,Wm) is a standard Brownian motion
relative to a filtered probability space (Ω,F , (Ft)t≥0,P). The diffusion term σ takes

values in Mn×m. On Mn×m we use the Frobenius norm |A| =
(

∑

j,k A
2
j,k

)1/2

and

impose the uniform Lipschitz condition

|σ(t, ǫ, x) − σ(t, ǫ, y)| ≤ K|x− y|,
|σ(t, ǫ, x)| ≤ K(1 + |x|). (143)

Note that K is assumed to be independent of both ǫ and t.

Remark 4. Under the conditions given for L, B and σ and assuming that Xǫ
0 is F0

measurable (140) admits a unique continuous solution. If, in addition, we assume
that Xǫ

0 ∈ Lp(Ω) then

E

∫ T

0

|Xǫ(t)|pdt <∞. (144)

See [10] for detailed proofs.

We first establish sufficient conditions for convergence in Lp(Ω).

Proposition 4 (Lp(Ω) Convergence). Let T > 0, p ≥ 2, Xǫ
0 ∈ Lp(Ω) for ǫ > 0 and

x0 be a fixed element in Rn. Assume that for some appropriate constant C0

E|Xǫ
0 − x0|p ≤ ǫmpC0. (145)

Then

E sup
t∈[0,T ]

(1 + |Xǫ(t)|2)p/2 ≤ C (146)

and for ǫ > 0

E sup
t∈[0,T ]

|Xǫ(t) − x(t)|p ≤ ǫmpC (147)

where C = C(|x0|, T, L,B,K, p).
For the proof of Proposition 4 we shall use the following stochastic analogue of

the Gronwall Lemma. See [12] for a more general formulation and the proof.

Lemma 7.1. Suppose that Y, Z : [0, T ]× Ω → R+ are stochastic processes so that

E

∫ T

0

(Y + Z) dt <∞. (148)

Assume that for any 0 ≤ Sa ≤ Sb ≤ T

E

(

sup
t∈[Sa,Sb]

Y (t)

)

≤ C0E

(

Y (Sa) +

∫ Sb

Sa

(Y + Z)dt

)

, (149)
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where C0 is independent of the choice of Sa, Sb. Then, there exists C = C(C0, T ),
such that

E

(

sup
t∈[0,T ]

Y (t)

)

≤ CE

(

Y (0) +

∫ T

0

Zdt

)

(150)

Proof - Proposition 4. We first establish (146). By applying Itô’s lemma to 1 +
|Xǫ(t)|2, using the cancellation property for B and then applying Itô’s lemma to
(1 + |Xǫ(t)|2)p/2, we discover

d(1 + |Xǫ|2)p/2

= −p(1 + |Xǫ|2)p/2−1〈LXǫ, Xǫ〉 dt

+
ǫ2mp

2
(1 + |Xǫ|2)p/2−1

∑

j,k

σj,k(t, ǫ,Xǫ)2 dt

+ ǫmp(1 + |Xǫ|2)p/2−1
∑

j,k

Xǫ
jσj,k(t, ǫ,Xǫ) dW k

+
ǫ2mp(p− 2)

2
(1 + |Xǫ|2)p/2−2

∑

k





∑

j

Xǫ
jσj,k(t, ǫ,Xǫ)





2

dt.

(151)

Given the assumptions on L the first term on the right hand side of (151) is non-
positive for all t > 0. Fix arbitrary 0 ≤ Sa < Sb ≤ T . Integrate (151) between Sa

and t and take a supremum over [Sa, Sb]. After taking an expected value we have

E

(

sup
t∈[Sa,Sb]

(1 + |Xǫ|2)p/2

)

≤E(1 + |Xǫ(Sa)|2)p/2

+ C(p)E

∫ Sb

Sa

(1 + |Xǫ|2)p/2−1
∑

j,k

σj,k(s, ǫ,Xǫ)2 ds

+ C(p)E

∫ Sb

Sa

(1 + |Xǫ|2)p/2−2
∑

k





∑

j

Xǫ
jσj,k(s, ǫ,Xǫ)





2

ds

+ C(p)E sup
t∈[Sa,Sb]

∣

∣

∣

∣

∣

∣

∑

j,k

∫ t

Sa

(1 + |Xǫ|2)p/2−1Xǫ
jσj,k(t, ǫ,Xǫ) dW k

∣

∣

∣

∣

∣

∣

.

(152)

By applying the Cauchy-Schwartz inequality and using the Lipschitz assumption,
we can write

(1 + |Xǫ|2)p/2−2
∑

k





∑

j

Xǫ
jσj,k(s, ǫ,Xǫ)





2

≤(1 + |Xǫ|2)p/2−2|Xǫ|2
∑

j,k

σj,k(s, ǫ,Xǫ)2

≤C(1 + |Xǫ|2)p/2.

(153)
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We estimate the stochastic integral terms using the Burkholder-Davis-Gundy in-
equality (see [13])

E sup
t∈[Sa,Sb]

∣

∣

∣

∣

∣

∣

∑

j,k

∫ t

Sa

(1 + |Xǫ|2)p/2−1Xǫ
jσj,k(t, ǫ,Xǫ) dW k

∣

∣

∣

∣

∣

∣

≤ CE







∫ Sb

Sa

(1 + |Xǫ|2)p−2
∑

k





∑

j

Xǫ
jσj,k(t, ǫ,Xǫ)





2

dt







1/2

≤ CE



 sup
t∈[Sa,Sb]

(1 + |Xǫ|2)p/4

(

∫ Sb

Sa

(1 + |Xǫ|2)p/2 dt

)1/2




≤ 1

2
E

(

sup
t∈[Sa,Sb]

(1 + |Xǫ|2)p/2

)

+ CE

(

∫ Sb

Sa

(1 + |Xǫ|2)p/2 dt

)

.

(154)

Using the observations in (153) and (154) with (152) and rearranging, we have

E

(

sup
t∈[Sa,Sb]

(1 + |Xǫ|2)p/2

)

≤CE

(

(1 + |Xǫ(Sa)|2)p/2 +

∫ Sb

Sa

(1 + |Xǫ|2)p/2 ds

)

.

(155)

Note that the constant C = C(K, p) above is independent of Sa, Sb. Applying
Lemma 7.1 one infers

E sup
t∈[0,T ]

(1 + |Xǫ(t)|2)p/2 ≤ C(K, p, T )E(1 + |Xǫ
0|2)p/2. (156)

Given the assumptions on the initial data (145), we have the uniform bound

E(1 + |Xǫ
0|2)p/2 ≤ CE(1 + |x0|p) (157)

which implies (146).
To establish (147), we again apply Itô’s lemma to determine an evolution equation

for |Xǫ − x|p

d|Xǫ − x|p = − p|Xǫ − x|p−2〈L(Xǫ − x), Xǫ − x〉 dt
− p|Xǫ − x|p−2〈B(Xǫ, Xǫ) −B(x, x), Xǫ − x〉 dt

+
ǫ2mp

2
|Xǫ − x|p−2

∑

j,k

σj,k(t, ǫ,Xǫ)2 dt

+ ǫmp|Xǫ − x|p−2
∑

j,k

(Xǫ
j − xj)σj,k(t, ǫ,Xǫ)dW k

+
ǫ2mp(p− 2)

2
|Xǫ − x|p−4

∑

k

(
∑

j

(Xǫ
j − xj)σj,k(t, ǫ,Xǫ))2 dt.

(158)

Using the cancellation assumption (142), one infers

〈B(Xǫ, Xǫ) −B(x, x), Xǫ − x〉 = 〈B(Xǫ − x, x), Xǫ − x〉. (159)
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Assumption (142) also allows us to determine an a priori bound for x, the solution
of (141). Taking inner products we have

d

dt
|x|2 = −2〈Lx, x〉 ≤ 0. (160)

So, for t ∈ [0, T ]

|x(t)| ≤ |x0|. (161)

Now fix 0 ≤ Sa ≤ Sb ≤ T . Integrate (158) from Sa to t, take a supremum over this
time interval and then an expected value

E

(

sup
t∈[Sa,Sb]

|Xǫ − x|p
)

≤E|Xǫ(Sa) − x(Sa)|p + C(p,B, |x0|)E
∫ Sb

Sa

|Xǫ − x|p dt

+ ǫ2mC(K, p)E

∫ Sb

Sa

|Xǫ − x|p−2(1 + |Xǫ|2) dt

+ ǫmC(p)E



 sup
t∈[Sa,Sb]

∣

∣

∣

∣

∣

∣

∫ t

Sa

|Xǫ − x|p−2
∑

j,k

(Xǫ
j − xj)σj,k(t, ǫ,Xǫ)dW k

∣

∣

∣

∣

∣

∣



 .

(162)

Once again we make use of the Burkholder-Davis-Gundy inequality

ǫmCE sup
t∈[Sa,Sb]

∣

∣

∣

∣

∣

∣

∑

j,k

∫ t

Sa

|Xǫ − x|p−2(Xǫ
j − xj)σj,k(t, ǫ,Xǫ)dW k

∣

∣

∣

∣

∣

∣

≤ǫmCE







∫ Sb

Sa

|Xǫ − x|2(p−2)
∑

k





∑

j

(Xǫ
j − xj)σj,k(t, ǫ,Xǫ)





2

dt







1/2

≤ǫmC(K)E

(

∫ Sb

Sa

|Xǫ − x|2(p−1)(1 + |Xǫ|2)dt
)1/2

≤1

2
E

(

sup
t∈[Sa,Sb]

|Xǫ − x|p
)

+ ǫmpC(K, p)

(

∫ Sb

Sa

(1 + |Xǫ|2dt
)p/2

≤1

2
E

(

sup
t∈[Sa,Sb]

|Xǫ − x|p
)

+ ǫmpC(K, p, T )

∫ Sb

Sa

(1 + |Xǫ|2)p/2dt.

(163)

Using this estimate and (146), we have

E

(

sup
t∈[Sa,Sb]

|Xǫ − x|p
)

≤2E|Xǫ(Sa) − x(Sa)|p + C

∫ Sb

Sa

|Xǫ − x|p dt

+ ǫmpC

∫ Sb

Sa

(1 + |Xǫ|2)p/2 dt.

(164)
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Noting, once again that the constants C(K, p, T, |x0|) above are independent of Sa.
We apply Lemma 7.1. together with (145) and (146), we finally deduce

E

(

sup
t∈[0,T ]

|Xǫ − x|p
)

≤ CE|Xǫ
0 − x0|p + ǫmpC

∫ T

0

(1 + |Xǫ|2)p/2 ≤ ǫmpC. (165)

As a corollary of Proposition 4, we infer convergence of Xǫ to x in probability
along with a rate of convergence.

Proposition 5 (Convergence in Probability). Let T > 0, p ≥ 2, Xǫ
0 ∈ Lp(Ω) and

x0 be a fixed element in Rn. Suppose that

E|Xǫ
0 − x0|p ≤ ǫmpC0. (166)

Then for any γ < m

P

(

sup
t∈[0,T ]

|Xǫ − x| > ǫγ

)

≤ Cǫ(m−γ)p. (167)

Proof. The result follows directly from (147) by applying Markov’s Inequality.
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