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Motivated by ongoing work in the theory of stochastic partial differential
equations we develop direct methods to infer that the Galerkin approx-
imations of certain nonlinear partial differential equations are Cauchy (and
therefore convergent). We develop such a result for the Navier–Stokes
equations in space dimensions two and three, and for the primitive
equations in space dimension two. The analysis requires novel estimates for
the nonlinear portion of these equations and delicate interpolation results
concerning subspaces.
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1. Introduction

Galerkin approximations are commonly used to prove the existence of solutions of
(linear and) nonlinear evolution equations. After constructing such approximations,
one derives a priori estimates for these solutions. These a priori estimates produce
weak convergence results which are sufficient to pass to the limit in the linear case. In
the nonlinear case, one may pass to the limit by applying a classical compactness
criterion [1,2]. In any case by proving that, in certain spaces, the Galerkin
approximations are (sub-sequentially) convergent we implicitly deduce that they are
Cauchy in the corresponding spaces.

In this article, we tackle the following unusual question, namely to prove directly
that the Galerkin solutions of certain nonlinear equations are Cauchy. Of course we
do not avoid the (classical) part of convergence concerning the a priori estimates.
Besides its intrinsic interest, the question that we address is motivated by ongoing
work, [3,4], concerning nonlinear stochastic partial differential equations (SPDEs).
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For such systems, particularly those that are forced by nonlinear white noise driven
terms, the a priori estimates may not be carried out ‘pathwise’, that is ! by !, in the
underlying probability space. The classical compactness methods are therefore
complicated by the addition of stochastic terms and novel approaches are required in
order to pass to the limit. In the aforementioned articles [3,4], Cauchy convergence is
established to overcome this difficulty. On this point the approach is very similar to
the deterministic case. As such we thought it was worthwhile to separate this analysis
which has some intricate elements.

In what follows, and in parallel to the aforementioned articles [3,4], we prove the
Cauchy convergence of the Galerkin approximations for the 2D primitive equations
(PEs) and for the Navier–Stokes equations in space dimensions 2 and 3. The result
that we obtain is local in time for the PEs and 3D Navier–Stokes equations and
global in time for the 2D Navier–Stokes Equations.

The analysis below is organized as follows: in Section 2, we recall the 2D PEs and
their mathematical setting. In Section 3, we establish the Cauchy convergence. Due to
the discretization of the basic equations, stray elements depending on only one of the
orders appear for these estimates. We address the magnitude of these terms by making
use of the generalized Poincaré inequality. The analysis for this point requires both
novel estimates on the nonlinear portion of the PEsH1 (presented in Lemma 2.1), and
the usage of fractional order spaces to avoid difficulties with the boundary. Section 4
addresses this point and makes extensive application of delicate interpolation results
from [5]. Section 5 establishes similar results for the Navier–Stokes equations.

2. Review of the 2D PEs and their mathematical setting

The PEs are widely regarded as a fundamental description of geophysical scale fluid
flow. They provide the analytical core of large general circulation models (GCMs)
that are at the forefront of numerical simulations of the earth’s oceans and
atmosphere (see e.g. [6]). Beyond their significance in geophysics, these systems have
an intricate analytical structure that has led to a large body of work in the
mathematics community. See [7–15] and the recent surveys [16,17].

The two-dimensional version of these equations takes the form:

@tuþ u@xuþ wðuÞ@zu$ !Du$ f vþ @xps $ "Tg#0

Z 0

z
@xTd !z

¼ Fu þ $uðv,T Þ _W1, ð2:1aÞ

@tvþ u@xvþ wðuÞ@zv$ !Dvþ f u ¼ Fv þ $vðv,T Þ _W2, ð2:1bÞ

wðuÞ ¼
Z 0

z
@xu d !z,

Z 0

$h
u dz ¼ 0, ð2:1cÞ

@tTþ u@xTþ wðuÞ@zT$ %DT ¼ FT þ $T ðv,T Þ _W3: ð2:1dÞ

Here (v,w)¼ (u, v,w), T denote, respectively, the flow field and the temperature of the
fluid being modelled, v is the horizontal velocity. The coefficients !, % account for the
molecular viscosity and the rate of heat diffusion, g is the gravitational constant and #0
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represents the mean density of the fluid; f, which is a function of the earth’s rotation
and the local latitude is taken constant here for simplicity. The terms Fu, Fv and FT

correspond to external sources of horizontal momentum and heat. They vanish in the
ocean (and Fu, Fv in the atmosphere); they are added for mathematical generality or to
consider nonhomogeneous boundary conditions (which we do not do here).

We consider the evolution of (2.1) over a rectangular domain M¼ (0,L)"
(#h, 0) and label the parts of the boundary !i¼ (0,L)" {0}, !b¼ (0,L)" {#h} and
!l¼ {0,L}" (#h, 0). We posit the physically realistic boundary conditions

@zvþ !vv ¼ 0, w ¼ 0, @zTþ !TT ¼ 0, on !i, ð2:2aÞ

v ¼ 0, @xT ¼ 0, on !l, ð2:2bÞ

v ¼ 0, w ¼ 0, @zT ¼ 0, on !b: ð2:2cÞ

The equations and boundary conditions (2.1), (2.2) are supplemented by initial
conditions for u, v and T, that is

u ¼ u0, v ¼ v0, T ¼ T0, at t ¼ 0: ð2:3Þ

For a detailed treatment of the physical derivation and significance of (2.1), (2.2)
see [18,19].

We next review the mathematical setting for (2.1)–(2.3). For the most part our
presentation and notations follow the recent survey [16], to which we refer the reader
for a more detailed treatment.

The main function spaces used are defined as follows. Take:

H :¼ U ¼ ðu, v,T Þ2L2ðMÞ3 :
Z 0

#h
u dz ¼ 0

! "
:

We equip H with the inner product1

ðU,U ]Þ :¼
Z

M
v ' v]dMþ

Z

M
TT ]dM, U ¼ ðv,T Þ, U ] ¼ ðv],T ]Þ:

Here and below we shall make use of the vertical averaging operator P" ¼ 1
h

R 0
#h "ð "zÞd "z

and its orthogonal complement Q"¼"#P". Note that the projection operator # :
L2(M)3!H may be explicitly written according to U ! (Qu, v,T ). We also define

V :¼ U ¼ ðu, v,T Þ2H1ðMÞ3 :
Z 0

#h
u dz ¼ 0, v ¼ 0 on !l [ !b

! "
:

Here we take the inner product ((', '))¼ #((', '))1þ$((', '))2 where for given U¼ (v,T ),
U ]¼ (v ],T ])2V,

ððU,U ]ÞÞ1 :¼
Z

M
@xv ' @xv] þ @zv ' @zv] dMþ !v

Z

!i

v ' v] dx,

ððU,U ]ÞÞ2 :¼
Z

M
@xT @xT

] þ @zT @zT
] dMþ !T

Z

!i

TT ] dx:
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Note that under these definitions a Poincaré type inequality jUj!CkUk holds for all
U2H1(M)3"V. Moreover the norms k # kH1, k # k may be seen to be equivalent over
all of H1(M)3.

Even if U is very regular, several terms in the abstract formulation of (2.1) do not
belong to V (see (2.11), (2.14), (2.15) below). As such, we shall also make use of the
additional auxiliary spaces:

~V :¼ U ¼ ðu, v,T Þ2H1ðMÞ3 :
Z 0

'h
u dz ¼ 0, v ¼ 0 on !l

! "
,

Z :¼ U ¼ ðu, v,T Þ2H1ðMÞ3 : v ¼ 0 on !l

# $
:

As for V we endow both spaces with the norm k # k. One may verify that " also maps
Z onto ~V and is continuous on H1(M)3.

Some intermediate order space are employed in the analysis below. Following the
notation of [5, Chapter 1, Section 2.1] we define, for s2 [0, 1],

~Vs ¼ ½ ~V,H )1's, Vs ¼ ½V,H )1's: ð2:4Þ
Proposition 2.1 establishes the result important for our analysis that Vs ¼ ~Vs for
s2 (0, 1/2).

Finally we take V(2)¼H 2(M)3\V and equip this space with the classical H 2(M)
norm which we denote by j # j(2).

The linear second-order terms in the equation are captured in the Stokes-type
operator A which is understood as a bounded operator from V to V 0 via
hAU,U ]i¼ ((U,U ])). The additional terms in the variational formulation of this
portion of the equation term capture the Robin boundary condition (2.2a). They
may be formally derived by multiplying '!Du, '!Dv, '"DT in (2.1a), (2.1b), (2.1d)
by test functions u ], v ], T ], integrating over M and integrating by parts. We shall
make use of the subspace D(A)*V(2) given by

DðAÞ ¼ fU ¼ ðv,T Þ2Vð2Þ : @zvþ #vv ¼ 0, @zTþ #TT ¼ 0 on !i,

@xT ¼ 0 on !l, @zT ¼ 0 on !b, g:
On this space we may extend A to an unbounded operator by defining

AU ¼
'!QDu
'!Dv
'"DT

0

B@

1

CA, U2DðAÞ: ð2:5Þ

Since A is self adjoint, with a compact inverse A'1 :H!D(A) we may apply the
standard theory of compact, symmetric operators to guarantee the existence of an
orthonormal basis {#k}k,0 for H of eigenfunctions of A with the associated
eigenvalues {$k}k,0 forming an unbounded, increasing sequence. Note that by the
regularity results in [20] or [21] we have #k2D(A)*V(2). Define

Hn ¼ spanf#1, . . . ,#ng:
Take Pn and Qn¼ I'Pn to be the projections from H onto Hn and its orthogonal
complement, respectively. For all m4n we let P n

m ¼ Pm ' Pn.
We shall also make use of the fractional powers of A. Given #40, take

DðA#Þ ¼ U2H :
X

k

$2#k jUkj2 51
( )

, ð2:6Þ
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where Uk¼ (U,!k). On this set we may define A! according to

A!U ¼
X

k

"!kUk!k, for U ¼
X

k

Uk!k: ð2:7Þ

Accordingly we equip V!¼D(A!/2) with the norm

jUj! ¼ jA!=2Uj ¼
X

k

"!kjUkj2
 !1=2

: ð2:8Þ

It is direct to verify that D(A1/2)¼V and that the associated norms k $ k and j $ j1 are
identical. Moreover, by exploiting the regularity theory developed in [20], we may
also infer the equivalence of j $ j(2) and j $ j2 on D(A). Classically, we have the
generalized (and reverse) Poincaré estimates

jPnUj2!2 % "!2&!1
n jPnUj2!1 , jQnUj2!1 %

1

"!2&!1
n

jQnUj2!2 , ð2:9Þ

for any !15!2.
The following result, whose proof we postpone to Section 4, is used in Theorem 3.1.

PROPOSITION 2.1 Let !2 (0, 1/2). Then V!¼ ~V! ¼DðA!=2Þ and therefore the estimate

jUj! % jUj1&!kUk! ð2:10Þ

holds for all U2 ~V

Note that in some previous works, the second component of the pressure
(cf [16, Section 2]) is included in the definition of the principal linear operator A.
Since this breaks the symmetry of A we relegate such terms to a separate, lower order
operator Ap :V!H defined by

ApU ¼
&Q

R 0
z @xT d "z
0
0

0

@

1

A: ð2:11Þ

If U2D(A), ApU2 ~V and we have the estimates

jApUj % ckUk, kApUk % cjUjð2Þ: ð2:12Þ

We next capture the nonlinear portion of (2.1). In accordance with (2.1c) and
(2.2) (w¼ 0 on #i) we define the diagnostic function:

wðUÞ ¼ wðuÞ ¼
Z 0

z
@xu d "z, U ¼ ðu, v,T Þ2V: ð2:13Þ

For U¼ (v,T )2V, U ]¼ (v ],T ])2V(2) we take B(U,U ])¼B1(U,U ])þB2(U,U ])
where

B1ðU,U ]Þ :¼
Qðu@xu ]Þ
u@xv ]

u@xT ]

0

B@

1

CA ¼
B1
1ðu, u ]Þ

B2
1ðu, v ]Þ

B3
1ðu,T ]Þ

0

B@

1

CA ð2:14Þ
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and

B2ðU,U ]Þ :¼
QðwðuÞ@zu ]Þ
wðuÞ@zv ]

wðuÞ@zT ]

0

B@

1

CA ¼
B1
2ðu, u ]Þ

B2
2ðu, v ]Þ

B3
2ðu,T ]Þ

0

B@

1

CA: ð2:15Þ

The following lemma summarizes some properties of B needed in the sequel.2

LEMMA 2.1 B is well-defined as a bilinear continuous map from V$V(2) into H and:

(i) for any U2V, U ]2V(2) and U[2H

jhBðU,U ]Þ,U [ij % ckUkkU ]k1=2jU ]j1=2ð2Þ jU
[j: ð2:16Þ

In particular, for U2V(2),

jBðUÞj2 % kUk3jUjð2Þ; ð2:17Þ

(ii) for U2V(2), BðUÞ2 ~V & ~V1=4 ¼ V1=4 ¼ DðA1=8Þ and satisfies the estimate

kBðUÞk2 %ckUkjUj3ð2Þ: ð2:18Þ

Proof The estimate (2.16) may be established with the now standard anisotropic
type techniques. See [21] or [14]. To the best of our knowledge, the H1 estimate for B
given in (ii) is new. To prove it, we observe that, for U¼ (u, v,T )2V(2),
B(U )¼!B(U ) where

BðUÞ ¼
u@xuþ w@zu

u@xvþ w@zv

u@xTþ w@zT

0

B@

1

CA, ð2:19Þ

and ! is the orthogonal projector from L2(M)3 onto H. Note that ! is also
continuous from H1((M))3 into itself (see e.g. [22] for the similar but more involved
result for the Navier-Stokes equations). Hence it suffices, to prove (2.17), to show
that kB(U )k is bounded by the right-hand side of (2.17) for a suitable constant c.

To estimate the L2-norm of the gradient of B(U ) we ought to estimate the
L2-norm of terms like

u@2u, ð@uÞ2, ð@wÞð@uÞ, w@2u, ð2:20Þ

where @¼ @x or @z (i.e. @¼ @/@x or @/@z). The most delicate terms are terms like
(@w)(@u) and w @2u that we estimate using the anisotropic inequalities as in [16,21].
Hence for e.g. (@w)(@u):

j@w@ujL2ðMÞ ¼
Z

M
ð@wÞ2ð@uÞ2 dM

%
Z L

0
j@wj2L1

z
j@uj2L2

z
dx

%
Z L

0
j@wj2L1

z
dx

! "
j@uj2L2

zL
1
x
:

90 N. Glatt-Holtz and R. Temam

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
l
a
t
t
-
H
o
l
t
z
,
 
N
a
t
h
a
n
]
 
A
t
:
 
2
2
:
1
5
 
2
1
 
F
e
b
r
u
a
r
y
 
2
0
1
1



Using the expression (2.13) of w¼w(u), for respectively @¼ @z, @x, we bound the first
term above by j@xujL2(M)j@xzujL2(M) or by hj@xxuj2L2ðMÞ, which in both cases are
dominated by jUj2ð2Þ:

The term j@uj2L2
zL

1
2
is estimated as follows [16,21]:

j@ujL2
zL

1
x
¼ j!jL1

x
$ cj!j1=2L2

x
j@x!j1=2L2

x
, where ! ¼

Z 0

%h
j@uj2 d !z

! "1=2

:

Hence, pointwise,

@x! ¼
1

!

Z 0

%h
@u@x@u d !z ) j@x!j $

Z 0

h
j@x@uj2 d !z

! "1=2

,

and

j@x!jL2
x
$ j@2ujL2ðMÞ:

In the end

j@ujL2
zL

1
1
$ cj@uj1=2L2ðMÞj@

2uj1=2L2ðMÞ $ ckUk1=2jUj1=2ð2Þ ,

and j@w@ujL2(M) is bounded by a term like the right-hand side of (2.17).
The proof is similar for a term like w@2u, and, as we said, the other terms are

easier to handle. g

We capture the Coriolis forcing with the bounded operator E :H!H given by

EU :¼
%Q f v

f u

0

0

B@

1

CA: ð2:21Þ

We observe that E is also continuous from V to ~V and that

jEUj $ f jUj, kEUk $ f kUk: ð2:22Þ

For the external forcing terms Fu, Fv, FT we let:

F ¼
QFu

Fv

FT

0

B@

1

CA:

For Theorem 3.1 below we assume F 2L2
locð½0,1Þ,HÞ and that U0¼ (u0, v0,T )2V.

With the definitions (2.5), (2.11), (2.14), (2.15) and (2.21) we may reformulate (2.1) as
an abstract equation:

dU

dt
þ AUþ ApUþ BðUÞ þ EU ¼ F, Uð0Þ ¼ U0: ð2:23Þ

We finally recall the definition of the Galerkin approximations associated with (2.23).
We say that, U (n)2C([0,1); Hn) is a solution of the Galerkin system of order n if:

dUðnÞ

dt
þ AU ðnÞ þ PnðApU

ðnÞ þ BðU ðnÞÞ þ EU ðnÞÞ ¼ PnF

U ðnÞð0Þ ¼ PnU0: ð2:24Þ
g
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3. Comparison estimates for the Galerkin system

In this section, we establish that the solutions of (2.24) are ‘locally Cauchy’ in strong
type spaces. The result (and proof) may be seen as an alternative to the classical
Aubin compactness theorem [1] although this is not our primary motivation. Note in
this connection that we infer the convergences of the Galerkin approximations
without any estimates on dU (n)/dt.

THEOREM 3.1 Suppose that F2L2
locð½0,1Þ,HÞ, U02V. Then there exists t0$ 4 0

independent of n and depending only on the data, such that, {U (n)}n%1, the solutions of
(2.24), are Cauchy (and hence convergent) in Cð½0, t0$&;V Þ \ L2ð½0, t0$&;DðAÞÞ

Proof By taking the inner product of (2.24) with AU (n) and applying (2.12), (2.16),
(2.22) we classically infer that

d

dt
kU ðnÞk2 þ jAU ðnÞj2 ( c1ð1þ jPnFj2 þ kU ðnÞk6Þ: ð3:1Þ

With kU (n)(0)k¼ kPnU0k( kU0k and jPnF j( jF j, we infer from (3.1) that
1þ kU (n)(t)k2( 2(1þ kU0k2) for an initial period during which

d

dt
kU ðnÞk2 ( c1ðjFj2 þ ð1þ kU ðnÞk2Þ3Þ,

so that

1þ kU ðnÞðtÞk2 ( 1þ kU0k2 þ c1

Z t

0
jFðsÞj2 dsþ 23c1tð1þ kU0k2Þ3,

and thus 1þ kU (n)(t)k2( 2(1þ kU0k2) holds until the time t0$ where

c1

Z t0$

0
jFðsÞj2 dsþ 23c1t

0
$ð1þ kU0k2Þ3 ¼ 1þ kU0k2: ð3:2Þ

Returning to (3.1) we obtain the classical a priori estimates which we write in
the form:

sup
n

sup
t2 ½0,t0$&

kU ðnÞk2 þ
Z t0$

0
jAU ðnÞj2 dt

 !

51: ð3:3Þ

Fix m4n and denote R(m,n)¼U (m)*U (n). Subtracting the equations for U (m) and
U (n) and taking an inner product with AR(m,n) gives

1

2

d

dt
kRðm, nÞk2 þ jAR ðm, nÞj2

¼ *hPmBðU ðmÞÞ * PnBðU ðnÞÞ,AR ðm, nÞi
* hPmApU

ðmÞ * PnApU
ðnÞ,AR ðm, nÞi

* hPmEU
ðmÞ * PnEU

ðnÞ,AR ðm, nÞi
þ hP n

mF,AR
ðm, nÞi: ð3:4Þ

We consider first the nonlinear term:

hPmBðU ðmÞÞ * PnBðU ðnÞÞ,AR ðm, nÞi
¼ hBðRðm, nÞ,U ðmÞÞ þ BðU ðnÞ,Rðm, nÞÞ þ P n

mBðU
ðnÞÞ,AR ðm, nÞi

:¼ J1 þ J2 þ J3: ð3:5Þ
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For J1, (2.16) yields the estimate

jJ1j ! ckRðm, nÞkkU ðmÞk1=2jU ðmÞj1=2ð2Þ jAR
ðm, nÞj

! 1

10
jARðm, nÞj2 þ cjAU ðmÞj2kRðm, nÞk2: ð3:6Þ

On the other hand, (2.16) also implies

jJ2j ! CkU ðnÞkkRðm, nÞk1=2jRðm, nÞj1=2ð2Þ jAR
ðm, nÞj

! 1

10
jARðm, nÞj2 þ ckU ðnÞk4kRðm, nÞk2: ð3:7Þ

Finally, by applying (2.9), (2.10) with !¼ 1/4 and then making use of (2.17), (2.18)
we estimate the third term

jJ3j !
1

10
jARðm, nÞj2 þ cjP n

mBðU
ðnÞÞj2

! 1

10
jARðm, nÞj2 þ c

"1=4n

jBðU ðnÞÞj21=4

! 1

10
jARðm, nÞj2 þ c

"1=4n

jBðU ðnÞÞj3=2kBðU ðnÞÞk1=2

! 1

10
jARðm, nÞj2 þ c

"1=4n

jBðU ðnÞÞjkBðU ðnÞÞk

! 1

10
jARðm, nÞj2 þ c

"1=4n

ðkU ðnÞk3=2jAU ðnÞj1=2ÞðkU ðnÞk1=2jAU ðnÞj3=2Þ

! 1

10
jARðm, nÞj2 þ c

"1=4n

kU ðnÞk2jAU ðnÞj2: ð3:8Þ

At this juncture we underline that the second inequality is justified since
BðU ðnÞÞ2 ~V1=4¼V1=4¼DðA1=8Þ (see Proposition 2.1).

For the terms involving the Coriolis operator E, we make a second application of
(2.10) with !¼ 1/4 and then apply (2.22) to observe:

hPmEU
ðmÞ & PnEU

ðnÞ,ARðm, nÞij

! jhERðm, nÞ,ARðm, nÞijþ jhPn
mEU

ðnÞ,ARðm, nÞij

! cðjRðm, nÞjjARðm, nÞjþ jQnEU
ðnÞjjARm, njÞ

! 1

10
jARðm, nÞj2 þ cðkRðm, nÞjj2 þ jQnEU

ðnÞj2Þ

! 1

10
jARðm, nÞj2 þ cðkRðm, nÞk2 þ 1

"1=4n

jEUðnÞj21=4Þ

! 1

10
jARðm, nÞj2 þ cðkRðm, nÞk2 þ 1

"1=4n

jEUj3=2kEUðnÞk1=2Þ

! 1

10
jARðm, nÞj2 þ cðkRðm, nÞk2 þ 1

"ð1=4Þn

kUðnÞk2Þ ð3:9Þ
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Along the same lines, but more involved, the term involving Ap is estimated with
(2.10), (2.12)

jhPmApU
ðmÞ # PnApU

ðnÞ, ARðm, nÞij

$ jhApR
ðm, nÞ,ARðm, nÞijþ jhðPm # PnÞApU

ðnÞ,ARðm, nÞij

$ 1

10
jARðm, nÞj2 þ ckRðm, nÞk2 þ jhA1=8ApU

ðnÞ, ðPm # PnÞA7=8Rðm, nÞij

$ 1

10
jARðm, nÞj2 þ ckRðm, nÞk2 þ jApU

ðnÞj1=4jARðm, nÞj

$ 1

10
jARðm, nÞj2 þ ckRðm, nÞk2 þ kApU

ðnÞk 1

!1=8n

jARðm, nÞjÞ

$ 1

10
jARðm, nÞj2 þ ckRðm, nÞk2 þ 1

!1=8n

jUðnÞjð2ÞjARðm, nÞj

$ 2

10
jARðm, nÞjARðm, nÞj2 þ c kRðm, nÞk2 þ 1

!1=4n

jAUðnÞj2
! "

: ð3:10Þ

Once again the second inequalities in both (3.9), (3.10) are justified since EU (n),
ApU

(n)2D(A1/4). Summing up the estimates above we conclude:

d

dt
kRðm, nÞk2 þ jAR ðm, nÞj2

$ cð1þ jAU ðmÞj2 þ kU ðnÞk4ÞkRðm, nÞk2

þ c

!1=4n

ð1þ kU ðnÞk2Þð1þ jAU ðnÞj2Þ þ cjP n
mFj

2

:¼ "m,nkRðm, nÞk2 þ Gm,n: ð3:11Þ

By applying (3.3) we observe that

sup
m,n

Z t0'

0
"m,n ds51, ð3:12Þ

and

lim
m,n!1

Z t0'

0
Gm,n ds ¼ 0: ð3:13Þ

We therefore drop the jAR(m,n)j2 term in (3.11) and with the Gronwall lemma,
we conclude that for every t $ t0',

kRðm, nÞðtÞk2 $exp
Z t

0
"m,n ds

! "
kP n

mU0k2 þ
Z t

0
Gm,n ds

! "

$c kP n
mU0k2 þ

Z t0'

0
Gm,n ds

! "
: ð3:14Þ
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This proves that U (n) is Cauchy in Cð½0, t0#$;V Þ. Returning to (3.11) and integrating
from 0 to t0# yields the estimate

Z t0#

0
jARðm, nÞj2 & kP n

mU0k2 þ sup
t2 ½0,t0#$

kRm,nk2
 !Z t0#

0
!m,n dsþ

Z t0#

0
Gm,n ds: ð3:15Þ

We conclude that U (n) is Cauchy in L2ð½0, t0#$;DðAÞÞ. The proof is complete. g

4. Interpolation results

In this section we prove Proposition 2.1. The work consists in showing the
equivalence of the spaces V2", ~V2", D(A") for "2 [0, 1/4]. This follows as a direct
consequence of two technical results, Propositions 4.1 and 4.2 which we establish
below. The inequality (2.10) is merely a restatement of the classical interpolation
inequality [5, Proposition 2.3].

The first result is the following:

PROPOSITION 4.1 Let

Z :¼ U ¼ ðu, v,T Þ2H1ðMÞ3 : v ¼ 0 on !l

! "
,

Zb :¼ U ¼ ðu, v,T Þ2H1ðMÞ3 : v ¼ 0 on !l [ !b

! "
, ð4:1Þ

and define, for s2 [0, 1],

Hs
0ðMÞ3 :¼ ½H1

0ðMÞ3,L2ðMÞ3$1)s,

Zs
b :¼ ½Zb,L

2ðMÞ3$1)s,

Zs :¼ ½Z,L2ðMÞ3$1)s,

HsðMÞ3 :¼ ½H1ðMÞ3,L2ðMÞ3$1)s:

Then,

Hs
0ðMÞ3 * Zs

b * Zs * HsðMÞ3, ð4:2Þ

with the spaces being equipped with equivalent norms. Moreover, for all s2 (0, 1/2),

Hs
0ðMÞ3 ¼ Zs

b ¼ Zs ¼ HsðMÞ3: ð4:3Þ

Proof The proof draws on classical results in [5]. If @M were smooth, the main step,
to establish (4.4), would follow precisely from [5, Theorem 11.1]. Here, due to its four
corners, M is not smooth and further analysis is required.

The inclusions (4.2) are a direct consequence of the definitions. Let D(M) be the
collection of all C1 functions with compact support in M. Since,

DðMÞ+H1
0ðMÞ+Hs

0ðMÞ+HsðMÞ,

the second point (4.3) follows if we can show that

DðMÞ is dense in HsðMÞ: ð4:4Þ
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To this end fix u2Hs(M). We consider a particular covering of M by O0¼M,
and by balls Oj, j" 1, centred on the boundary @M. We first choose four balls O1,
O2, O3 and O4 centred at the corners, each with radius small enough so as to avoid
touching the opposite sides. Then, if necessary, we choose further balls all of which
avoid the corners to complete the covering. Let 1¼

P
j !j be a partition of unity

subordinated to {Oj}j. We need to show that the elements !1u, !2u, !3u, !4u, those
corresponding to the corners, may be approximated by functions in D(M). Any
remaining elements !ju are treated exactly as in [5].

Take g!1u to be the extension of !1u by zero outside of M. As a consequence of
Lemma 4.1 established below, we see that g!1u is in Hs(R2). Consider now a smooth
mollifier function " with support included in the ball B :¼B((#1, #1), 1/4) centred at
(#1, #1) with radius 1/4 (see e.g. [23] for basic properties). As #! 0 we have the "# $
v! v in H1(R2) (resp. L2(R2)), for every v2H1(R2), (resp. L2(R2)). Hence, by
interpolation, "# $ v converges to v in Hs(R2), for every v2Hs(R2). Moreover we
have that supp("# $ v) is included in supp("#)þ supp(v) [24]. Note that "# is supported
by B#¼B((##,##), #/4). In particular, we have "# $ g!1u converges to g!1u in Hs(Rd)

and that (for all sufficiently small values of #) "# $ g!1u is a family of smooth

functions, compactly supported in M. We conclude that "# $ g!1ujM 2DðMÞ and

converges to g!1ujM¼!1u in Hs(M).
With similar arguments we may treat the remaining corner elements !2u, !3u, !4u.

The proof is therefore complete. g

The proof of Proposition 4.1 required the following Lemma. An analogous result
for the case of smooth domains was established in [5, Theorem 11.4].

LEMMA 4.1 Suppose 0( s51/2. The extension ~v of any element v2Hs(M) to be zero
outside M defines a linear continuous operator mapping from Hs(M) into Hs(R2).

Proof We proceed by making some judicious applications of certain extension and
restriction operators. Given v2H1(M) we define Ev on (#L, 0)) (#h, 0) by setting

Euðx, zÞ ¼ uð#x, zÞ, # L5 x5 0, # h5 z5 0:

By similar reflections we are able to define Ev on the strip Rx) (#h, 0). Let N 1 be
any open bounded set with smooth boundary so that M*N 1*Rx) (#h, 0). It is
clear that E is linear continuous from H1(M) to H1(N 1) and from L2(M) to L2(N 1).
Hence, by interpolation, E is continuous from Hs(M) to Hs(N 1). Next for
v2Hs(N 1) define S1v to be the extension of v by zero outside of N 1. By [5, Theorem
11.4], S1 continuously maps Hs(N 1) into Hs(Rx)Rz). Now take N 2 to be open
bounded with smooth boundary so that M*N 2* [0,L])Rz. We define R to be the
restriction operator to N 2. Observe, again by interpolation, that R is a continuous
map from Hs(Rx)Rz) into Hs(N 2). Finally, for v2Hs(N 2) we define S2v to be
extension of v by zero outside of N 2. Again by [5, Theorem 11.4], S2 is linear
continuous from Hs(N 2) into Hs(Rx)Rz). Summarizing we see that S2RS1E is
linear and continuous from Hs(M) into Hs(R2). With the observation that
S2RS1Ev ¼ ~v we conclude the desired result. g

We come to the second proposition which is an application of [5, Theorem 14.3].
We note that this result relies on holomorphic interpolation which, for our context,
gives the same spaces as Hilbert interpolation [5, Theorem 14.1, Remark 14.2].
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PROPOSITION 4.2 For all s2 [0, 1],

Vs ¼ Zs
b \H, ~Vs ¼ Zs \H: ð4:5Þ

Remark 4.1 We may endow both Z and Zb with the k $ k norm defined in Section 2.
As noted above ! is continuous on H1ðMÞ3 % Z,Zb,H1

0ðMÞ. This observation is
used in the proof of Lemma 4.2.

Proof In this proof we follow closely the notations used in [5]. We begin by
addressing Vs. We define

X ¼ Zb, Y ¼ " ¼ L2ðMÞ3, ð4:6Þ

and observe that these spaces satisfy (14.18) of [5]. We take @ :¼ I&!, recalling that
! is the projection operator from L2(M) onto H (see Section 2). Let

X ¼ f0g ¼ Y, # ¼ L2ðMÞd:

Trivially, Y,X ' #, are each Banach and @2L(",#) which are the requirements of
(14.19), (14.20) in [5]. Following the notations set in (14.21), (14.22) of [5] we
observe that

ðXÞ@,X ¼ fU2Zb : @U ¼ 0g ¼ fU2Zb : !U ¼ Ug ¼ Zb \H ¼ V, ð4:7Þ

and

ðYÞ@,Y ¼ fU2L2ðMÞ3 : !U ¼ Ug ¼ H: ð4:8Þ

It remains to address (14.23), the remaining condition necessary to apply
[5, Theorem 14.3]. We take

~X :¼ @Zb
~Y :¼ @L2ðMÞd ¼ H? ð4:9Þ

and observe that each space is Banach. This is clear for ~Y and for the space ~X we
make use of the fact that @ is a projection operator, i.e. that @2U¼ @U over all
U2L2(M)3. With this in mind, suppose that {Un}n(0 is a convergent sequence in @Zb

and denote the limit by U. Clearly there must exist a sequence fU ]
ngn(0 in Zb such

that @U ]
n ! U (with the convergence understood in the topology defined by k $ k).

Since @¼ I&! is continuous onH1(M)3, we infer that @2U ]
n ! @U. Thus, since @ is a

projection this in turn implies @U ]
n ! @U so that @U¼U. We thus infer that @Zb is

equal to its closure and hence is Banach. Since @ is continuous both in L2(M)3 and
H1(M)3 it follows directly that @2LðX, ~XÞ \ LðY, ~YÞ. This is the requirement of
(14.23), (ii). For (14.23), (iii) we take G :¼ @ and r :¼ 0. With these definitions one may
see by inspection that the identity @G!¼!þ r!, holds for every !2 ~Xþ ~Y.

Gathering the above observations we now infer from Theorem 14.3 that

Vs ¼ ½V,H +1&s ¼ ½ðXÞ@,X, ðYÞ@,X+1&s

¼ ð½X,Y+1&sÞ@,½X,Y+1&s
¼ ð½Zb,L

2ðMÞ3+1&sÞ@,X ¼ ðZs
bÞ@,X

¼ fU2Zs
b : !U¼Ug¼Zs

b \H: ð4:10Þ

To address ~Vs the proof follows exactly as above by replacing Z by Zb in (4.6),
(4.7), (4.9), (4.10) and by replacing ~V by V in (4.7), (4.10). g
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5. Cauchy convergence for the Navier-Stokes equations

We finally consider the Navier-Stokes equations in space dimension d¼ 2, 3, on a
bounded domain M:

@tUþ ðU $ rÞU& !DUþ rp ¼ F, ð5:1aÞ

r $U ¼ 0, ð5:1bÞ

Uð0Þ ¼ U0, ð5:1cÞ

UjM ¼ 0: ð5:1dÞ

The system (5.1) describes the flow of a viscous incompressible fluid. Here
U¼ (u1, . . . , ud), p and ! represent the velocity field, the pressure and the coefficient
of kinematic viscosity, respectively. We assume that M has a smooth boundary @M.

We begin by recalling the abstract setting for (5.1). See e.g. [22] for a detailed
treatment. Let H :¼ {U2L2(M)d : r $U¼ 0, U $ n¼ 0}, where n is the outer pointing
normal to @M; H is endowed as a Hilbert space with the L2 inner product and norm.
The Leray–Hopf projector, PH, is defined as the orthogonal projection of L2(M)d

onto H. Also define V :¼ fU2H1
0ðMÞd : r $U ¼ 0g, with the inner product

((U,U ]))¼
R
M rU $rU ] dM. Due to the Dirichlet boundary condition, (5.1d), the

Poincaré inequality jUj' ckUk holds for U2V justifying this defintion.
The linear portion of (5.1) is captured in the Stokes operator A¼&PH D, which is

an unbounded operator from H to H with the domain D(A)¼H 2(M)\V. As above,
one can prove the existence of an orthonormal basis {!k}k(0 for H of eigenfunctions
of A with the associated eigenvalues {"k}k(0 forming an unbounded increasing
sequence. Define Hn¼ span{!1, . . . ,!n} and take Pn to be the projection from H
onto this space. We let Qn :¼ I&Pn and Pm

n :¼ Pm & Pn for every mn.
As above (cf (2.6), (2.7), (2.8)) we may define the fractional powers A#. We

denote the domains of these operators by D(A#) and associate norms j $ j2#¼ jA# $ j.
With these definitions and notations the generalized direct and inverse Poincaré
estimates hold as in (2.9). Also in parallel to the presentation above we let
~V ¼ H \H1ðMÞd and define the intermediate spaces ~Vs ¼ ½ ~V,H *1&s, Vs¼ [V,H]1&s.
As previously in Lemma 2.1 we see that

V2# ¼ ~V2# ¼ DðA#Þ for all #2 ð0, 1=4Þ ð5:2Þ

and that

jUj# ' jUj1&#kUk#H1ðMÞ whenever U2 ~V: ð5:3Þ

Indeed, due to [5, Theorem 11.1] we have that

Hs
0ðMÞd ¼ HsðMÞd

for all s2 [0, 1/2]. As such (5.2) and (5.3) follow directly once we establish that, for
s2 (0, 1)

~Vs ¼ HsðMÞ \H, Vs ¼ Hs
0ðMÞ \H: ð5:4Þ
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Perusing the proof of Lemma 4.2 we see that (5.4) is established in exactly the same
manner modulo with some minor notational changes.

The nonlinear portion of (5.1) is given by BðU,U ]Þ :¼ PHððU $ rÞU ]Þ ¼
PHð

Pd
j¼1 uj@jU

]Þ, which is defined for U¼ (u1, . . . , ud)2V and U ]2D(A). We use
the following properties of B.

LEMMA 5.1 Suppose d¼ 2 or 3.

(i) B is bilinear and continuous from V%D(A) to H. If U2V, U ]2D(A), and
U[2H, then

ðBðU,U ]Þ,U [Þ
!! !! & c jUj1=2kUk1=2kU ]k1=2jAU ]j1=2jU [j in d ¼ 2,

kUkkU ]k1=2jAU ]j1=2jU [j in d ¼ 3:

"
ð5:5Þ

(ii) If U2D(A), then BðUÞ2 ~V, and for d¼ 2, 3 we have,

kBðUÞk2H1ðMÞ & ckUkjAUj3 þ jUj1=2jAUj7=2, ð5:6Þ

and, for every s2 (0, 1/2),

jBðUÞj2~Vs
& jBðUÞj2ð1(sÞkBðUÞk2s

H1ðMÞd

& cðkUk3(2sjAUj1þ2s þ jUjs=2kUk3(3sjAUj1þð5=2ÞsÞ: ð5:7Þ

Remark 5.1 It is incorrectly stated in [4] Lemma 2.2 (iii) that B(U )2V when
u2D(A). Indeed B(U )¼ (U $r)U(rq where q¼ q(U ) is the unique element in
H1(M) such that (U $r)U(rq2H. Hence rq and thus B(U ) do not necessarily
vanish on @M, so that B(U ) is not necessarily in V. This oversight inval-
idates the estimate (3.17) upon which (3.18) and thus the conclusion of [4,
Proposition 3.1(i)] rely.

Fortunately the estimate in [4, Lemma 2.2] can be replaced by (5.6) given here.
Indeed the proof of [4, Lemma 2.2] gives valid estimates similar to (5.6) for (U $r)U
in H1(M)d. We know moreover that the Leray–Hopf projection of L2(M)d onto H is
continuous in H1(M)d [22]. We may thus infer that B(U ) is also in H1(M)d and
satisfies the same estimates, proving (5.6). Using (5.2) and (5.3), (5.7) follows
immediately from (5.6)

In Theorem 5.1 we establish (5.12) which may be taken as a replacement of (3.17)
in [4, Proposition 3.1(i)]. With minor changes in (3.18) this fixes the oversight in this
previous work.

With the definitions for A and B and assuming that F 2L2
locð½0,1Þ;HÞ and that

U02V we formulate (5.1) as the abstract evolution on H:

dU

dt
þ AUþ BðUÞ ¼ F Uð0Þ ¼ U0: ð5:8Þ

As above we define the associated Galerkin approximations as the solutions
Un2C([0,1); Hn) of

dUðnÞ

dt
þ AU ðnÞ þ PnBðU ðnÞÞ ¼ Pn F U ðnÞð0Þ ¼ PnU0: ð5:9Þ

Similarly to Section 3 we have the Cauchy convergence of {U (n)}n*1.
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THEOREM 5.1 Suppose d¼ 2, 3 and that F 2L2
locð½0,1Þ;HÞ, U02V. Then there

exists t0% 4 0 such that {U (n)}n&1 is Cauchy in Cð½0, t0%';V Þ \ L2ð½0, t0%';DðAÞÞ. In the
case d¼ 2 the result is global; more precisely {U (n)}n&1 is Cauchy in
Cð½0, t0%';V Þ \ L2ð½0, t0%';DðAÞÞ for every t0% 4 0.

Proof Multiplying (5.9) by AU (n), integrating and applying (5.5) leads to the
estimates,

d

dt
kU ðnÞk2 þ jAU ðnÞj2 ) c 1þ jPnFj2 þ jU ðnÞj2kU ðnÞk4 d=2,

1þ jPnFj2 þ kU ðnÞk6 d=3.

!
ð5:10Þ

From these inequalities we infer the existence of t0% 4 0 which satisfies uniform
bounds as in (3.3). Note however that for d¼ 2 we can take t0% arbitrarily large.

Defining R(m,n)¼U (m)*U (n) for all pairs of m4n the proof proceeds similarly to
Theorem 3.1. The only significant difference comes when we estimate J3 coming from
the analogue of (3.5). Consider any !2 [0, 1/5). Due to (5.2), DðA!Þ¼V2!¼ ~V2!.
Using (5.7) with s¼ 2!, we estimate

T3 )
"

12
jARðm, nÞj2 þ cjPm

n BðU
ðnÞÞj2

) "

12
jARðm, nÞj2 þ c

#2!n
jQnBðU ðnÞÞj22!

) "

12
jARðm, nÞj2 þ c

#2!n
jBðU ðnÞÞj2V2!

) "

12
jARðm, nÞj2

þ c

#2!n
ðkU ðnÞk3*4!jAU ðnÞj1þ4! þ jU ðnÞj!kU ðnÞk3*6!jAU ðnÞj1þ5!Þ

) "

12
jARðm, nÞj2

þ c

#2!n
ðkU ðnÞk

2ð3*4!Þ
1*4! þ jU ðnÞj 2!

1*5!kU ðnÞk
2ð3*6!Þ
1*5! þ jAU ðnÞj2Þ: ð5:11Þ

Note that these bounds are valid for both d¼ 2, 3. For definiteness we take !¼ 1/8
and replace (3.8) with

T3 )
"

12
jARðm, nÞj2 þ c

#1=4n

ðkU ðnÞk10 þ jU ðnÞj2=3kU ðnÞk12 þ jAU ðnÞj2Þ: ð5:12Þ

With inconsequential changes to the definitions of $m,n, Gm,n in (3.11) we conclude
the desired results. g
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Notes

1. One sometimes also finds the more general definition (U,U ]) :¼
R
M v + v] dMþ

%
R
MTT ]dM with %40 fixed. This % is useful for the coherence of physical dimensions

and for (mathematical) coercivity. Since this is not needed here we take %¼ 1.
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2. B is also continuous from V!V to V 0 and satisfies important cancellation properties and
estimates. Since we are considering strong solutions in C([0, t],V)\L2([0, t],D(A)) these
properties will not be needed here.
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