
APMA 1650
Homework 4 - Solutions

Instructions: Homework is due by 11:59pm EST in Gradescope on the day listed on the
course webpage. You can use calculators for this assignment. Solutions must be written
independently and cannot be shared with any other students.

You must show all work and explain your answers thoroughly to get full credit. You will
be graded partly on how well you explain the answers.

There will be a 5pt penalty for homework submitted with problems incorrectly assigned to a
page. A 10pt penalty will be applied for homework submitted during the late window.

1. (18 pts) Consider the following CDF of a random variable X

FX(x) =



0 for x < −2

1/3 for − 2 ≤ x < −1

1/2 for − 1 ≤ x < 1

5/6 for 1 ≤ x < 2

1 for 2 ≤ x

.

Find the following

a. (4 pts) P (X > −2)

b. (4 pts) P (−1 ≤ X ≤ 2)

c. (4 pts) P (2X ≤ −1)

d. (6 ots) E[X]

Soltuion: From the CDF we can tell that this random variable is discrete with range

RX = {−2,−1, 1, 2}

and looking at the size of the jumps we can readily conclude that the PMF is

PX(x) =



1/3 for x = −2

1/6 for x = −1

1/3 for x = 1

1/6 for x = 2

0 otherwise

.



a. Here we have that P (X > −2) = 1− P (X ≤ −2) = 1− FX(−2) = 2/3.

b. In this case we find

P (−1 ≤ X ≤ 2) = P (X ≤ 2)− P (X < −1)

= P (X ≤ 2)− P (X ≤ −2)

= FX(2)− FX(−2) = 1− 1/3 = 2/3

c. Note that P (2X ≤ −1) = P (X ≤ −1/2) = FX(−1/2) = 1/2

d. To calculate the expectation, we can use the PMF we worked out above giving

EX = −2(1/3)− 1(1/6) + 1(1/3) + 2(1/6) = 1/6− 1/3 = −1/6.

2. (20 pts) A TV manufacturer makes a display that has standard 1920× 1080 pixel array.
Suppose that each pixel independently has a one in a million chance of being defective. Use
the Poisson distribution to answer the following problems. Hint you may find the textbook
Poisson CDF calculator very useful.

a. (10 pts) In order for a display to meet the ISO 9241-305 Class II standard, the manu-
facturer can’t have more than 2 defective pixels per one million pixels in that display.
Approximate the probability that a given TV does not meet the Class II standard.

b. (10 pts) Now suppose that the manufacturer needs to make 100 TVs that meet the
Class II standard. Approximate the minimal number of TVs they should manufacture
to be 99% certain they have at least 100 Class II TVs produced.

Solution:

a. A given TV has 1920×1080 = 2, 073, 600 pixels. Therefore the number of faulty pixels
in a TV is expected to follow a Binomial distribution X ∼ Binomial(n, p), where
n = 2, 073, 600 and p = 1/1, 000, 000. Note that since p is so small (i.e. rare) and n
is so large, we can easily justify the Poisson distribution approximation and estimate
the number of defective pixels per TV as a Poisson random variable

X ∼ Poisson(λ)

where rate λ = np = 2, 073, 600/1, 000, 000 = 2.0736 faulty pixels per TV. In order
to meet Class II, we need to have no more than 2 × 2.0736 ≈ 4.1472 pixels per TV.
Therefore the probability that a given TV does not meet the Class II standard is

P (X ≥ 4.1472) = P (X > 4) = 1− FX(4).

Using the Poisson CDF calculator in the text with λ = 2.0736, we obtain FX(4) =
0.94046 and therefore

P (X ≥ 4.1472) = 1− 0.94046 = 0.05954.

https://www.probabilitycourse.com/calculator/poisson.php


b. Now we consider how many TVs the manufacturer will need to produce to be 99%
certain that they can meet the 100 Class II TV production demand. We know from
part a that each TV has a probability p = 0.05954 of not meeting the Class II demand.
Therefore if we make n ≥ 100 TVs, the number of TVs that fail to meet the Class
II specification is Yn ∼ Binomial(n, p). Again since n is large and p is small, we will
approximate with a Poisson distribution,

Yn ∼ Poisson(λn), λn = np = n(0.05954).

Our goal is to find the smallest n such that the probability of the number of class II
TVs n− Yn being bigger than 100 is less than 99%. In mathematical terms, we want
to find n such that

P (n− Yn ≥ 100) = P (Yn ≤ n− 100) = FYn(n− 100) ≥ .99.

Note that the Poisson rate λn here depends on n.

To find such an n, we will guess an check using the CDF calculator for Poisson. It help
to have a good educated guess. Lets use that fact that for many values of n ≈ 100,
np ≈ 7 (rounding up for good measure) we should expect to loose 7 or so TVs in
the process of making 100. Naturally this suggests we might want to make 107 TVs.
Setting n = 107, however we find

n = 107, λ107 = 107p = 6.37078, FY107(107− 100) = FY107(7) = 0.69155.

This is clearly not high enough to meet the .99% benchmark. Indeed, there is quite
a lot of variance in Yn given by Var(Yn) = np ≈ 7. Therefore perhaps we want to
account for the variance in the defective TVs and instead produce that is 2 standard
deviations away 100 + 7 + 2

√
7 ≈ 113 TVs. Setting n = 113, we find

n = 113, λ113 = 113p = 6.72802, FY113(113− 100) = FY113(13) = 0.99062

Hooray! This meets our goal with 99% certainty! Now lets see if this is the smallest
number. Suppose we made one less, instead choosing n = 112, we find

n = 112, λ112 = 112p = 6.66848, FY112(112− 100) = FY112(12) = 0.98074

Which is just a smidge under .99, so lets stick with the safer bet of

n = 113 TVs.

3. (18 pts)

a. (6 pts) Let X ∼ Geometric(p). Calculate Var(X).



b. (6 pts) Let Y ∼ Pascal(m, p). Calculate Var(Y ).

c. (6 pts) Let X ∼ Poisson(λ). Calculate Var(X).

Solution:

a. To calculate the variance of X, we first recall that we can calculate this using the
formula

Var(X) = E[X2]− (EX)2.

We know that EX = 1/p, and so whats left is to compute

EX2 =
∞∑
k=1

k2PX(k) = p
∞∑
k=1

k2qk−1,

where q = 1− p. To determine this sum, we realize that

∞∑
k=1

kqk−1 =
d

dq

(
1

1− q

)
=

1

(1− q)2

Therefore using the above formula

∞∑
k=1

k2qk−1 =
d

dq

(
∞∑
k=1

kqk

)
=

d

dq

(
q
∞∑
k=1

kqk−1

)

=
d

dq

(
q

(1− q)2

)
=

1

(1− q)2
+

2q

(1− q)3

=
1 + q

(1− q)3

It follows that

EX2 = p
1 + q

(1− q)3
=

2− p
p2

,

and therefore
Var(X) = E[X2]− (EX)2

=
2− p
p2
− 1

p2

=
1− p
p2

.

Alternate solution. An alternate solution to this is to instead use the formula

Var(X) = E[X(X − 1)]− µX(µX − 1).



This is nicer because the derivatives workout better, giving

E[X(X − 1)] = pq
∞∑
k=1

k(k − 1)qk−2 = pq
d2

dq2

(
∞∑
k=1

qk

)

= pq
d2

dq2

(
1

1− q

)
=

2pq

(1− q)3

=
2q

p2
,

and so

Var(X) =
2q

p2
− 1

p

(
1

p
− 1

)
=

q

p2

b. To calculate this, we recall that any Pascal(m, p) random variable can be written as a
sum of m independent geometric random variables

Y = Y1 + Y2 + . . . Ym, Yi ∼ Geometric(p).

Using the independence of Yi, the properties of the variance of sums of independent
random variables, and the variance we worked out in part a,

Var(Y ) = Var(Y1 + Y2 + . . .+ Ym) = mVar(Yi) =
m(1− p)

p2
.

c. For X ∼ Poisson(λ) we know µX = EX = λ. In this problem as we saw in the
alternate solution to part a, we will find it useful to use the formula (although your do
it many ways)

Var(X) = E[X(X − 1)]− µX(µX − 1).

We find that using the Taylor series for eλ

E[X(X − 1)] = e−λ
∞∑
k=0

k(k − 1)
λk

k!

= e−λλ2
∞∑
k=2

λk−2

(k − 2)!

= e−λλ2eλ = λ2.

Therefore
Var(X) = E[X(X − 1)]− µX(µX − 1)

= λ2 − λ(λ− 1)

= λ.

4. (14 pts)



a. (4 pts) Suppose X is a random variable with E[X] = 1 and E[X(X − 2)] = 3. What
is Var(X)?

b. (4 pts) Suppose X is a random variable with mean 1. Show that E[X2] ≥ 1.

c. (6 pts) Let X = IA be the indicator Bernoulli random variable for a probability zero
event A. What is Var(X)?

Solution:

a. We know that
3 = E[X(X − 2)] = E[X2]− 2EX = E[X2]− 2.

Solving for E[X2] gives E[X2] = 5 and therefore

Var(X) = E[X2]− (EX)2 = 5− 1 = 4.

b. We know that Var(X) ≥ 0 and therefore

E[X2] = Var(X) + (EX)2 ≥ (EX)2 = 1.

c. If X = IA, then X ∼ Bernoulli(0), since P (A) = 0 it follows that

Var(X) = pq = 0(1) = 0.

5. (30 pts) Suppose that for a (very easy) homework assignment students are tasked with
flipping a fair coin 100 times and recording the outcomes. One student does the work and
writes down the results of the 100 flips, another student is lazy and makes up the data. Here
are the outcomes from the two students (in no particular order):

Student 1:

THHHTHTTTTHTTHTTTHHTHTTHT

HHHTHTHHTHTTHHTTTTHTTTHTH

TTHHTTTTTTTTHTHHHHHTHTHTH

THTHTHHHHHTHHTTTTTHTTHHTH

Student 2:

HTTHTTHTHHTTHTHTHTTHHTHTT

HTTHHHTTHTTHTHTHTHHTTHTTH

THTHTHTHHHTTHTHTHTHHTHTTT

HTHHTHTHTHTHHTTHTHTHTTHHT

Your goal is to figure out which student was most likely to have fudged the data. Your
strategy is to count the number of TT pairs in each sample. (Here counting TT pairs
involves counting how many times TT shows up out of all 99 neighboring pairs. For instance
for the 8 tosses TTTHTHTT has 3 TT pairs.)



a. (12 pts) Suppose you flip a fair coin n times. What is the expected number of TT pairs?
(Hint: Use sums of Bernoulli random variables to count the number of occurrences.)

b. (3 pts) Based on your answers to a, which student do you think most likely fudged
their data.

c. (15 pts) Repeat a and b for the number of TTT triples (i.e. TTTTT has 3 triples).

Solution:
Intuition: Qualitatively, we see that the two sequences are quite different. One of them

has long stretches (runs) of H’s and T ’s, while the other has no runs of H’s or T ’s longer than
3. While getting a long stretch of H’s or T ’s, is rare since were flipping the coin so many
times, we expect these rare events to show up a few times (think Poisson’s distribution).
However the data from the second student is suspiciously missing all “rare” events involving
runs longer than 3.

a. To count the number of TT pairs in a sequence of n flips, we divy up the n flips into
n − 1 consecutive pairs. For each i = 1, . . . n − 1, let Xi be the following Bernoulli
random variable

Xi =

{
1 if the ith pair is a TT

0 otherwise

Note that the probability that given pair is a TT is just (1/2)(1/2) = 1/4 and therefore

Xi ∼ Bernoulli(1/4).

The number of TT pairs is then given by

X = X1 +X2 + . . . Xn−1.

Note that Xi are not independent since the pairs overlap and therefore one being a
TT pair affects the probability of the next being a TT pair, therefore X is not an
Binomial distribution. None-the-less we can compute its expected value using linearity
of expectation

EX = EX1 + EX2 + . . . EXn−1 = (n− 1)EXi =
n− 1

4
.

b. For n = 100 we then typically expect there to be 99/4 ≈ 25 TT pairs. If we go ahead
and count the number of TT pairs in the above sample, we find

Student 1 : 25 TT pairs.

Student 2 : 15 TT pairs

Indeed Student 1 displays exactly what we expect to be the number of TT pairs, while
Sudent 2 is significantly below the expected value. Based on this, I’d say it is most
likely that Student 2 fudged the data.



c. If we instead count TTT triples, we follow a similar strategy divying up n flips into n−2
triples and assigning a Bernoulli random variable Xi to each triple with probability
p = (1/2)(1/2)(1/2) = 1/8 of occuring. Using linearity of expected value, the expected
number of TTT triples X = X1 +X2 + . . . Xn−2 is then

EX =
n− 2

8
.

For the case n = 100, we see that we expect 98/8 ≈ 12 TTT triples. Counting the
number of TTT triples in the above sample, we find

Student 1 : 15 TTT triples

Student 2 : 1 TTT triple.

While student 1 might be a little higher than expected in the number of TTT triples,
student 2 is WAY off, with only 1 TTT triple out of the expected 12. Again this
indicates that Student 2 is the one who is more likely to have fudged the data.


