
APMA 1650
Homework 5 - Solutions

Problem 1. (18 pts) You own a moderately successful small-town grocery store. You have
collected enough data to determine that the weekly demand Y for potatoes (measured in
hundreds of pounds of potatoes purchased) has a PDF

fY (y) =

{
3y2 0 ≤ y ≤ 1,

0 otherwise

Here we are assuming that you can’t stock more than 100 pounds of potatoes at once. At the
beginning of each week, you purchase up to 100 pounds of potatoes at 75 cents per pound
and proceed to sell them at 100 cents per pound. At the end of the week you donate any
remaining potatoes to a local food bank.

a. (4 pts) Suppose that you buy a fixed number a ∈ [0, 1] of hundreds of pounds of
potatoes a week. What is your weekly profit in dollars as a function of a and the
demand Y ? (Keep in mind, if the demand exceeds a, you run out of stock)

b. (8 pts) What are your expected profits in a given week? This will be a function of a.
Simplify your answer. (Hint: divide your integral into 0 ≤ y ≤ a and a ≤ y ≤ 1)

c. (6 pts) How many hundreds of pounds of potatoes should you buy every week to
maximize your expected profits? Give an exact answer. What are the expected profits
in this case?

Solution:

a. If you buy a hundreds of pounds of potatoes that will cost you 75a dollars. If the
demand in a given week is Y , then you will sell min{a, Y } hundreds of pounds of
potatoes that week and make 100 min{a, Y } dollars. The profit g(Y ) that you make
each week is how much you sell - how much you bought

g(Y ) = 100 min{a, Y } − 75a.

b. The expected profits are then

Eg(Y ) = E[100 min{a, Y } − 75a]

= 100E[min{a, Y }]− 75a

= 300

∫ 1

0

min{a, y}y2dy − 75a



Following the hint, we can solve this integral by splitting it up into {0 ≤ y ≤ a} and
{a ≤ y ≤ 1}, where min{a, y} = y and min{a, y} = a respectively. This gives∫ 1

0

min{a, y}y2dy =

∫ a

0

y3dy +

∫ 1

a

ay2dy

=
1

4
y4
∣∣∣a
0

+ a
1

3
y3
∣∣∣1
a

=
1

4
a4 +

1

3
a(1− a3)

= − 1

12
a4 +

1

3
a

Therefore the expected profits are

Eg(X) = 300

(
− 1

12
a4 +

1

3
a

)
− 75a

= 25a(1− a3)

c. To maximize the profits we need to maximize the function a 7→ a(1−a3) over a ∈ [0, 1].
To do this, we take the derivative to identify the critical points by solving

d

da
a(1− a3) = 1− 4a3 = 0, ⇒ a =

1

41/3
.

Since there is only one critical point and a(1−a3) = 0 at the end points a = 0 or 1 but
is positive for a ∈ (0, 1), we deduce that a = 1/41/3 is indeed the value that maximizes
a(1−a3). Therefore you should buy 1/41/3 = 21/3/2 ≈ .63 hundred pounds of potatoes
each week to maximize your expected profits at

25a(1− a3) =
75(21/3)

8
≈ 11.81 dollars per week.

Hopefully you are selling more than just potatoes...

Problem 2. (26 pts) Let X be a continuous random variable with range [a,∞), for some
a > 0 and PDF given by

fX(x) =

{
cx−p−1 x ≥ a

0 otherwise

for some p > 0.

a. (4 pts) Find the value of c that makes this a valid PDF.

b. (4 pts) What is the CDF of X?

c. (5 pts) Find the expectation of X.



d. (5 pts) Find P (X > 4a|X > 3a).

e. (8 pts) What is distribution of the random variable Y = ln(X/a) (i.e. range and PDF)?
Do you recognize this distribution? Interpret you answer to part d in terms of this.

Solution: This distribution is just the Pareto distribution. Commonly used to model income
inequality in society. https://en.wikipedia.org/wiki/Pareto_distribution

a. We need the PDF to be normalized, that is, we need it to satisfy

1 =

∫ ∞
−∞

fX(x)dx = c

∫ ∞
a

x−p−1dx = − c
p
x−p
∣∣∣∞
a

=
c

pap

Therefore
c = pap.

b. The CDF for x ≥ a is given by

FX(x) =

∫ x

−∞
fX(y)dy = pap

∫ x

a

y−p−1dy

= −ap(x−p − a−p)

= 1−
(a
x

)p
,

with the obvious extension that FX(x) = 0 for x ≤ a.

c. The expectation is given by

EX =

∫ ∞
−∞

xfX(x)dx = pap
∫ ∞
a

x−pdx =

a ln(x)
∣∣∣∞
a

p = 1

− pap

p−1x
1−p
∣∣∣∞
a

p 6= 1

The above limits are only finite then if p > 1, otherwise they are infinity. This gives
the final answer

EX =

{
∞ 0 < p ≤ 1
ap
p−1 p ≥ 1

.

Yes you can have an infinite expectation!

d. To find P (X > 4a|X > 3a), we compute

P (X > 4a|X > 3a) =
P (X > 4a,X > 3a)

P (X > 3a)

=
P (X > 4a)

P (X > 3a)

=

(
a
4a

)p(
a
3a

)p =

(
3

4

)p

https://en.wikipedia.org/wiki/Pareto_distribution


Note that this is just (
3

4

)p
= P

(
X >

4

3
a

)
e. Let Y = ln(X/a), then we can see that since X ≥ a, that the range of Y is just [0,∞).

To calculate the distribution, we note that for y ≥ 0

FY (y) = P (Y ≤ y) = P (ln(X/a) ≤ y) = P (X ≤ aey) = 1−
( a

aey

)p
= 1− e−py

Taking the derivative gives

fY (y) =
d

dy
FY (y) =

{
pe−py y ≥ 0

0 otherwise.

We should recognize this as the PDF of an Exponential(p) random variable. With this
in mind, we can see that the result from part d

P (X > 4a|X > 3a) = P

(
X >

4

3
a

)
can be written with respect to Y as

P (Y > ln 4|Y > ln 3) = P (Y > ln 4− ln 3),

which is just an example of the memory less property of the exponential RV Y .

Problem 3. ( 15 pts) Let U ∼ Uniform([1, 2]) and let X be the largest root of the quadratic
equation

x2 − 2Ux+ 1 = 0.

a. (5 pts) Give a formula for X in terms of U . What is the range of X?

b. (10 pts) What are the CDF and PDF of X? (Hint: use the fact that for x ≥ 1, the
event {X ≤ x} is the same as the event {x2 − 2Ux+ 1 ≥ 0})

Solution:

a. By the quadratic formula the roots of the polynomial are given by

U ±
√
U2 − 1

The largest one X is therefore

X = U +
√
U2 − 1.

Note that u 7→ u+
√
u2 − 1 is increasing whenever u ≥ 1 and therefore since U varies

between 1 and 2 we can see that the range of X is just

[1, 2 +
√

3].



b. To calculate the CDF and PDF of X, following the hint, we note that if x ≥ 1 then
X ≤ x is equivalent to

x2 − 2Ux+ 1 ≥ 0 ⇒ U ≤ x2 + 1

2x

and therefore using the CDF for Uniform(1, 2), when x ∈ [1, 2 +
√

3]

FX(x) = P (X ≤ x) = P

(
U ≤ x2 + 1

2x

)
=

x2+1
2x
− 1

2− 1
=
x

2
+

1

2x
− 1.

As a sanity check we can see that

F (1) =
1

2
+

1

2
− 1 = 0

and

F (2 +
√

3) =
2 +
√

3

2
+

1

2(2 +
√

3)
− 1

=
2 +
√

3

2
+

2−
√

3

2
− 1

= 1

This gives a PDF of

fX(x) =
d

dx
FX(x) =

{
1
2

(
1− 1

x2

)
x ∈ [1, 2 +

√
3]

0 otherwise
.

Problem 4. (15 pts) The Normal distribution is commonly used in practice to approximate
the Binomial distribution for large n. In fact, it also works pretty well for fairly “small”
values of n as long as p isn’t too close to 0 or 1. Lets see how well it does for n = 25 and
p = .6. (You may use a calculator and CDF calculator in the book)

a. (2 pts) Suppose that X ∼ Binomial(n, p), n and p as above. Compute the probability
PX(7).

b. (5 pts) Suppose that Y ∼ N(µ, σ2), with the same mean and variance as X, µ = np
and σ2 = npq. Compute P (6.5 ≤ Y ≤ 7.5). Compare your answer with part a.

c. (4 pts) The general principle is that the normal approximation is good as long as the
values p± 3

√
pq
n

are between 0 and 1. Show that this is the case if and only if

n >
9p

q
, and n >

9q

p

or in other words if

n > 9

(
max{p, q}
min{p, q}

)
.



d. (4 pts) How large should n be taken to approximate the Binomial distribution by a
Normal for p = .5, .8, .99, .999?

Solution:

a. For n = 25 and p = .6, we find using the Binomial PMF (or CDF) calculator

PX(7) = P (X ≤ 7)− P (X ≤ 6) = 0.00092

b. The mean µ = np = 25(.6) = 15 and the variance is σ2 = npq = 25(.6)(.4) = 6. To
compute this probability we find that

P (6.5 ≤ Y ≤ 7.5) = Φ

(
7.5− 15√

6

)
− Φ

(
6.5− 15√

6

)
≈ Φ(−3.06186)− Φ(−3.47011)

= 0.0011− 0.00026 = 0.00084

While these answers differ, they are actually very close with 0.00092 − 0.00084 =
0.00008 as the error between them.

c. Note first that p+ 3
√

pq
n

being between 0 and 1 is equivalent to

p+ 3

√
pq

n
< 1

since the lower bound by 0 is automatic. After rearranging we obtain the equivalent
inequalities

3

√
pq

n
< q ⇔ n >

9p

q
.

Similarly, p− 3
√

pq
n

being between 0 and 1 is equivalent to

0 < p− 3

√
pq

n

since the upper bound by 1 is automatic (p being a probability). Again rearranging
give the equivalent inequalities√

pq

n
< q ⇔ n >

9q

p
.

The fact that all these inequalities are equivalent implies “if and only if”. Since n
needs to be bigger than both 9p

q
and 9q

p
, we see this condition is equivalent to

n > max

{
9p

q
,
9q

p

}
= 9

(
max{p, q}
min{p, q}

)



d. Using the formula we just showed above we see that for each value of p we need n to
be

p = .5 ⇒ n > 9
.5

.5
= 9

p = .8 ⇒ n > 9
.8

.2
= 36

p = .99 ⇒ n > 9
.99

.01
= 891

p = .999 ⇒ n > 9
.999

.001
= 8, 991.

Problem 5 (26 pts) Our book doesn’t have a CDF calculator for the Gamma distribution
(bummer!). However, we have seen that the Gamma distribution is closely related to the
Poisson distribution. In fact, it is possible to calculate all the probabilities for the Gamma
distribution using only the Poisson distribution. Let X ∼ Gamma(n, λ) for λ > 0 and n ∈ N
and let Y ∼ Poisson(λ).

a. (8 pts) Use the following formula

1

Γ(n)

∫ ∞
λ

xn−1e−x dx =
n−1∑
k=0

λke−λ

k!

to show that
P (X > 1) = P (Y ≤ n− 1).

b. (5 pts) What does the result of part a give you for P (X > 1) when λ = 1 and n = 5?
(Use the Poisson CDF calculator)

c. (5 pts) Recall that the Poisson distribution can be interpreted as the number of oc-
currences of a certain event that occurs in the time window [0, 1], where the times
between each event are independent and Exponential(λ) distributed. We also know
that the gamma distribution is a sum of n independent Exponential(λ) RVs. Using
words, explain why P (X > 1) = P (Y ≤ n− 1) makes sense.

d. (8 pts) Now for each t > 0, let Y (t) ∼ Poisson(λt) (the number of occurrences of events
in the time window [0, t]). Show that

P (X > t) = P (Y (t) ≤ n− 1).

Solution:



a. To show this, let’s calculate P (X > 1). Using change of variables u = λx, we see

P (X > 1) =
1

Γ(n)

∫ ∞
1

λnxn−1e−λxdx

=
1

Γ(n)

∫ ∞
λ

un−1e−udu

and using the formula we have

P (X > 1) =
n−1∑
k=0

λke−λ

k!
=

n−1∑
k=0

P (Y = k) = P (Y ≤ n− 1)

b. For λ = 1 and n = 5 we get using the CDF calculator

P (X > 1) = P (Y ≤ 4) ≈ 0.99941

c. Since X is just the sum of n independent exponentials, it is the amount of “time”
you have to wait until you experience n “rare” events, each separated by exponentially
distributed times. Therefore X > 1 means that by time 1, you experienced no more
than n − 1 of these events. Since the number of such events that occur before time 1
is distributed according to the Poisson distribution, this is the same as Y ≤ n− 1.

d. Following a similar calculation to part a and using the same change of variables u = λx

P (X > t) =
1

Γ(n)

∫ ∞
t

λnxn−1e−λxdx

=
1

Γ(n)

∫ ∞
λt

un−1e−udu

Using the formula again, we find

P (X > t) =
n−1∑
k=0

(λt)ke−λt

k!
= P (Y (t) ≤ n− 1)


