
APMA 1650
Homework 9 - Solutions

Problem 1. (16 pts) Suppose you are trying to measure the temperature θ of a pot of
water down to the nearest microKelvin (you don’t need to know what microKelvin are).
The thermometer you have tends to produce random errors in the measurements down to
that scale. To combat this, you make n measurements of the temperature X1, X2, . . . Xn.
Suppose you know that each measurement has a random error Ei given by

Xi = θ + Ei

and that E1, E2, . . . En are iid with E[Ei] = 0 and Var(Ei) = 9. You decide to average your
measurements to get a better idea of the true temperature,

X =
1

n

n∑
i=1

Xi.

a. (8 pts) Use Chebyshev to estimate how large n needs to be at least 90% sure that the
error |X − θ| is with in 0.2 units.

b. (8 pts) Improve your answer to (b) instead using the CLT (round your answer to the
nearest integer).

Solution:

a. Note that EX = θ and Var(X) = 9
n
. Therefore Chebyshev gives us

P (|X − θ| ≤ 0.2) ≥ 1− Var(X)

n(0.2)2
= 1− 900

4n

We obtain

1− 900

4n
≥ 0.9⇒ n ≥ 2250.

b. To use the central limit theorem, we note that for n big enough (say more than 100)

Z =
X − θ
3/
√
n
≈ N(0, 1)

We get as an approximation

P (|X − θ| ≤ 0.2) = P

(
|Z| ≤ 0.2

√
n

3

)
≈ Φ(

√
n/15)− Φ(−

√
n/15) = 2Φ(

√
n/15)− 1

Therefore

2Φ(
√
n/15)− 1 ≥ 0.9⇒ n ≥

(
15Φ−1

(
1.9

2

))2

≈ 608.74,

and so by rounding up, we need n ≥ 609.



Problem 2. (24 pts) Let X1, X2, . . . X100 be iid standard normal random variables. Let

Y = X2
1 +X2

2 + . . .+X2
100.

a. (8 pts) Show that X2
i is Gamma(α, β) distributed for certain α and β (you may use

the fact that Γ(1/2) =
√
π).

b. (5 pts) Use the known mean and variance of the Gamma distribution and part (a) to
determine EX2

i and Var(X2
i ).

c. (8 pts) Use the Central Limit Theorem to find a value y such that P (Y > y) ≈ 0.05.
Approximate to 3 decimal places.

d. (5 pts) It is well known that Y has a χ2(n) distribution, compare your answer in part
(c) to the one obtained via the χ2(n) table provided on the course webpage (or using
chi2inv in MATLAB)

Solution:

a. To show that X2
i is Gamma, we use the CDF method Let G = X2

i

FG(y) = P (X2
i ≤ y) = P (−√y ≤ Xi ≤

√
y) = 2Φ(

√
y)− 1

Therefore for y ∈ [0,∞)

fG(y) =
d

dy
FG(y) =

1
√
y

Φ′(
√
y) =

y−1/2

√
2π

e−y/2 =
1
2

Γ(1/2)
y1/2−1e−(1/2)y

It follows that G ∼ Gamma(1
2
, 1

2
)

b. Using properties of the Gamma function, we know that the mean and variance are
given by

EX2
i = EG =

α

β
=

1
2
1
2

= 1

and

Var(X2
i ) = Var(G) =

α

β2
=

1
2(

1
2

)2 = 2

c. To use the central limit theorem, we note that n = 100 and that Y is a sum of iid
random variables with mean 1 and variance 2 and therefore has mean EY = n and
variance Var(G) = 2n. It follows by the CLT that

Z =
Y − n√

2n
≈ N(0, 1).



Therefore we have

P (Y > y) = P

(
Z >

y − 100

10
√

2

)
≈ 1− Φ

(
y − 100

10
√

2

)
and so

1− Φ

(
y − 100

10
√

2

)
= 0.05 ⇒ y = 100 + 10

√
2Φ−1(0.95) ≈ 123.262

d. Using the table, we see that

y = χ2
0.05,100 = 124.342

we see that this number is just a little bigger than you would get using the central
limit theorem.

Problem 3. (30 pts) Let X1, X2, . . . Xn be a random sample from a distribution associated
to random variable X with parameter θ.

a. (10 pts) If the distribution of X has PDF

fX(x; θ) =

{
(θ + 1)xθ 0 ≤ x ≤ 1

0 otherwise

For θ > −1. Find the maximum likelihood estimator Θ̂MLE of θ.

b. (10 pts) If the distribution of X is Poisson, find the maximum likelihood estimator
Θ̂MLE for θ = E[2X ].

c. (8 pts) Use the WLLN and properties of convergence in probability to show that Θ̂MLE

is a consistent estimator of θ for both (a) and (b) above.

Solution:

a. To find the MLE for θ we write the log-likelihood function

ln(L(θ)) =
n∑
i=1

ln(f(xi; θ)) = θ

(
n∑
i=1

ln(xi)

)
+ n ln(1 + θ).

Taking the derivative in θ and setting equal to zero gives

d

dθ
ln(L(θ)) =

n∑
i=1

ln(xi) +
n

1 + θ
= 0.

Solving for θ gives

θ =
−1

1
n

∑n
i=1 ln(xi)

− 1.

Therefore the MLE is given by

Θ̂MLE =
−1

1
n

∑n
i=1 ln(Xi)

− 1.



b. Let λ be the Poisson rate so that

P (X = x) =
λx

x!
e−λ.

We want to find how θ relates to λ. To see this, we note that

θ = E(2X) =
∞∑
x=1

2xλx

x!
e−λ =

(
∞∑
x=1

(2λ)x

x!

)
e−λ = e2λe−λ = eλ

We can can find the MLE directly by writing λ = ln(θ) so that

f(x; θ) =
(ln(θ))x

x!

1

θ
.

The log likelihood function is given by

ln(L(θ)) = ln

(
n∏
i=1

(
(ln(θ))xi

xi!

1

θ

))
=

(
n∑
i=1

xi

)
ln(ln(θ))− n ln θ −

n∑
i=1

ln(xi!)

Taking the derivative in θ and setting equal to zero gives

d

dθ
ln(L(θ)) =

(
n∑
i=1

xi

)
1

θ ln θ
− n

θ
= 0

This implies since θ > 0 that (
n∑
i=1

xi

)
1

ln θ
= n

solving for θ gives
θ = e

1
n

∑n
i=1 xi

so that the MLE is given by

Θ̂MLE = eX

c. For (a), to show that

Θ̂MLE =
1

− 1
n

∑n
i=1 ln(Xi)

− 1

is consistent, we note that Yi = ln(Xi) for i = 1, . . . , n are iid RVs with mean

EYi = E ln(Xi) =

∫ 1

0

xθ ln(x)(1 + θ)dx

= x1+θ ln(x)
∣∣∣1
0
−
∫ 1

0

xθdx

=
−1

1 + θ



A similar calculation shows that the variance of Yi is finite (indeed Yi is just an expo-
nential random variable). Therefore by the WLLN

1

n

n∑
i=1

ln(Xi)
p−→ −1

1 + θ
.

Using the fact that convergence in probability can be passed through continuous func-
tions, we obtain

Θ̂MLE =
1

− 1
n

∑n
i=1 ln(Xi)

− 1
p−→ 1

1
1+θ

− 1 = θ

Therefore it is consistent.

For (b), to show that

Θ̂MLE = eX

is consistent, we note that by the WLLN

X
p−→ λ

and therefore using properties of convergence in probability

Θ̂MLE
p−→ eλ = θ,

and is therefore consistent.

Problem 4. (40 pts) Let X1, X2, . . . , Xn be a random sample from Uniform(0, θ).

a. (8 pts) Show that the order statistic

Θ̂ = max{X1, X2, . . . , Xn}

is a maximum likelihood estimator for θ. (Hint: taking derivatives isn’t always the
best strategy to finding a maximum)

b. Show that Θ̂ in part (a) has a CDF given by

FΘ̂(x) =


0 x ≤ 0(
x
θ

)n
x ∈ [0, θ]

1 otherwise

(Hint: {Θ̂ ≤ x} ⇔ {X1 ≤ x} ∩ {X2 ≤ x} ∩ . . . ∩ {Xn ≤ x} )

c. (6 pts) What is the bias B(Θ̂)? Explain intuitively why this makes sense.

d. (8 pts) Find a value c so that Θ̃ = cΘ̂ is unbiased.



e. (8 pts) Find the mean square errors MSE(Θ̂), MSE(Θ̃). Which one is better?

Solution.

a. The likelihood function is given by

L(x1, x2, . . . , xn; θ) =
n∏
i=1

fXi
(xi) =

{
1
θn

x1, x2, . . . , xn ∈ [0, θ]

0 otherwise.

To maximize this, we note that if θ is such that max{x1, x2, . . . xn} ≤ θ then x1, x2, . . . , xn ∈
[0, θ] and the likelihood function is L(θ) = θ−n, which gets bigger the smaller you take
θ. However if we take θ too small θ ≤ max{x1, x2, . . . xn} we violate x1, x2, . . . , xn ∈
[0, θ] and therefore L(θ) = 0. This means that L(θ) has a jump in θ at the value
θ = maxx1, x2, . . . xn and can be expressed as

L(θ) =

{
1
θn

0 ≤ θ ≤ max{x1, x2, . . . , xn}
0 max{x1, x2, . . . , xn} < θ.

From this, it is easy to see that L(θ) is maximized at the jump

θ̂ = max{x1, x2, . . . , xn},

and therefore
Θ̂ = max{X1, X2, . . . , Xn}

b. Using the hint and the fact that Xi are independent we see that

FΘ̂(x) = P (Θ̂ ≤ x) = P (X1 ≤ x,X2 ≤ x, . . . Xn ≤ x) =
n∏
i=1

P (Xi ≤ x)

which gives us the answer upon substituting

P (Xi ≤ x) =


0 x ≤ 0(
x
θ

)
x ∈ [0, θ]

1 otherwise.

c. Note that the PDF of Θ̂ is

fΘ̂(x) =
d

dx
FΘ̂(x) =

{
nx

n−1

θn
x ∈ [0, θ]

0 otherwise

This means that

EΘ̂ =

∫ θ

0

xn

(
xn−1

θn

)
dx =

n

n+ 1
θ.



and consequently the Bias is

B(Θ̂) =
n

n+ 1
θ − θ =

−θ
n+ 1

6= 0

Therefore Θ̂ is biased. However this isn’t very surprising, since is is clear that because
Xi ≤ θ then

Θ̂ = max{X1, X2, . . . , Xn} ≤ θ

and so Θ̂ always undershoots the value it is estimating unless one of the Xi hits θ
exactly(which never happens).

d. To make the estimator unbiased, we choose

c =
θ

B(Θ̂) + θ
=
n+ 1

n

so that

Θ̃ =

(
n+ 1

n

)
max{X1, X2, . . . , Xn}

Therefore

EΘ̃ =

(
n+ 1

n

)
EΘ̂ =

(
n+ 1

n

)(
n

n+ 1

)
θ = θ,

and so Θ̃ is unbiased.

e. To find the mean square error, we use the formula

MSE(Θ̂) = Var(Θ̂) +B(Θ̂)2

and note that

EΘ̂2 =

∫ θ

0

x2n

(
xn−1

θn

)
dx =

n

n+ 2
θ2

so

Var(Θ̂) =
n

n+ 2
θ2 −

(
n

n+ 1

)2

θ2 =
n

(n+ 2)(n+ 1)2
θ2.

This gives

MSE(Θ̂) =
n

(n+ 2)(n+ 1)2
θ2 +

(
θ

n+ 1

)2

=
θ

(n+ 2)(n+ 1)

Similarly for the unbiased estimator Θ̃ we have

MSE(Θ̃) = Var(Θ̃) = c2Var(Θ̂)

=

(
n+ 1

n

)2(
n

(n+ 2)(n+ 1)2

)
θ2 =

1

n(n+ 2)
θ2.



To see which one is better, lets consider the ratio

MSE(Θ̃)

MSE(Θ̂)
=

(n+ 2)(n+ 1)

2n(n+ 2)
=
n+ 1

2n
=

1

2
+

1

2n
< 1

if n > 1 and equality if n = 1. Therefore

MSE(Θ̃) < MSE(Θ̂) for n > 1.

So the unbiased estimator is better for n > 1.

Problem 5. (20 pts) Suppose you have two coins, one is fair, the other produces heads with
probability 3/4. You are handed one of the coins and decide to flip the coin n times to try
to figure out if it’s fair or not.

a. (4 pts) Assuming you know which coin was chosen, explain what the WLLN predicts
the proportion of heads should look like as you take n large.

b. (8 pts) Use Chebyshev to estimate the number of coin flips you need to take to be 95%
sure you know which coin was chosen.

c. (8 pts) Use the CLT to estimate how many coin flips you need to take to be 95% sure
you know which coin was chosen.

Solution:

a. Let p be the probability of heads, then by the WLLN the proportion of heads out of n
coin tosses should converge to p in probability as n→∞.

b. Please note that there are many approaches one could take to this problem. Below is
just one approach.

Note that p1 = 1/2 and p2 = 3/4 are p2 − p1 = 1/4 apart. Let X be the proportion
of heads in n tosses. We split the distance between p1 and p2 in half and consider two
cases:

i Either X − 1/2 ≤ p2−p1
2

= 1
8

in which case was are assured that 3/4−X > 1/8

ii Or 3/4−X ≤ 1
8

in which case X − 1/2 > 1/8.

In either of these cases, we can use the mid-point value 1/2+1/8 = 3/4−1/8 = 5/8 to
decide which coin was flipped. If X ≤ 5/8 then we say it was the fair coin, if X ≥ 5/8
then we say it was the biased coin.

It follows that we will be 95% sure that the fair coin was chosen if

P (X − 1/2 ≤ 1/8) ≥ .95



and similarly we will be 95% sure that the biased coin is chosen if

P (3/4−X ≤ 1/8) ≥ .95.

In general X has mean p ∈ {1/2, 3/4} and variance p(1− p)/n. Therefore Chebyshev
gives

P (X − p ≤ 1/8) or P (p−X ≤ 1/8) ≥ P (|X − p| ≤ 1/8) ≥ 1− 64p(1− p)
n

Since we don’t know whether p = 1/2 or 3/4 we have no choice but to bound p(1− p)
by the worst case p = 1/2, p(1− p) ≤ 1/4 which gives

P (|X − p| ≤ 1/8) ≥ 1− 16

n

We see that we need

1− 16

n
≥ .95⇒ n ≥ 16(20) = 320

in order to have 95% confidence that we know which coin was chosen.

c. If instead we want to use the CLT, we note (recall HW5) that we need to take n bigger
than at least

n > 9
max{p, 1− p}
min{p, 1− p}

= 9
3/4

1/4
= 27

whereby we can approximate

Z =
X − p√
p(1− p)/n

≈ N(0, 1).

This gives

P (|X − p| ≤ 1/8) = P

(
|Z| ≤

√
n

8
√
p(1− p)

)
≥ P

(
|Z| ≤

√
n

4

)
≈ 2Φ(

√
n/4)− 1

where we again used the worst case variance p(1− p) ≤ 1/4. Therefore we see that a
good estimate is

2Φ(
√
n/4)− 1 ≥ 0.95⇒ n ≥

(
4Φ−1(1.95/2)

)2 ≈ 61.463.

Therefore we need to take n ≥ 62 to be able to tell which coin is which with 95%
certainty. This is certainly a lot better than what we got in part b.

Note: In the CLT case you can improve your answer even more by realizing that X−p
and p−X have the same distribution and therefore

P (X − p ≤ 1/8) = P (p−X ≤ 1/8) ≥ P

(
Z ≤

√
n

4

)
= Φ(

√
n/4) = .95



Which means that you can actually take

n ≥ (4 ∗ Φ−1(.95))2 ≈ 43.2887

Rounding up gives n = 44.

Problem 6. (20 pts) You are trying to guess the mean score on the latest midterm in a
large class. You randomly sampled 10 students and ask them what their score was. The
responses you get are

73, 82, 91, 50, 68, 77, 92, 81, 75, 69.

Assume the grades are normally distributed (just roll with it...) with unknown mean µ and
variance σ2.

a. (10 pts) Find a 90% confidence interval for the variance σ2

b. (10 pts) Find a 95% confidence interval for the mean µ.

You may use one of the tables provided on the course webpage or chi2inv and tinv in
MATLAB.
Solution. We first compute the sample mean and sample variance

X = 75.8, S2 = 149.0667

a. The (1− α)100% confidence interval for σ2 is[
(n− 1)S2

χ2
α/2,n−1

,
(n− 1)S2

χ2
1−α/2,n−1

]
For n = 10 and α = 0.1, we find

χ2
0.05,9 = 16.919, χ2

0.95,9 = 3.3251

and therefore the 90% confidence interval is[
9(149.0667)

16.919
,
9(149.0667)

3.3251

]
= [79.2955, 403.4767] .

b. The (1− α)100% confidence interval for µ is[
X −

tα/2,n−1S√
n

,X +
tα/2,n−1S√

n

]
For n = 10 and α = 0.05, we find

t0.025,9 = 2.2622

and therefore the 95% confidence interval is[
75.8− 2.2622(

√
149.0667)√
10

, 75.8 +
2.2622(

√
149.0667)√
10

]
= [67.0658, 84.5342].


