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Abstract. Let k be a field of characteristic 0, R = k[x1, . . . , xd] be a polynomial ring, and m its

maximal homogeneous ideal. Let I ⊂ R be a homogeneous ideal in R. In this paper, we show that

lim
n→∞

λ(H0
m(R/In))

nd
= lim

n→∞

λ(Extd
R(R/In, R(−d)))

nd

always exists. This limit has been shown to be
e(I)
d!

for m-primary ideals I in a local Cohen Macaulay

ring [Ki, Ko1, Th, Th2], where e(I) denotes the multiplicity of I. But we find that this limit may

not be rational in general. We give an example for which the limit is an irrational number thereby
showing that the lengths of these extention modules may not have polynomial growth.

Introduction

Let R = k[x1, . . . , xd] be a polynomial ring over a field k, with graded maximal ideal m, and
I ⊂ R a proper homogeneous ideal. We investigate the asymptotic growth of λ(Extd

R(R/In, R)) as
a function of n. When R is a local Gorenstein ring and I is an m-primary ideal, then this is easily
seen to be equal to λ(R/In) and hence is a polynomial in n. A theorem of Kirby, Kodiyalam and
Theodorescu [Ki, Ko1, Th, Th2] extends this to m-primary ideals in local Cohen Macaulay rings R. We
consider homogeneous ideals in a polynomial ring which are not m-primary and show that a limit exists
asymptotically although it can be irrational. In our setting, by local duality,

λ(Extd
R(R/In, R(−d))) = λ(H0

m(R/In))

and thus this becomes a problem of asymptotic lengths of local cohomology modules.

In recent years, a great deal of interest has been given to investigating asymptotic behavior of alge-
braic invariants of powers of I. Cutkosky, Herzog and Trung [CHT], and Kodiyalam [Ko2] independently
proved that reg(R/In) is a linear function in n for n � 0 (see also [Ch, GGP]). When In is replaced
by its saturation (In)sat, the problem becomes much subtler. It is no longer true that reg(R/(In)sat) is
always asymptotically a polynomial in n as shown in [Cu]. Examples are given in [Cu, CEL] showing

that it is possible for limn→∞
reg(R/(In)sat)

n to be an irrational number. Further, Cutkosky, Ein and

Lazarsfeld [CEL] showed that the limit limn→∞
reg(R/(In)sat)

n always exists. Along this theme, Hoa
and Hyry [HoH] recently studied the existence of similar limits where the regularity of R/In is replaced
by its a-invariants. This paper addresses a closely related question. We prove
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Theorem 0.1. Let k be a field of characteristic zero, R = k[x1, . . . , xd] be a polynomial ring of dimen-
sion d > 1, and m its maximal homogeneous ideal. Let I ⊂ R be a homogeneous ideal of R. Then, the
limit

lim
n→∞

λ(H0
m(R/In))
nd

= lim
n→∞

λ(Extd
R(R/In, R(−d)))

nd

always exists.

In fact, we prove (in Theorem 1.3) that if R is a coordinate ring of a projective variety which has

depth ≥ 2 at is irrelevant ideal, then the limit limn→∞
λ(H0

m(R/In))
nd exists, and (Corollary 1.4) if R is

Gorenstein, then

lim
n→∞

λ(H0
m(R/In))
nd

= lim
n→∞

λ(Extd
R(R/In, R(−d)))

nd
.

We will also give an example where λ(H0
m(R/In))
nd tends to an irrational number as n →∞ (Theorem

2.2). This, in particular, shows that, just like reg(R/(In)sat), λ(H0
m(R/In)) is not asymptotically a

polynomial in n.

Theorem 0.1 is proved in Section 1. To do this, we express λ(H0
m(R/In)) as a sum of two compo-

nents, the geometric component σ(n), and the algebraic component τ(n), and show that both limits

limn→∞
σ(n)
nd and limn→∞

τ(n)
nd exist. For the first limit, we express σ(n) as h0(Y,Nn) for some line

bundle N over a projective scheme Y of dimension d, and investigate the limit limn→∞
h0(Y,Nn)

nd .

For the later one, we write τ(n) as the Hilbert function of a finitely generated graded k-algebra of
dimension (d + 1). In Theorem 0.2, we use the construction illustrated in [Cu] by the first author to
give an example where the limit proved to exist in Section 1 is an irrational number.

Theorem 0.2. There exists a nonsingular projective curve C ⊂ P3
C such that if I ⊂ R = C[x1, . . . , x4]

is the defining ideal of C, and m is the homogeneous maximal ideal of R, then

lim
n→∞

λ(H0
m(R/In))
n4 6∈ Q.

Of course, Theorem 0.2 has a local analog.

Theorem 0.3. There exists a regular local ring S of dimension 4 which is essentially of finite type over
the complex numbers C, and an ideal J ⊂ S such that

lim
n→∞

λ(Extd
S(S/Jn, S)))

nd

is an irrational number. In particular, λ(Extd
S(S/Jn, S))) is not a polynomial or a quasi-polynomial for

large n.

The proofs of Theorems 0.2 and 0.3 will be given in section 2. In contrast to the example of
Theorem 0.3, if (S, m, k) is a Cohen-Macaulay local ring of dimension d and J is an m-primary ideal,
then λ(Extd(S/Jn, S) is a polynomial of degree d for large n ([Ki], [Th]). In fact,

lim
n→∞

λ(Extd
S(S/Jn, S)))

nd
=

e(I)
d!
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where e(I) is the multiplicity of I ([Th2]).

In the case when S is Gorenstein, this follows easily from local duality, since

λ(Extd(S/Jn, S)) = λ(H0
mS(S/Jn)) = λ(S/Jn)

for all n.

Suppose that I is a homogeneous ideal in the coordinate ring R of a projective variety of depth ≥ 2
at the irrelevant ideal. Then (c.f. Remark 1.5), if ht I = d = dim (R), we have that

lim
n→∞

λ(H0
m(R/In))
nd

=
e(I)
d!

where e(I) is the multiplicity of I.

In contrast, if ht I < d then

lim
n→∞

λ(H0
m(R/In))
nd

(0.1)

does not have such a simple arithmetic interpretation. The example of Theorem 0.2 of this paper is of
a height 2 prime ideal in a polynomial ring R of dimension 4 such that (0.1) is an irrational number.
However, in many cases, such as when I is a regular prime with ht I < d in a polynomial ring R of
dimension d, we have that the limit (0.1) is 0.

More generally, if ht I < d and the analytic spread `(I) < d then the integral closure In has no
m-primary component for large n [M, Theorem 3]. Since depth(Rm) ≥ 2, In = H0(spec(R)− {m}, In),
and

H0
m(R/In) ∼= H1

m(In) ∼= H0(spec(R)− {m}, In)/(In) = 0

for large n. Thus if I is a normal ideal (In = In for all n) with analytic spread `(I) < d we have that
H0

m(R/In) = 0 for large n and the limit (0.1) is thus 0. In fact, Catalin Ciuperca has shown us that
even if I is not normal, with `(I) < d, then the limit (0.1) is zero.

1. The existence theorem

In this section, we prove the main theorem of the paper. We shall start by recalling some notations
and terminology, and prove a few preliminary results.

Suppose R is a graded ring, and I ⊂ R a homogeneous ideal. The Rees algebra of I is the subalgebra
R[It] of R[t]. The Rees algebra R[It] has a natural bi-gradation given by

R[It](m,n) = (In)mtn.

Suppose A = ⊕m,n∈ZA(m,n) is a bi-graded algebra. For a tuple of positive integers ∆ = (a, b), A∆ =
⊕n∈ZA(an,bn) is call a ∆-diagonal subalgebra of A.

Lemma 1.1. Suppose a domain R is a finitely generated graded k-algebra of dimension δ, and I ⊂ R

is a homogeneous ideal generated in degrees ≤ d such that ht I ≥ 1. Let A = R[It] be the Rees algebra
of I over R.

(i) For any tuple ∆ = (a, b) of positive integers such that a ≥ db, A∆ is a finitely generated graded
k-algebra.
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(ii) For any tuple ∆ = (a, b) of positive integers such that a > db, dim A∆ = δ.

Proof. It is easy to see that A∆ = k[(Ib)a] is the k-algebra generated by elements of (Ib)a. Thus, (i) is
clear. (ii) follows from [HgT, Lemma 2.2] since R is a domain. �

The following Lemma is stated in an example in [La].

Lemma 1.2. Suppose that Y is a projective variety of dimension d over a field k of characteristic zero,
and L is a line bundle on Y . Then, the limit

lim
n→∞

h0(Y,Ln)
nd

exists, and is a positive real number if L is big.

Proof. It follows from [I, Theorem 10.2] that lim supn→∞
h0(Y,Ln)

nd = 0 if L is not big (κ(L) < d). This

implies that limn→∞
h0(Y,Ln)

nd = 0.

Suppose that L is big (that is, κ(L) = d). It follows from [I, Theorem 10.2] that

lim inf
n→∞

h0(Y,Ln)
nd

> 0.

To prove the lemma, it suffices to show that

lim sup
n→∞

h0(Y,Ln)
nd/d!

= lim inf
n→∞

h0(Y,Ln)
nd/d!

.

Let ε > 0 be an arbitrary positive number. By applying the theorem of Fujita [Fu] (and from the
definition of limsup), there exists a birational morphism θ : Z −→ Y together with an effective Q-divisor
E on Z such that H = θ∗L − E is a semiample Q-divisor with

Hd > lim sup
n→∞

h0(Y,Ln)
nd/d!

− ε.

Let q be the smallest positive integer such that qE is integral (or equivalently, qH is integral). Since
qE is effective, there is a natural injection OZ ↪→ OZ(qE). This gives an injection OZ(lqH) ↪→
OZ(lqE + lqH) = θ∗Llq for any integer l > 0. Thus, h0(Z,OZ(lqH)) ≤ h0(Z, θ∗Llq) for any integer
l > 0. Furthermore, since qH is semiample, there exists c > 0 such that

hi(Z,OZ(lqH)) ≤ c(ld−2) (1.1)

for any i ≥ 1 (c.f. Corollary 6.7 [F2]). Thus

h0(Z,OZ(lqH)) = χ(lqH) + O(ld−2) =
(lq)d

d!
Hd + O(ld−1),

where χ denotes the Euler characteristic.

We have an exact sequence of coherent OY modules

0 → OY → θ∗OZ → F → 0

where F is supported on a closed subset of Y of dimension < d. From the exact sequences

0 → Llq → θ∗θ
∗Llq → F ⊗Llq → 0
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we have

h0(Y,Llq) = h0(Z, θ∗Llq) + O(ld−1).

Hence,

Hd = lim
l→∞

h0(Z,OZ(lqH))
(lq)d/d!

≤ lim inf
l→∞

h0(Y,Llq)
(lq)d/d!

.

In summary, we have

lim sup
n→∞

h0(Y,Ln)
nd/d!

< Hd + ε ≤ lim inf
l→∞

h0(Y,Llq)
(lq)d/d!

+ ε. (1.2)

Since ε is taken to be arbitrary, by (1.2), to prove the lemma, we only need to show that

lim inf
n→∞

h0(Y,Ln)
nd/d!

= lim inf
l→∞

h0(Y,Llq)
(lq)d/d!

. (1.3)

Since L is big, there exists a constant n0 such that h0(Y,Ln) > 0 for any n ≥ n0 (as follows from
[I, Theorem 10.2]). This implies that, for each 0 ≤ r < q, there exists an effective divisor Fr on Y such
that OY (Fr) ∼= Ln0+r. For l > 0, we have exact sequences

0 −→ Llq −→ Llq+n0+r −→ OFr ⊗ Llq+n0+r −→ 0.

Taking the long exact sequences of cohomologies, we get

0 → H0(Y,Llq) → H0(Y,Llq+n0+r) → H0(Fr,OFr ⊗ Llq+n0+r).

Thus,

h0(Y,Llq+n0+r)
(lq)d/d!

− h0(Y,Llq+n0+r)
(lq)d/d!

≤ h0(Fr,OFr
⊗ Llq+n0+r)

(lq)d/d!
. (1.4)

Since every component of Fr has dimension d− 1 < d, we have

lim
l→∞

h0(Fr,OFr ⊗ Llq+n0+r)
(lq)d/d!

= 0.

(1.4) now gives us

lim inf
l→∞

h0(Y,Llq)
(lq)d/d!

= lim inf
l→∞

h0(Y,Llq+n0+r)
(lq)d/d!

.

Moreover, since n0 is fixed and 0 ≤ r < q, we have

lim inf
l→∞

h0(Y,Llq+n0+r)
(lq)d/d!

= lim inf
l→∞

h0(Y,Llq+n0+r)
(lq + n0 + r)d/d!

.

Therefore,

lim inf
l→∞

h0(Y,Llq)
(lq)d/d!

= lim inf
l→∞

h0(Y,Llq+n0+r)
(lq + n0 + r)d/d!

for any 0 ≤ r < q. Hence,

lim inf
l→∞

h0(Y,Llq)
(lq)d/d!

= lim inf
n→∞

h0(Y,Ln)
nd/d!

.

(1.3) is proved, and so is the lemma. �
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Theorem 1.3. Let R = k[x1, . . . , xp]/J be the quotient of a polynomial ring k[x1, . . . , xp] over a field
k of characteristic zero by a homogeneous prime ideal J . Let m be the maximal homogeneous ideal of
R. Suppose that depth(Rm) ≥ 2. Let d be the dimension of R.

Let I ⊂ R be a homogeneous ideal of R. Then, the limit limn→∞
λ(H0

m(R/In))
nd always exists.

By duality, we obtain the following corollary.

Corollary 1.4. With the notations of Theorem 1.3, suppose that R is Gorenstein. Then

lim
n→∞

λ(H0
m(R/In))
nd

= lim
n→∞

λ(Extd
R(R/In, R(−d))))

nd

Proof of Theorem 1.3: The problem is trivial if ht I = 0. If ht I = d then there is a very simple proof
(see the Remark after this proof). Suppose ht I ≥ 1. Let I be the ideal sheaf associated to I on
V = ProjR. From the exact sequence

0 −→ In −→ R −→ R/In −→ 0,

we get H0
m(R/In) = H1

m(In). The Serre-Grothendieck correspondence gives us the exact sequence

0 → In → ⊕m≥0H
0(V, In(m)) → H1

m(In) → 0.

depth(Rm) ≥ 2 implies that⊕
m≥0

H0(V, In(m)) = H0(spec(R)− {m}, In) = (In)∗

where (In)∗ is the intersection of the primary components of In which are not m-primary. By the
theorem of Swanson [S] there exists a number e > 0 such that (In)m = (In)∗m for any m ≥ en and
n ≥ 1. Therefore, we have

λ(H1
m(In)) = σ(n)− τ(n), (1.5)

where

σ(n) =
en∑

m=0

h0(V, In(m)) and τ(n) =
en∑

m=0

λ((In)m). (1.6)

We will take e to be bigger than the degrees of homogeneous generators of I. The theorem will be

proved if we can show that both limits limn→∞
σ(n)
nd and limn→∞

τ(n)
nd exist.

Let us first consider limn→∞
σ(n)
nd . Let π : X −→ V be the blowing up of V along I. Let us denote

M = π∗OV (1) and L = IOX . Let η : Y = P(OX ⊕M) → X be the projectivization of the vector
bundle OX ⊕M on X. Then, dim Y = dim X + 1 = d. Let N = OY (e)⊗ η∗L. We have

h0(Y,Nn) = h0(X, Sen(OX ⊕M)⊗ Ln) =
en∑

m=0

h0(X,Mm ⊗ Ln).

Furthermore, it follows from [H, Exercise II.5.9] (see also [CEL, Lemma 3.3] and [HaT]) that π∗Ln = In

for n � 0. Thus, for n � 0,

h0(Y,Nn) =
en∑

m=0

h0(V,OV (m)⊗ In) =
en∑

m=0

h0(V, In(m)) = σ(n).
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By Lemma 1.2, limn→∞
h0(Y,Nn)

nd exists. Hence, there exists a limit limn→∞
σ(n)
nd .

Now, let us consider limn→∞
τ(n)
nd . Suppose I is generated by F1, . . . , Fl ∈ R and deg Fj = dj for

1 ≤ j ≤ l. Let S = R[s, F1t, . . . , Flt] ⊂ R[s, t] be the Rees algebra of the ideal IR[s] over the polynomial
ring R[s]. S can be viewed as a bi-graded ring with deg xi = (1, 0) for 1 ≤ i ≤ d, deg s = (1, 0), and
deg Fjt = (dj , 1) for 1 ≤ j ≤ l. Take an abitrary element f ∈ S. We observe that deg f = (en, n) if and
only if f has the following form

f =
∑

m1+···+ml=n

en−d1m1−···−dlml∑
j=0

bjs
en−d1m1−···−dlml−jFm1

1 · · ·Fml

l tn,

where bj ∈ R is homogeneous of degree j. Thus the map

Φn : S(en,n) →
en∑

m=0

(In)m

defined by Φn(f(s, t)) = f(0, 1) is a k-vector space isomorphism. Hence,

λ(S(en,n)) =
en∑

m=0

λ((In)m) = τ(n).

Let T = ⊕∞n=0S(en,n), then T = S∆ with ∆ = (e, 1). Since S is a finitely generated bi-graded k-
algebra and e is taken to be bigger than dj for all 1 ≤ j ≤ l, it follows from Lemma 1.1 that T is a finitely
generated k-algebra and dim T = d + 1. Thus, the Hilbert function H(T, n) = dimk Tn = λ(S(en,n)) is
given by a polynomial of degree d in n for n � 0 with a rational leading coefficient. This implies the
existence of the limit

lim
n→∞

τ(n)
nd

∈ R. (1.7)

The theorem is proved.

Remark 1.5. Let assumptions be as in the statement of Theorem 1.3. If ht I = d we have that
H0

m(R/In) = R/In for all n, so that λ(H0
m(R/In)) is the Hilbert polynomial of I for large n. Thus

lim
n→∞

λ(H0
m(R/In))
nd

=
e(I)
d!

where e(I) is the multiplicity of I. In the proof we in fact have that σ(n) =
∑en

m=0 h0(V,OV (m)) in
this special case.

2. Irrational asymptotic behaviour

In this section, we will give examples, stated in Theorems 0.2 and 0.3 of the introduction, in which
the limit proved to exist in Section 1 is an irrational number. This exhibits how complicated the length
λ(H0

m(R/In)) can be asymptotically. In fact, we will show that the construction given by the first
author in [Cu] provides an example.

Let S be a K3 surface defined over the complex field C with Pic(S) ∼= Z3. We can therefore identify
Pic(S) with integral points (x, y, z) ∈ Z3. Take S to be the K3 surface which has the intersection form

q(x, y, z) = 4x2 − 4y2 − 4z2, (2.1)
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where q(D) = D2 for any divisor D ∈ Pic(S). Such a surface S exists as shown in [Cu]. It is shown
there that a divisor D on S is ample if and only if it is in the interior of

NE(S) = {(x, y, z) ∈ R3 | 4x2 − 4y2 − 4z2 ≥ 0, x ≥ 0}.

Moreover, S is embedded into P3 by the divisor H = (1, 0, 0). Suppose (a, b, c) ∈ Z3 is such that
a > 0,

a2 − b2 − c2 > 0,√
b2 + c2 6∈ Q.

(2.2)

Since (a, b, c) is in the interior of NE(S), the divisor A = (a, b, c) is ample on S. Let C be a nonsingular
curve on S such that C ∼ A. Again, C exists as shown in [Cu].

Let R = C[x1, . . . , x4] be the coordinate ring of P3, and let I be the defining ideal of C in P3. We
will show that there exist (a, b, c) ∈ Z3 satisfying (2.2) and a curve C as above, such that

lim
n→∞

λ(H0
m(R/In))
n4 6∈ Q, (2.3)

where m = (x1, . . . , x4) is the maximal homogeneous ideal of R. Theorem 0.2 is thus an immediate
consequence.

As in proved in (1.5), (1.6) and (2.1) of Theorem 1.3,

lim
n→∞

λ(H0
m(R/In))
n4 = lim

n→∞

σ(n)
n4 + lim

n→∞

τ(n)
n4 ,

where limn→∞
τ(n)
n4 ∈ Q. It remains to show that there exist (a, b, c) ∈ Z3 satisfying (2.2) and a curve

C as above, such that

lim
n→∞

σ(n)
n4 6∈ Q.

Let I be the ideal sheaf of I on P3. Let π : X → P3 be the blowing up of P3 along the ideal sheaf I.
There exists a hyperplane H ′ of P3 such that H ′ · S = H. Let H̃ be the pull-back to X of H ′, and E

the exceptional divisor of the blowing up. Let λ1 = a−
√

b2 + c2 and λ2 = a +
√

b2 + c2. The following
facts were proved in [Cu].

Lemma 2.1. Suppose λ2 > 7. Then,

(1) h0(S,OS(mH − nC)) = 0 if m < λ2n.
(2) h0(S,OS(mH − nC)) = 1

2(mH − nC)2 + 2 if m > λ2n.
(3) h1(X,OX(mH̃ − nE)) = 0 if m > λ2n.

Proof. (1) follows from [Cu, Remark 6]. (2) is a consequence of [Cu, Theorem 7]. (3) follows from [Cu,
Theorem 9]. �

It was pointed out in [Cu, (11)] that

π∗OX(mH̃ − nE) ∼= In(m), (2.4)

Riπ∗OX(mH̃ − nE) = 0, for i > 0. (2.5)
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Thus, we can use the cohomology groups of OX(mH̃ − nE) to calculate σ(n). For convenience, we will
use Hi(X, mH̃−nE) and Hi(S, mH−nC) to denote Hi(X,OX(mH̃−nE)) and Hi(S,OS(mH−nC)),
respectively. When there is no danger of confusion, we shall further omit the space X and S in these
cohomology groups. It was also shown in [Cu, (12)] that there exists the following exact sequence:

0 → OX((m− 4)H̃ − (n− 1)E) → OX(mH̃ − nE) → OS(mH − nC) → 0. (2.6)

The existence of the desired example follows from the following theorem.

Theorem 2.2. There exist (a, b, c) ∈ Z3 satisfying (2.2) and a corresponding nonsingular curve C such
that, if I ⊂ R is the defining ideal of C, then

lim
n→∞

σ(n)
n4 6∈ Q,

and

lim
n→∞

λ(H0
m(R/In))
n4 6∈ Q.

Proof. Taking the long exact sequence of cohomology groups from the exact sequence (2.6), we get

0 → H0((m− 4)H̃ − (n− 1)E) →H0(mH̃ − nE) →

H0(mH − nC) → H1((m− 4)H̃ − (n− 1)E).

It follows from Lemma 2.1 that

H0(mH̃ − nE) ∼= H0((m− 4)H̃ − (n− 1)E) if m < λ2n, (2.7)

H0(mH̃ − nE) ∼= H0((m− 4)H̃ − (n− 1)E)⊕H0(mH − nC) if m > λ2n. (2.8)

Write m = 4n + r. Consider the following cases.

Case 1: r < 0. Since λ2 > 4, we have m < λ2n. Thus, using (2.7) and successive induction, we get

H0(mH̃ − nE) = H0(rH̃) = H0(OP3(r)) = 0. (2.9)

Case 2: r ≥ 0. If r > (λ2 − 4)n, i.e. m > λ2n, then using (2.8) and successive induction, we get
h0(mH̃ − nE) =

∑n
k=1 h0((r + 4k)H − kC) + 2n + h0(OP3(r)). Lemma 2.1 now gives

h0(mH̃ − nE) =
1
2

n∑
k=1

((r + 4k)H − kC)2 + 2n + h0(OP3(r)). (2.10)

On the other hand, if r < (λ2 − 4)n, then put t =
[

r
λ2 − 4

]
. By successive induction using both (2.7)

and (2.8), we get

h0(mH̃ − nE) =
∑t

k=1 h0((r + 4k)H − kC) + h0(OP3(r))
= 1

2
∑t

k=1((r + 4k)H − kC)2 + 2t + h0(OP3(r)).
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By (2.4), we have

σ(n) =
en∑

m=0

h0(mH̃ − nE)

=
(e−4)n∑
r=−4n

h0((r + 4n)H̃ − nE)

=
−1∑

r=−4n

h0((r + 4n)H̃ − nE) +
[(λ2−4)n]∑

r=0

h0((r + 4n)H̃ − nE)

+
(e−4)n∑

r=[(λ2−4)n]+1

h0((r + 4n)H̃ − nE).

This together with (2.9), (2.10) and (2) gives us

σ(n) =
[(λ2−4)n]∑

r=0

1
2

[
r

λ2−4

]∑
k=1

((r + 4k)H − kC)2 + 2
[ r

λ2 − 4

]
+ h0(OP3(r))


+

(e−4)n∑
r=[(λ2−4)n]+1

(
1
2

n∑
k=1

((r + 4k)H − kC)2 + 2n + h0(OP3(r))

)

=
[(λ2−4)n]∑

r=0

1
2

[
r

λ2−4

]∑
k=1

((r + 4k)H − kC)2


+

(e−4)n∑
r=[(λ2−4)n]+1

(
1
2

n∑
k=1

((r + 4k)H − kC)2
)

+
(e−4)n∑

r=0

h0(OP3(r))

+2
( [λ2−4)n]∑

r=0

[ r

λ2 − 4

]
+ n((e− 4)n− [(λ2 − 4)n]− 1)

)
.

Let

Q(s, r) =
1
2

s∑
k=1

((r + 4k)H − kC)2,

V (n) = 2
( [λ2−4)n]∑

r=0

[ r

λ2 − 4

]
+ n((e− 4)n− [(λ2 − 4)n]− 1)

)
and

U(n) =
(e−4)n∑

r=0

h0(OP3(r)).

Let

P (s, r) = Q(s, r)−Q(s− 1, r) =
1
2
((r + 4s)H − sC)2

10



with the convention that Q(s, r) = 0 for s < 1. For simplicity, let us also denote λ = λ2 − 4. Then, we
can rewrite σ(n) as follows:

σ(n) =
[λn]∑

r=[λ]+1

P (1, r) + · · ·+
[λn]∑

r=[λ(n−1)]+1

P (n− 1, r) +
(e−4)n∑

r=[λn]+1

Q(n, r) + U(n) + V (n). (2.11)

Let us consider one term
∑[λn]

r=[λl]+1 P (l, r) of the sum (2.11) for some 1 ≤ l ≤ n − 1. From the
intersection form q of (2.1) we have

λn]∑
r=[λl]+1

P (l, r) =
[λn]∑

r=[λl]+1

2
(
(r + (4− a)l)2 − (b2 + c2)l2

)

=
[λn]∑
r=1

2
(
(r + (4− a)l)2 − (b2 + c2)l2

)
−

[λl]∑
r=1

2
(
(r + (4− a)l)2 − (b2 + c2)l2

)
=
(

2
3
([λn])3 + 2(4− a)l([λn])2 + 2((4− a)2 − b2 − c2)l2([λn])

)
−
(

2
3
([λl])3 + 2(4− a)l([λl])2 + 2((4− a)2 − b2 − c2)l2([λl])

)
+ [λn]2 + (

1
3

+ 2(4− a)l)[λn] + [λl]2 + (
1
3

+ 2(4− a)l)[λl].

Note that λl − 1 < [λl] < λl for any l. Thus, we have

[λn]∑
r=[λl]+1

P (l, r) =
(

2
3
(λn)3 + 2(4− a)l(λn)2 + 2((4− a)2 − b2 − c2)l2(λn)

)

−
(

2
3
(λl)3 + 2(4− a)l(λl)2 + 2((4− a)2 − b2 − c2)l2(λl)

)
+ F (n, l)

where F (n, l) is a function such that there exists a polynomial G(n, l) of degree 2 with positive real
coefficients satisfying | F (n, l) |< G(n, l) for all n, l ∈ N.

Taking the sum as l goes from 1 to (n− 1), we get

n−1∑
l=1

[λn]∑
r=[λl]+1

P (l, r) =
(

2
3
λ3n4 + (4− a)λ2n4 +

2
3
((4− a)2 − b2 − c2)λn4

)

−
(

1
6
λ3n4 +

1
2
(4− a)λ2n4 +

1
2
((4− a)2 − b2 − c2)λn4

)
+ O(n3).

We also have

Q(n, r) =
n∑

k=1

2
(
(r + (4− a)k)2 − (b2 + c2)k2

)
= 2r2n + 2(4− a)rn2 +

2
3
((4− a)2 − b2 − c2)n3 + H(n, r)

11



where H(n, r) is a real polynomial of degree ≤ 2 in n and r. Thus,
(e−4)n∑

r=[λn]+1

Q(n, r) =
(e−4)n∑

r=1

Q(n, r)−
[λn]∑
r=1

Q(n, r)

=
(

2
3
(e− 4)3n4 + (4− a)(e− 4)2n4 +

2
3
((4− a)2 − b2 − c2)(e− 4)n4

)
−
(

2
3
n([λn])3 + (4− a)n2([λn])2 +

2
3
((4− a)2 − b2 − c2)n3[λn]

)
+ O(n3)

= An4 −
(

2
3
λ3n4 + (4− a)λ2n4 +

2
3
((4− a)2 − b2 − c2)λn4

)
+ O(n3),

where A ∈ Q. Moreover,

U(n) =
(e−4)n∑

r=0

h0(OP3(r)) =
(e−4)n∑

r=0

(
r + 3

3
)

=
1
24

(e− 4)4n4 + O(n3) = Bn4 + O(n3)

with B ∈ Q. Further, we have V (n) = O(n2). Hence,

σ(n) = (A + B)n4 −
(

1
6
λ3 +

1
2
(4− a)2λ2 +

1
2
((4− a)2 − b2 − c2)λ

)
n4 + O(n3).

Finally, take a = 4, b = 3 and c = 2, then clearly (a, b, c) satisfies all the requirements in (2.2) and

λ2 = a +
√

b2 + c2 > 7. We have σ(n) = (A + B)n4 + 13
√

13
3 n4 + O(n3), where A,B ∈ Q. Therefore,

lim
n→∞

σ(n)
n4 = A + B +

13
√

13
3

6∈ Q.

The theorem is proved. �

We now prove Theorem 0.3. Let I and R be the ideal and ring of this section. Let m = (x1, . . . , xr),
S = Rm, J = Im. Let E be the injective hull of C.

HomS(H0
mS(S/Jn), E) ∼= Extd

S(S/Jn, S)

by local duality (c.f. Theorem 3.5.8 [BH]). Thus

λ(Extd
S(S/Jn, S)) = λ(H0

mS(S/Jn)) = λ(H0
m(R/In))

for all n (c.f. Proposition 3.2.12 [BH]). Now the theorem follows from Theorem 0.2.
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