EULER AND BERNOULLI NUMBERS AND $\zeta(s)$

Tewodros Amdeberhan

Department of Mathematics, Temple University, Philadelphia PA 19122, USA
tewodros@euclid.math.temple.edu

We recall that the 'even-index' Bernoulli numbers, $B_{2 n}$ are defined by the generating function relation:

$$
\begin{equation*}
\frac{x}{e^{x}-1}+\frac{1}{2} x=\sum_{n=0}^{\infty} \frac{B_{2 n}}{(2 n)!} x^{2 n} \tag{1-e}
\end{equation*}
$$

and the 'odd-index' Euler numbers, $E_{2 n+1}$ by the relation:

$$
\begin{equation*}
x \sec (x)=\sum_{n=0}^{\infty} \frac{E_{2 n+1}}{(2 n+1)!} x^{2 n+1} . \tag{1-o}
\end{equation*}
$$

Then, the following identities link the Bernoulli numbers with the Reimann-Zeta function, $\zeta(s)$. For the even-index Bernoulli numbers, we have

$$
\begin{equation*}
\frac{4^{m}-1}{4^{m}} \zeta(2 m)=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2 m}}=(-1)^{m-1} \frac{4^{m}\left(4^{m}-1\right) B_{2 m}}{2(2 m)!}\left(\frac{\pi}{2}\right)^{2 m} \tag{2-e}
\end{equation*}
$$

for integers, $m \geq 1$. Note also the connection that (2-e) has with the tangent function:

$$
\frac{x}{2} \tan (x)=\sum_{m=1}^{\infty}(-1)^{m-1} \frac{4^{m}\left(4^{m}-1\right) B_{2 m}}{2(2 m)!} x^{2 m}
$$

Similarly, for the odd-index Euler numbers we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2 m+1}}=\frac{E_{2 m+1}}{2(2 m+1)!}\left(\frac{\pi}{2}\right)^{2 m+1} \tag{2-o}
\end{equation*}
$$

for integers, $m \geq 0$. We also get,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{(4 n+1)^{2 m+1}}=\frac{E_{2 m+1}}{4(2 m+1)!}\left(\frac{\pi}{2}\right)^{2 m+1}+\frac{2^{2 m+1}-1}{2^{2 m+2}} \zeta(2 m+1) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\binom{k+1}{1} B_{k}+\binom{k+1}{2} B_{k-1}+\cdots+\binom{k+1}{k} B_{1}+B_{0}=0 \tag{4-e}
\end{equation*}
$$

where $B_{0}=1, B_{1}=-\frac{1}{2}$, and $B_{2 n+1}=0$ for $n>0$.

$$
\begin{equation*}
(-1)^{m}\binom{2 m+1}{1} E_{1}+(-1)^{m-1}\binom{2 m+1}{3} E_{3}+\cdots-\binom{2 m+1}{2 m-1} E_{2 m-1}+E_{2 m+1}=0 \tag{4-o}
\end{equation*}
$$

where $E_{1}=1$, and $E_{2 n}=0$ for $n \geq 0$.
NOTE: From (4-e) and (4-o), we can see that $B_{2 n}$ are rational numbers, while $\frac{E_{2 n+1}}{2 n+1}$ are positive integers. We also have the following inter-relation:

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{j-1} 4^{j}\left(4^{j}-1\right)\binom{2 n+1}{2 j} B_{2 j} E_{2 n-2 j+1}=2 n E_{2 n+1} \tag{5}
\end{equation*}
$$

H. Chen [1] rediscovers Euler's formula $\zeta(2)=\frac{\pi^{2}}{6}$, using a simple transformation. Here, we give such transformations in more dimensions. Observe the appearance of Euler and Bernoulli numbers measuring deficiencies of these transformations in "fitting" a cube into a tetrahedron.

Denote $\square^{m}:=\mathrm{m}$-dimensional unit cube, and the m -dimensional tetrahedron given by $\Delta^{m}:=\left\{u \left\lvert\, u_{1}+u_{2}+\cdots+u_{m} \leq \frac{\pi}{2}\right., u_{i} \geq 0\right\}$ and apply the transformation:

$$
x_{1}=\frac{\sin \left(u_{1}\right)}{\cos \left(u_{2}\right)}, x_{2}=\frac{\sin \left(u_{2}\right)}{\cos \left(u_{3}\right)}, \ldots, x_{m}=\frac{\sin \left(u_{m}\right)}{\cos \left(u_{1}\right)}
$$

on Δ^{m}, then denoting the resulting domain by R_{m} we find that

$$
\begin{equation*}
\int_{\Delta^{2 m}} d u=\int_{R_{2 m}} \frac{d x}{1-x_{1}^{2} \ldots x_{2 m}^{2}}=\frac{2(-1)^{m-1}}{4^{m}\left(4^{m}-1\right) B_{2 m}} \int_{\square^{2 m}} \frac{d x}{1-x_{1}^{2} \ldots x_{2 m}^{2}} \tag{6-e}
\end{equation*}
$$

for $m \geq 1$. And also that,

$$
\begin{equation*}
\int_{\Delta^{2 m+1}} d u=\int_{R_{2 m+1}} \frac{d x}{1+x_{1}^{2} \ldots x_{2 m+1}^{2}}=\frac{2}{E_{2 m+1}} \int_{\square^{2 m+1}} \frac{d x}{1+x_{1}^{2} \ldots x_{2 m+1}^{2}} \tag{6-o}
\end{equation*}
$$

for $m \geq 0$.

References

[1] H. Chen, Euler's formula $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ by double integration, Math. and Computer Educ. 30 \#3 (1996), 295-297.

