
A one-parameter family of cylindrically

symmetric solution approaching Einstein’s

universe

T. Amdeberhan∗

DIMACS, Rutgers Univ.
96 Frelinghuysen Rd.

Piscataway, NJ 08854-8010
and

DeVry College of Technology, NJ, USA
amdberha@nj.devry.edu,

tewodros@math.temple.edu

29 January 2003

Abstract

In this note we describe a stationary cylindrically symmetric solution of
Einstein’s equation with matter consisting of a positive cosmological con-
stant and an infinite cylinder of rotating dust. The solution approaches
Einstein static universe solution. This result is complementary to Iftime
[Class Quantum Grav 19 (2002)].

1 Introduction

The basic partial differential equations of general relativity are Einstein’s field
equations. In general these equations are essentially hyperbolic and are coupled
to other partial differential equations describing the matter content of spacetime.
A special feature of the Einstein equations is that initial data cannot be given
freely. They must satisfy constraint equations. To prove existence theorems, it
is necessary to show the existence of a solution of the constraints, and the usual
method here relies on the theory of elliptic equations.
The local existence theory of solutions of the Einstein equations is rather well
understood. On the other hand, the problem of proving global existence theo-
rems is totally another matter (an important aspect and the depth of existence
theorems in general relativity which one should be aware of is their relation
to the cosmic censorship hypothesis, see cf.[6].) Progress is made possible by
focusing on simplified models. The most common simplifications are to look
at solutions with various types of axial-symmetry and solutions for small data.
The most extensive results on global inhomogeneous solutions of the Einstein
equations up to now concern spherically symmetric solutions.

∗this work was done during the author’s stay at DIMACS
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At present we concentrate on yet another breed of symmetry of solutions: cylin-
drical. More precisely, we study a spacetime satisfying Einstein’s field equations
with positive cosmological constant, describing a dust cylinder in non-rigid ro-
tation, which approaches Einstein’s cosmological static universe on the axis of
rotation. This stationary cylindrically symmetric solutions result parallels and
is complementary to that of Iftime [3].
The problem of Einstein’s equation without cosmological constant and with
negative cosmological constant have already appeared in the literature. In [1], a
vacuum stationary cylindrically symmetric solution with negative cosmological
constant is matched to an interior rotating dust cylinder cut out of a Gödel
universe, whose metric might read as

ds2 = dR2 + dZ2 + 4h2(sinh2ρ− sinh4ρ)dψ2 − 4(2)
1
2hsinh2ρdψdT − dT 2.

Van Stockum [7] found a rigidly rotating infinitely long dust cylinder without
cosmological constant which has various exterior metrics.
The spatially closed, static Einstein universe in usual form,

ds2E = dη2 + sin2 η(dθ2 + sin2 θdϕ2)− c2dψ2(1)
ϕ ∈ [0, 2π], η ∈ [0, π], θ ∈ [0, π], ψ ∈ R

is the simplest cosmological dust model with constant curvature K = const and
positive cosmological constant Λ = const, Λ > 0. The field is produced by a
energy-momentum tensor Tab of perfect-fluid:

κTab = −Λgab + µuaub, µ > 0, Λ = const. > 0.(2)

where Λ = 1
K2 and µ = 2

K2 = 2Λ = const.. The Einstein metric in cylindrical
coordinates [4] will be used vigorously:

ds2 = e2V0(r)(dr2 + dz2) +W 2
0 (r)dϕ2 − dt2(3)

where W0(r) and V0(r) have the form :

V0(r) =
1
2
ln
(
γ − λ2

(
1− e2λ(r−ν)

1 + e2λ(r−ν)

)2)
− ln

√
Λ(4)

W0(r) =
1− e2λ(r−ν)

(1− e2λ(r−ν))
γ

λ3
e2λ(r−ν)( 1

2−
γ

2λ3 )(5)

and γ, α, λ 6= 0 and ν are constants of integration and µ = 2Λ = const, the
dust density, respectively.
The space-time of special relativity is described mathematically by the Minkowski
space (M,η). It has been shown that Minkowski spacetime is conformal to a
finite region of the Einstein static universe. The de Sitter space-times are also
conformal to a finite part of the Einstein universe ds2E and generally, all the
closed Robertson-Walker metrics, including Minkowski spacetime and the Sit-
ter spacetimes as special cases, are conformally equivalent to the Einstein static
universe [2].
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2 The metric

Stationary gravitational fields are characterized by the existence of a timelike
Killing vector field ξ. Therefore in a stationary space-time (M, g) we can con-
struct a global causal structure. In other words we can introduce a coordinate
system (xa) = (xα, t) with ξ = ∂

∂t . The metric gab in these coordinates is
independent of t and has, in general, the following form:

ds2 = hαβdxαdxβ + F (dt+Aαdxα)2, F ≡ ξaξ
a < 0(6)

The unitary timelike vector field h0 ≡ (−F )−
1
2 ξ is globally defined on M ; it

indicates the time-orientation in every point p ∈ M and gives a global time
coordinate t on M [5]. Stationarity (i.e. time translation symmetry) implies
that there exists a 1-dimensional group G1 of isometries φt whose orbits are
timelike curves parameterized by t. Using the 3-projection formalism (devel-
oped by Geroch 1971) of a four-dimensional spacetime manifold (M, g) onto
the three-dimensional differentiable factor manifold S3 = M/G1, the Einstein’s
field equations

Rab −
1
2
Rgab = κTab,(7)

for stationary fields take the following simplified form:



R
(3)
ab =

1
2
F−2(

∂F

∂xa

∂F

∂xb
+ ωaωb) + κ(hc

ah
d
b − F−2h̃abξ

aξb)(Tcd −
1
2
Tgcd);

F ‖a
,a = F−1h̃ab(

∂F

∂xa

∂F

∂xb
− ωaωb)− 2κF−1ξaξb(Tab −

1
2
Tgab);

ω‖a
a = 2F−1h̃ab

∂F

∂xa
ωb

Fεabcωc,b = 2κha
bT

b
c ξ

c

(8)

Here, “‖” denotes the covariant derivative associated with the conformal metric
tensor h̃ab = −Fhab on S3 (hab = gab + h0

ah
0
b is the projection tensor) and

ωa = 1
2ε

abcdξbξc;d 6= 0 1 is the rotational vector (ωaξa = 0, £ξω = 0). We shall
consider that the metric gab has a cylindrical symmetry, i.e. it admits as well an
Abelian group of isometries G2 generated by two spacelike Killing vector fields
η and ζ, £ηgab = £ζgab = 0, ηaη

a > 0, ζaζa > 0 and the integral curves of η
are closed (spatial) curves. We are using Kundt’s theorem which states that an
axisymmetric metric can be written in a (2+2)-split if and only if the conditions

(η[aξbξc;d]);e = 0 = (ξ[aηbηc;d]);e(9)

are satisfied. The existence of the orthogonal 2-surfaces is assured for the dust
solutions, provided that the 4-velocity of dust satisfies the condition

u[aξbηc] = 0, ua = (−H)−
1
2 (ξa + Ωηa) = (−H)−

1
2 liξa

i , where(10)

li ≡ (1,Ω), H = γij l
ilj , γij ≡ ξa

i ξaj , i, j = 1, 2, ξ1 = ξ; ξ2 = η

1Here we use the convention: round brackets denote symmetrization and square brackets
antisymmetrization and Ω is the angular velocity.
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in other words, if the trajectories of the dust lie on the transitivity surfaces of
the group generated by the Killing vectors ξ, η. In what follows, we will assume
that this is true. Using an adapted coordinate system, the metric (6) can be
written in standard form

ds2 = e−2U [e2V (dr2 + dz2) +W 2dϕ2]− e2U (dt+Adϕ)2(11)

where the functions 2 U , V ,W andA depend only on the coordinates (r, z); these
coordinates are also conformal flat coordinates on the 2-surface S2 orthogonal to
2-surface T2 of the commuting Killing vectors ξ = ∂t and η = ∂ϕ. If we identify
the 4-velocity of the dust ua with timelike Killing vector ξa = ∂t = (0, 0, 0, 1)
then (11) represents a co-moving system (x1 = r, x2 = z, x3 = ϕ, x0 = t) with
dust, ua = ξa = (0, 0, −e2UA, −e2U ) and g11 = g22 = e−2U+2V = h11 = h22,

g33 = e−2UW 2 − e2V A2 = h33, g00 = ξ0 = −e2U = F,
g03 = ξ3 = −e2UA, g13 = g23 = g10 = g20 = 0.

(12)

We can use the complex coordinates (q, q̄) on the 2-surface S2:

q =
1√
2
(r + iz)(13)

and the stationary axisymmetric metric (11) takes the Lewis- Papapetrou form

ds2 = e−2U (e2V dqdq̄ +W 2dϕ2)− e2U (dt+Adϕ)2(14)

The surface element on T2 is fab = 2ξ[aηb], fabf
ab < 0 and the surface element

on S2 is f̃ab, the dual tensor of fab, f̃ab = 1
2εabcdf

cd. Thus the Einstein’s dust
equations with cosmological constant Λ > 0 (8) for the metric (12) will take the
following form:



∂2W

∂q∂q̄
= −ΛWe2V −2U

∂2U

∂q∂q̄
+

1
2W

(
∂U

∂q

∂W

∂q̄
+
∂U

∂q̄

∂W

∂q
) +

1
2W 2

e4U ∂A

∂q

∂A

∂q̄
= (µ− 2Λ)

e2V −2U

4

∂2A

∂q∂q̄
− 1

2W
(
∂A

∂q

∂W

∂q̄
+
∂A

∂q̄

∂W

∂q
) + 2(

∂A

∂q

∂U

∂q̄
+
∂A

∂q̄

∂U

∂q
) = 0

∂2W

∂q∂q̄
− 2

∂W

∂q

∂V

∂q
+ 2W (

∂U

∂q
)2 − 1

2W
e4U (

∂A

∂q
)2 = 0

∂2V

∂q∂q̄
+
∂U

∂q

∂U

∂q̄
+

1
(2W )2

e4U ∂A

∂q

∂A

∂q̄
= −Λ

e2V −2U

2

(15)

Here ∆ =
∂2

∂r2
+

∂2

∂z2
= 2

∂2

∂q∂q̄
is the Laplace operator and the energy-

momentum tensor Tab has the form (2) with constant Λ > 0 and µ(r) > 0.

2The function W is defined invariantly as W 2 ≡ −2ξ[aηb]ξ
aηb.

4



The conservation law T ab
;b = 0 implies U,a = 0. We obtain then U = constant

as a consequence of the field equations and it will be used in the place of one
of the Einstein’s equations. Assuming that U = 0 in the expressions of the
metric functions (12) we obtain that the matter current paths are geodesics
(u̇a = ua;bu

b = 0), without expansion (θ = ua
;a = 0), in a non-rigidly rotation

(ω =
√

1
2ωabωab 6= 0) and with σ 6= 0. Also, by taking into account the third

symmetry (the presence of the spacelike Killing vector field ζ = ∂z) and for the
metric

ds2 = e2V (r)(dr2 + dz2) +W 2(r)dϕ− (dt+A(r)dϕ)2(16)

we can reduce the field equations (15) to the ordinary differential equations

W ′′ = −2ΛWe2V

2A′2 = (µ− 2Λ)W 2e2V

A′′

A′ = 2
W ′

W

W ′′ − 4W ′V ′ − 1
W
A′2 = 0

V ′′ +
1

2W 2
A′2 = −Λe2V

(17)

in the unknown metric functions V (r), W (r), A(r) and µ(r), where we denoted
∂
∂r =′ .
The system of equations (17) can be further compactified to the following form:

W ′′

W
= −2Λe2V

A′ = aW 2

V ′ = bW 2

(µ− 2Λ)e2V = 2a2W 2

W ′′ − 4bW ′W 2 − a2W 3 = 0

(18)

where a 6= 0, b 6= 0 are positive constants and Λ is the positive cosmological
constant. The system (18) does not have an explicit analytical solution for
W (r), V (r), A(r) and µ(r) as functions of radius r. Therefore we shall look
forward to derive a good approximation of the solution and this we accomplish
by “fattening” Einstein’s solutions along a narrow tube (r, b; a). We remark
from the form of the system, that we are looking for a one-parameter3 family
gij(b) of solutions, where b measures the size of perturbation, in the sense that
gij(b) are differentiable in b, and for b = 0 we obtain Einstein universe.
In what follows we shall show that the solution of (18) is approaching Einstein
universe solution gij(r, 0), as radius r goes to zero:

gij(r, b) = gij(r, 0) + bgij,b(r, 0) +
b2

2
gij,bb(r, 0) + ....(19)

We shall perturb the solution as power series in b about Einstein universe solu-
tion and give a good approximation to gij(b) for sufficiently small b (note: a is
free.) To do so we differentiate the system (18) with respect to b, then take b
to be zero and obtain the following equations:

3It is actually a two-parameter family of solutions gij(a, b)
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
Ẇ ′′(r, 0)− 4W 2

0W
′
0 − 3a2W 2

0 Ẇ (r, 0) = 0
V̇ ′(r, 0) = W 2

0

µ̇(r, 0)e2V0 = 0
Ȧ′(r, 0) = 2aW0Ẇ (r, 0)

(20)

for the functions Ẇ (r, 0), V̇ (r, 0), µ̇(r, 0) Ȧ(r, 0). We designated by ∂
∂b =˙ , and

W0(r), V0(r) are the metric functions of the Einstein universe.
By choosing appropriate constants of integration ν = 0, λ = 1, γ = 1 in (5) we
get W0(r) = 1, [4]. Then the system (20) can be completely integrated and take
the following form:

Ẇ (r, 0) = [c1sinh(
√

3ar) + c2cosh(
√

3ar)].

Ȧ(r, 0) =
2√
3
[c1cosh(

√
3ar) + c2sinh(

√
3ar)]

µ̇(r, a) = 0

V̇ (r, 0) =
2b√
3a

[c1cosh(
√

3ar) + c2sinh(
√

3ar)].

(21)

Then gij(r, 0)+ bgij,b(r, 0) will give a good approximation to the solution of the
Einstein field equations (18), gij(r, b), for small b when r approaches the axis of
rotation η = 0:



W (r, b) = 1 + b[c1sinh(
√

3ar) + c2cosh(
√

3ar)]

A(r, b) =
2b√
3
[c1cosh(

√
3ar) + c2sinh(

√
3ar)]

µ(r, b) = 2Λ

V (r, b) = V0(r) + br +
b2√
3a

[c1cosh(
√

3ar) + c2sinh(
√

3ar)].

(22)

The resulting metric thus becomes an approximant around the axis of rotation
and it depends on three parameters a, b and Λ.
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