
SUPERCONGRUENCES FOR
THE ALMKVIST-ZUDILIN NUMBERS

TEWODROS AMDEBERHAN AND ROBERTO TAURASO

Abstract. Given a prime number p, the study of divisibility properties of a sequence c(n)
has two contending approaches: p-adic valuations and superconcongruences. The former
searches for the highest power of p dividing c(n), for each n; while the latter (essentially)
focuses on the maximal powers r and t such that c(prn) is congruent to c(pr−1n) modulo pt.
This is called supercongruence. In this paper, we prove a conjecture on supercongruences
for sequences that have come to be known as the Almkvist-Zudilin numbers. Some other
(naturally) related family of sequences will be considered in a similar vain.

1. Introduction

The Apéry numbers A(n) =
∑n

k=0

(
n
k

)2(n+k
k

)2
were valuable to R. Apéry in his celebrated

proof [1] that ζ(3) is an irrational number. Since then these numbers have been a subject of
much research. For example, they stand among a host of other sequences with the property

A(prn) ≡p3r A(pr−1n)

now known as supercongruence − a term dubbed by F. Beukers [2].

At the heart of many of these congruences sits the classical example
(
pb
pc

)
≡p3

(
b
c

)
which is

a stronger variant of the famous congruence
(
pb
pc

)
≡p

(
b
c

)
of Lucas. For a compendium of

references on the subject of Apéry-type sequences, see [9].

Let us begin by fixing notational conventions. Denote the set of positive integers by N+. For
m ∈ N+, let ≡m represent congruence modulo m. Throughout, assume p ≥ 5 is a prime.

In this paper, true to tradition, we aim to investigate similar type of supercongruences for
the following family of sequences. For integers i ≥ 0 and n ≥ 1, define

ai(n) : =

b(n−i)/3c∑
k=0

(−1)n−k
(

3k + i

k

)(
2k + i

k

)(
n

3k + i

)(
n+ k

k

)
3n−3k−i

In recent literature, a0(n) are referred to as the Almkvist-Zudilin numbers. Our motivation
for the present work here emanates from the following claim found in [6] (see also [3], [7]).

Conjecture 1.1. For a prime p and n ∈ N+, the Almkvist-Zudilin numbers satisfy

a0(pn) ≡p3 a0(n).
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Our main results can be summed up as:
if p is a prime and n ∈ N+, then a0(pn) ≡p3 a0(n) and ai(pn) ≡p2 0 for i > 0.

The organization of the paper is as follows. Section 2 lays down some preparatory results
to show the vanishing of ai(pn) modulo p2, for i > 0. Section 3 sees the completion of the
proof. Our principal approach in proving the main conjecture a0(pn) ≡p3 a0(n) relies on a
“machinery” we develop as a proof strategy which maybe described schematically as:

reduction + p-identities.

Sections 4 and 5 exhibit its elaborate execution. The reduction brings in a tighter claim and
it also offers an advantage in allowing to work with a single sum instead of a double sum.
In Section 6, we complete the proof for Conjecture 1.1. The paper concludes with Section 7
where we declare an improvement on the results from Section 3 which states a congruence
for the family of sequences ai(pn) modulo p3, when i > 0. Furthermore, in this last section,
the reader will find a proof outline guided by our “machinery”.

2. Preliminary results

Fermat quotients are numbers of the form qp(x) = xp−1−1
p

and they played a useful role in

the study of cyclotomic fields and Fermat’s Last Theorem, see [8]. The next three lemmas
are known and we give their proofs for the sake of completeness.

Lemma 2.1. If a 6≡p 0 then for d ∈ Z,

qp(a
d) ≡p2 d qp(a) + p

(
d

2

)
qp(a)2.(2.1)

Proof. Since by Fermat’s little theorem ap−1 ≡p 1 then it follows that(
ap−1

)d
=
(
1 + (ap−1 − 1)

)d ≡p3 1 + d(ap−1 − 1) +

(
d

2

)
(ap−1 − 1)2.

�

Lemma 2.2. Let Hn =
∑n

j=1
1
j

be the n-th harmonic number. Then, for n ∈ N+, we have

(2.2)
n∑
k=1

(−1)k
(
n

k

)(
n+ k

k

)
1

k
= −2Hn.

Proof. For an indeterminate y, a simple partial fraction decomposition proves the identity
(see [5, Lemma 3.1])

n∑
k=0

(−1)k
(
n

k

)(
n+ k

k

)
1

k + y
=

(−1)n

y

n∏
j=1

y − j
y + j

.(2.3)

Now, subtract 1
y

from both sides and take the limit as y → 0. The right-hand side takes the

form

1

n!
lim
y→0

[∏n
j=1(j − y)−

∏n
j=1(j + y)

y

]
= −2

n∑
k=1

1

k
.

The conclusion is clear. �
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Lemma 2.3. Suppose p is a prime and 0 ≤ k < p/3. Then,

(−1)k
(
bp/3c
k

)(
bp/3c+ k

k

)
≡p
(

3k

k, k, k

)
3−3k.

Proof. We observe that
(
n
k

)(
n+k
k

)
=
(
2k
k

)(
n+k
2k

)
. If p ≡3 1, then bp

3
c = p−1

3
and hence(p−1

3
+ k

2k

)
=

p−1
3

(p−1
3

+ k)

(2k)!

k−1∏
j=1

(
p− 1

3
± j
)

≡p
(−1)k(3k − 1)

32k(2k)!

k−1∏
j=1

(3j ± 1) =
(−1)k(3k)!

33k(2k)!k!
.

Therefore, we gather that

(−1)k
(p−1

3

k

)(p−1
3

+ k

k

)
= (−1)k

(
2k

k

)(p−1
3

+ k

2k

)
≡p

(3k)!

33k!k!3
=

(
3k

k, k, k

)
3−3k.

The case p ≡3 −1 runs analogously. �

Corollary 2.4. For a prime p and an integer 0 < i < p
3
, we have the congruences

p−1∑
k=1

(
3k

k, k, k

)
3−3k

k
≡p

bp/3c∑
k=1

(
3k

k, k, k

)
3−3k

k
≡p 3qp(3),

p−1∑
k=0

(
3k

k, k, k

)
3−3k

k + i
≡p

bp/3c∑
k=0

(
3k

k, k, k

)
3−3k

k + i
≡p 0.

Proof. For the first assertion, we combine (2.2), Lemma 2.3 and the congruence ([4, p. 358])

Hbp/3c ≡p −3

bp/3c∑
r=1

1

p− 3r
≡p −

3qp(3)

2
.

The second congruence follows from (2.3) with y = i and Lemma 2.3. �

3. Main results on the sequences ai(n) for i > 0

Theorem 3.1. For a prime p and n, i ∈ N+ with i < p
3
, we have ai(pn) ≡p2 0.

Proof. Let k = pm+ r for 0 ≤ r ≤ p− 1. Note: 3k + i = 3pm+ 3r + i ≤ pn. Write

ai(pn) =

bn/3c∑
m=0

p−1∑
r=0

(−1)pn−pm−r
(

3pm+ 3r + i

pm+ r

)(
2pm+ 2r + i

pm+ r

)
·
(

pn

3pm+ 3r + i

)(
pn+ pm+ r

pm+ r

)
3pn−3pm−3r−i.

If t := 3r + i ≥ p+ 1, it is easy to show that the following terms vanish modulo p2:(
3pm+ t

pm+ r

)(
2pm+ 2r + i

pm+ r

)(
pn

3pm+ t

)
=

(
3pm+ t

pm+ r, pm+ r, pm+ r + i

)(
pn

3pm+ t

)
.
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Therefore, we may restrict to the remaining sum with 3r + i ≤ p:

ai(pn) =

bn/3c∑
m=0

b(p−i)/3c∑
r=0

(−1)n−m−r
(

3pm+ 3r + i

pm+ r

)(
2pm+ 2r + i

pm+ r

)
·
(

pn

3pm+ 3r + i

)(
pn+ pm+ r

pm+ r

)
3pn−3pm−3r−i.

We need Lucas’s congruence
(
pb+c
pd+e

)
≡p
(
d
d

)(
c
e

)
to arrive at

ai(pn) ≡p
bn/3c∑
m=0

b(p−i)/3c∑
r=0

(−1)n−m−r
(

3m

m

)(
3r + i

r

)(
2m

m

)(
2r + i

r

)
·
(

pn

3pm+ 3r + i

)(
n+m

m

)
3pn−3pm−3r−1.

For 0 < j < p, we apply Gessel’s congruence
(
p
j

)
≡p2 (−1)j−1 p

j
(if p = 3r + i, in this case,

still the corresponding term properly absorbs into the sum below) so that(
pn

3pm+ 3r + i

)
=

pn

3pm+ 3r + i

(
pn− 1

3pm+ 3r + i− 1

)
=

pn

3pm+ 3r + i

(
p(n− 1) + p− 1

3pm+ 3r + i− 1

)
≡p2 (−1)r+i−1

pn

3r + i

(
n− 1

3m

)
,

which leads to

ai(pn) ≡p2 pn
bn/3c∑
m=0

b(p−i)/3c∑
r=0

(−1)n−m−r
(

3m

m

)(
3r + i

r

)(
2m

m

)(
2r + i

r

)
· (−1)r+i−1

3r + i

(
n− 1

3m

)(
n+m

m

)
3pn−3pm−3r−i.

Next, we use Fermat’s Little Theorem and decouple the double sum to obtain

ai(pn) ≡p2 n
bn/3c∑
m=0

(−1)n−m+i−13n−3m−i
(

3m

m

)(
2m

m

)(
n− 1

3m

)(
n+m

m

)

· p
b(p−i)/3c∑
r=0

(
3r + i

r

)(
2r + i

r

)
3−3r

3r + i
.

It suffices to verify the sum over r vanishes modulo p. To achieve this, apply partial fraction
decomposition and Corollary 2.4 (upgrading the sum to bp/3c is harmless here). Thus,

bp/3c∑
k=0

(
3k + i

k

)(
2k + i

i

)
3−3k

3k + i
=

bp/3c∑
k=0

(
3k

k, k, k

)
3−3k

i−1∏
j=1

(3k + j)
i∏

j=1

(k + j)−1

=
i∑

j=1

αj(i)

bp/3c∑
k=0

(
3k

k, k, k

)
3−3k

k + j
≡p

i∑
j=1

αj(i) · 0 = 0;

where αj(i) ∈ Q are some constants. We have enough reason to conclude the proof. �
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4. The reduction on the sequence a0(n)

Our proof of Conjecture 1.1 requires a slightly more delicate analysis than what has been
demonstrated in the previous sections for the sequences ai(n), where i > 0. As a first major
step forward, we state and prove the following somewhat stronger result. This will be crucial
in scaling down a double sum, which emerges (see proof below) as an expression for the
sequence a0(pn), to a single sum.

Theorem 4.1. The congruence

p−1∑
r=1

(−1)r
(

3pm+ 3r

pm+ r

)(
2pm+ 2r

pm+ r

)(
pn

3pm+ 3r

)(
p(n+m) + r

pm+ r

)
3−3r(4.1)

≡p3 p
(

3m

m

)(
2m

m

)(
n

3m

)(
n+m

m

)
qp(3

−(n−3m))

or
p−1∑
r=0

(−1)r
(

3pm+ 3r

pm+ r

)(
2pm+ 2r

pm+ r

)(
pn

3pm+ 3r

)(
p(n+m) + r

pm+ r

)
3−3r

≡p3
(

3m

m

)(
2m

m

)(
n

3m

)(
n+m

m

)
3−(n−3m)(p−1)

implies a0(pn) ≡p3 a0(n).

Proof. Let k = pm+ r for 0 ≤ r < p. Then, by using the new parameters,

a0(pn) =
n−1∑
m=0

3p(n−3m)(−1)n−m
p−1∑
r=0

(−1)r
(

3pm+ 3r

pm+ r

)(
2pm+ 2r

pm+ r

)
·
(

pn

3pm+ 3r

)(
p(n+m) + r

pm+ r

)
3−3r

Let’s isolate the case r = 0, then, from
(
pb
pc

)
≡p3

(
b
c

)
and the hypothesis we get

a0(pn) ≡p3
n−1∑
m=0

3p(n−3m)(−1)n−m
(

3m

m

)(
2m

m

)(
n

3m

)(
n+m

m

)[
1 + pqp(3

−(n−3m))
]

≡p3
n−1∑
m=0

(−1)n−m
(

3m

m

)(
2m

m

)(
n

3m

)(
n+m

m

)
3(n−3m) = a0(n).

�

5. Further Preliminary results

In this section, we build a few valuable results aiming at the proof of Theorem 4.1 and hence
that of Conjecture 1.1.

Lemma 5.1. If a > b ≥ 0 and 0 < j < p then

(5.1)

(
ap

bp+ j

)
≡p2 (a− b)

(
a

b

)(
p

j

)
and

(
ap

bp− j

)
≡p2 b

(
a

b

)(
p

j

)
.
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Moreover, for 0 ≤ r < p,(
p(n+m) + r

pm+ r

)
≡p2

(
n+m

m

)(
1 + n

((
p+ r

r

)
− 1

))
(5.2) (

2pm+ 2r

pm+ r

)
≡p2

(
2m

m

)((
2r

r

)
+ 2m

(
p+ 2r

r

)
− 2m

(
2r

r

))
,(5.3) (

3pm+ 3r

pm+ r

)
≡p2

(
3m

m

)(
2m

(
p+ 3r

r

)
+m

(
p+ 3r

2r

)
− (3m− 1)

(
3r

r

))
+

(
3m

m− 1

)((
3r

p+ r

)
+ (m− 1)

(
p+ 3r

2p+ r

)
− 3m

(
3r

p+ r

))
.

(5.4)

Also,
(

pn
3pm+3r

)
≡p3 pn

3pm+3r
Ur where

Ur ≡p2(3m+ 1)

(
n− 1

3m+ 1

)[(
2p− 1

3r − 1

)
−
(
p− 1

3r − 1

)
−
(

p− 1

3r − 1− p

)]
+ (3m+ 2)

(
n− 1

3m+ 2

)[(
2p− 1

3r − 1− p

)
−
(

p− 1

3r − 1− p

)
−
(

p− 1

3r − 1− 2p

)]
+ (3m+ 3)

(
n− 1

3m+ 3

)[(
2p− 1

3r − 1− 2p

)
−
(

p− 1

3r − 1− 2p

)]
+ 3m

(
n− 1

3m

)[(
2p− 1

p+ 3r − 1

)
−
(
p− 1

3r − 1

)]
+

(
n− 1

3m

)(
p− 1

3r − 1

)
+

(
n− 1

3m+ 1

)(
p− 1

3r − 1− p

)
+

(
n− 1

3m+ 2

)(
p− 1

3r − 1− 2p

)
.

(5.5)

Proof. For (5.1), we have

(
ap

bp+ j

)
=

(
ap

bp

)
(a− b)p
bp+ j

j−1∏
k=1

(a− b)p− k
bp+ k

≡p2 (a− b)
(
a

b

)
p(−1)j−1

j
≡p2 (a− b)

(
a

b

)(
p

j

)
,

and therefore (
ap

bp− j

)
=

(
ap

(a− b)p+ j

)
≡p2 b

(
a

b

)(
p

j

)
.

For (5.2), use Vandermonde-Chu’s identity and (5.1) so that(
p(n+m) + r

pm+ r

)
=

r∑
j=0

(
p(n+m)

pm+ j

)(
r

r − j

)

≡p2
(
n+m

m

)
+ n

(
n+m

m

) r∑
j=1

(
p

j

)(
r

r − j

)
≡p2

(
n+m

m

)(
1 + n

((
p+ r

r

)
− 1

))
.
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In a similar way, we prove (5.3) as follows:(
2pm+ 2r

pm+ r

)
=

r∑
j=−r

(
2pm

pm+ j

)(
2r

r − j

)

=

(
2pm

pm

)(
2r

r

)
+

r∑
j=1

(
2pm

pm+ j

)(
2r

r − j

)
+

r∑
j=1

(
2pm

pm− j

)(
2r

r + j

)

≡p2
(

2m

m

)((
2r

r

)
+m

r∑
j=1

(
p

j

)(
2r

r − j

)
+m

r∑
j=1

(
p

p− j

)(
2r

r + j

))

≡p2
(

2m

m

)((
2r

r

)
+ 2m

((
p+ 2r

r

)
−
(

2r

r

)))
.

Moreover,(
3pm+ 3r

pm+ r

)
=

r∑
j=−2r

(
3pm

pm+ j

)(
3r

r − j

)

=

(
3pm

pm

)(
3r

r

)
+

r∑
j=1

(
3pm

pm+ j

)(
3r

r − j

)
+

2r∑
j=1

(
3pm

pm− j

)(
3r

r + j

)

≡p2
(

3m

m

)((
3r

r

)
+ 2m

((
p+ 3r

r

)
−
(

3r

r

)))
+

2r∑
j=1

(
3pm

pm− j

)(
3r

r + j

)
.

Now, (5.4) is equal to

p−1∑
j=1

(
3pm

pm− j

)(
3r

r + j

)
+

(
3pm

pm− p

)(
3r

r + p

)
+

2r∑
j=p+1

(
3pm

pm− j

)(
3r

r + j

)

=

p−1∑
j=1

(
3pm

pm− j

)(
3r

r + j

)
+

(
3pm

pm− p

)(
3r

r + p

)
+

2r−p∑
j=1

(
3pm

p(m− 1)− j

)(
3r

r + p+ j

)
≡p2 m

(
3m

m

)((
p+ 3r

p+ r

)
−
(

3r

r

)
−
(

3r

r + p

))
+

(
3m

m− 1

)(
3r

r + p

)
+ (m− 1)

(
3m

m− 1

) 2r−p∑
j=1

(
p

p− j

)(
3r

r + p+ j

)
≡p2 m

(
3m

m

)((
p+ 3r

2r

)
−
(

3r

r

)
−
(

3r

p+ r

))
+

(
3m

m− 1

)(
3r

p+ r

)
+ (m− 1)

(
3m

m− 1

)((
p+ 3r

2p+ r

)
−
(

3r

p+ r

))
.

The proof of the last congruence in (5.5) is analogous and hence is omitted here. �

Proof. We provide an alternative proof of Lemma 5.1 by reviving certain results found in [10]
as equations (26) and (27), respectively. These are stated follows. If n = n1p + n0 and
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k = k1p+ k0 where 0 < n0, k0 < p then(
np

k

)
≡p2 n

(
n− 1

k1

)(
p

k0

)
,(5.6)

(
n

k

)
≡p2

(
n1

k1

)[
(1 + n1)

(
n0

k0

)
− (n1 + k1)

(
n0 − p
k0

)
− k1

(
n0 − p
k0 + p

)]
.(5.7)

For (5.1) of the lemma, apply (5.6) with n1 = a, n0 = 0, k1 = b, k0 = j. So,(
ap

bp+ j

)
≡p2 a

(
a− 1

b

)(
p

j

)
= (a− b)

(
a

b

)(
p

j

)
.

For (5.2), apply (5.7) with n1 = n+m,n0 = r = k0, k1 = m. So,(
p(n+m) + r

pm+ r

)
≡p2

(
n+m

m

)[
(1 +m+ n)

(
r

r

)
− (n+ 2m)

(
r − p
r

)
−m

(
r − p
r + p

)]
To put this in the desired format consider applying (5.7) to

(
p+r
r

)
≡p2 2 −

(
r−p
p

)
(with

n1 = 1, n0 = k0 = r, k1 = 0); to
(
r−p
r+p

)
=
(−p+r
−2p

)
≡p2 −3 + 2

(
r−p
r

)
(with n1 = −1, n0 = r, k1 =

−2, k0 = 0). After substitution and simplifications, the desired outcome is reached.

For (5.3), apply (5.7) with n1 = 2m,n0 = 2r, k1 = m, k0 = r. So,(
2pm+ 2r

pm+ r

)
≡p2

(
2m

m

)[
(1 + 2m)

(
2r

r

)
− 3m

(
2r − p
r

)
−m

(
2r − p
r + p

)]
.

Let’s reformulate this to get the result as stated in the lemma. To this end, employ (5.7)
to
(
p+2r
r

)
≡p2 2

(
2r
r

)
−
(
2r−p
r

)
(with n1 = 1, n0 = 2r, k1 = 0, k0 = r); to

(
p+2r
r

)
=
(
p+2r
p+r

)
≡p2

2
(
2r
r

)
− 2
(
2r−p
r

)
−
(
2r−p
r+p

)
(with n1 = k1 = 1, n0 = 2r, k0 = r). Routine substitution completes

the argument.

The congruence (5.4) demands a careful analysis. The setup begins by expressing 3r = εp+d
where 0 < d < p and ε ∈ {0, 1, 2} which correspond to 0 < 3r < p, p < 3r < 2p and
2p < 3r < 3p, respectively. Here, ε = b3r

p
c

Let n1 = 3m+ ε, n0 = d, k1 = m, k0 = r and implement (5.7). So,(
p(3m+ ε) + d

pm+ r

)
≡p2

(
3m+ ε

m

)[
(3m+ ε+ 1)

(
d

r

)
− (4m+ ε)

(
d− p
r

)
−m

(
d− p
r + p

)]
.

Next, engage (5.6) with (with n1 = ε, n0 = d, k1 = 0, k0 = r to get(
3r

r

)
=

(
εp+ d

r

)
≡p2 (ε+ 1)

(
d

r

)
− ε
(
d− p
r

)
;

with n1 = ε+ 1, n0 = d, k1 = 0, k0 = r to get(
p+ 3r

r

)
=

(
(ε+ 1)p+ d

r

)
≡p2 (ε+ 2)

(
d

r

)
− (ε+ 1)

(
d− p
r

)
;

with n1 = ε+ 1, n0 = d, k1 = 1, k0 = r to get(
p+ 3r

2r

)
=

(
(ε+ 1)p+ d

p+ r

)
≡p2 (ε+1)(ε+2)

(
d

r

)
− (ε+1)(ε+2)

(
d− p
r

)
− (ε+1)

(
d− p
r + p

)
.
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After proper substitutions, the result becomes(
3pm+ 3r

pm+ r

)
≡p2
(

3m+ ε

m

)(
3r

r

)
+

(
3m+ ε

m

)(
m

[
1

ε+ 1

(
p+ 3r

2r

)
−
(

3r

r

)]
+ 2m

[(
p+ 3r

r

)
−
(

3r

r

)])
.

For (5.5), apply (5.6) with n1 = n − 1, n0 = p − 1, k1 = 3m + ε, k0 = d − 1. Follow this
through using

(−1
j

)
= (−1)j. The outcome is:(

pn

3pm+ 3r

)
=

pn

3pm+ 3r

(
p(n− 1) + p− 1

p(3m+ ε) + d− 1

)
≡p3

pn

3pm+ 3r

(
n− 1

3m+ ε

)[
n

(
p− 1

3r − 1− εp

)
+ (−1)r−ε(n− 1)

]
.

(5.8)

Although doable, we opt to leave this congruence in its present form instead of committing to
transform it into (5.5) because (5.8) will be more convenient for our subsequent calculations.

�

Corollary 5.2. For p > 3 a prime and an integer 0 ≤ r < p, we have the congruence(
3pm+ 3r

pm+ r

)(
2pm+ 2r

pm+ r

)
≡p2

(
3m

m,m,m

)(
3r

r, r, r

)
[1 + 3pm(H3r −Hr)] .

Proof. This is a consequence of Lemma 5.1 and (5.7). However, we offer a more direct

approach. Since (pm + k)−1 ≡p2 1
k

(
1− pm

k

)
, we obtain (pm + k)−3 ≡p2 1

k3

(
1− pm

k

)3 ≡p2
1
k3

(
1− 3pm

k

)
= 1

k4
(k − 3pm). For notational simplicity, denote

(
3j
j,j,j

)
=
(
3j
j

)(
2j
j

)
by
(
3j
j3

)
. We

consider the expansion
∏n

i=1(λi + x) =
∑n

j=0 ej(λ)xn−j as our running theme, where ej is

the j-th elementary symmetric function in the parameters λ = (λ1, . . . , λn). In particular,
en = 1 and en−1(1, . . . , n) = n!Hn. The claim then follows from(

3pm+ 3r

(pm+ r)3

)
=

(
3pm

(pm)3

) 3r∏
j=1

(j + 3pm)
r∏

k=1

(pm+ k)−3

≡p2
(

3pm

(pm)3

)
1

r!4

3r∏
j=1

(j + 3pm)
r∏

k=1

(k − 3pm)

≡p2
(

3pm

(pm)3

)
1

r!4
(3r)!r! [1 + 3pmH3r − 3pmHr] .

�

This fact is even more general as stated below but its proof is left to the interested reader.

Exercise 5.3. If A > 0, 0 ≤ r < p are integers and p > 3 a prime, then(
Apm+ Ar

pm+ r, . . . , pm+ r

)
:=

(Apm+ Ar)!

(pm+ r)!A
≡p2

(
Am

m, · · · ,m

)(
Ar

r, · · · , r

)
[1 + Apm(HAr −Hr)] .

Corollary 5.4. For p > 3 a prime and an integer 0 ≤ r < p, we have(
p(n+m) + r

pm+ r

)
≡p2

(
n+m

m

)
[1 + pnHr].
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Proof. It is easy to check that
(
p+r
r

)
= 1

r!

∏r
j=1(p + j) ≡p2 1 + pHr. The rest follows from

(5.2) of Lemma 5.1. �

Corollary 5.5. Let N = n− 3m. For p > 3 a prime and an integer 0 < r < p, it holds that

(
pn

3pm+ 3r

)
≡p3

(
p

3r
− p2m

3r2

)
(−1)r

(
n

3m

)
·



N(−1 + pnH3r−1), if 0 < r < p
3(

N

2

)
2(1− pnH3r−1−p)

3m+ 1
, if p

3
< r < 2p

3(
N

3

)
6(−1 + pnH3r−1−2p)

(3m+ 1)(3m+ 2)
, if 2p

3
< r < p.

Proof. We continue where we left off (5.8) with ε = b3r
p
c. That is,(

pn

3pm+ 3r

)
≡p3

pn

3pm+ 3r

(
n− 1

3m+ ε

)[
n

(
p− 1

3r − 1− εp

)
+ (−1)r−ε(n− 1)

]
.

Combining this step and the easy facts 1
3pm+3r

≡p2 1
3r
− pm

3r2
,
(
p−1
j

)
≡p2 (−1)j[1 − pHj], we

reach the desired conclusion. �

Lemma 5.6. If p > 3 is a prime then

p−1∑
r=1

(
3r

r, r, r

)
3−3r

r
≡p2 −3qp(1/3) +

3p

2
qp(1/3)2,(5.9)

p−1∑
r=1

(
3r

r, r, r

)
3−3r

r2
≡p −

9

2
qp(1/3)2,(5.10)

p−1∑
r=1

(
3r

r, r, r

)
(H3r −Hr)3

−3r

r
≡p 0.(5.11)

Proof. By (2.1), qp(1/27) ≡p2 3 qp(1/3) + 3p qp(1/3)2. Therefore, by (5) in [11, Theorem 4],

p−1∑
r=1

(
3r

r, r, r

)
3−3r

r
=

p−1∑
r=1

(1/3)r(2/3)r
(1)2r

· 1

r
≡p2 −qp(1/27) +

p

2
qp(1/27)2

≡p2 −3qp(1/3) +
3p

2
qp(1/3)2.

In a similar way, by (6) in [11, Theorem 4],

p−1∑
r=1

(
3r

r, r, r

)
3−3r

r2
=

p−1∑
r=1

(1/3)r(2/3)r
(1)2r

· 1

r2
≡p −

1

2
qp(1/27)2 ≡p −

9

2
qp(1/3)2.

By (1) in [11, Theorem 1],

(1/3)r(2/3)r
(1)2r

r−1∑
j=0

(
1

1/3 + j
+

1

2/3 + j

)
=

r−1∑
k=0

(1/3)k(2/3)k
(1)2k

· 1

r − k
.
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Hence (5.11) is implied by the following

p−1∑
r=1

(
3r

r, r, r

)
(3H3r −Hr)3

−3r

r
=

p−1∑
r=1

(1/3)r(2/3)r
(1)2r

· 1

r
·
r−1∑
j=0

(
1

1/3 + j
+

1

2/3 + j

)

=

p−1∑
r=1

1

r

r−1∑
k=0

(1/3)k(2/3)k
(1)2k

· 1

r − k

=

p−2∑
k=0

(1/3)k(2/3)k
(1)2k

p−1∑
r=k+1

1

r(r − k)

=

p−1∑
r=1

1

r2
+

p−2∑
k=1

(1/3)k(2/3)k
(1)2k

(
1

k

p−1∑
r=k+1

(
1

r − k
− 1

r

))

≡p
p−2∑
k=1

(1/3)k(2/3)k
(1)2k

· 1

k
(Hp−1−k −Hp−1 +Hk)

≡p
p−1∑
k=1

(
3k

k, k, k

)
2Hk 3−3k

k
,

because Hp−1−k ≡p Hk and Hp−1 ≡p
∑p−1

r=1
1
r2
≡p
∑p−1

j=1 j ≡p 0 as p 6= 2. �

6. Proof of Conjecture 1.1

In this section, we combine the results from the preceding sections to arrive at a proof for
Theorem 4.1 (restated here for the reader’s convenience) and therefore for Conjecture 1.1.

Theorem 6.1. For a prime p > 3 and m,n ∈ N+, we have
p−1∑
r=1

(−1)r
(

3pm+ 3r

pm+ r

)(
2pm+ 2r

pm+ r

)(
pn

3pm+ 3r

)(
p(n+m) + r

pm+ r

)
3−3r

≡p3 p
(

3m

m

)(
2m

m

)(
n

3m

)(
n+m

m

)
qp(3

−(n−3m)).

Proof. Based on Corollaries 5.2, 5.4, 5.5 and the congruence (2.1), the assertion is equivalent
to

p−1∑
r=1

(
3r

r, r, r

)
(1 + 3pm(H3r −Hr))(1 + pnHr)

(
1

3r
− pm

3r2

)
Br(p, n,m)3−3r(6.1)

≡p2 qp(1/3) +
p(N − 1)

2
qp(1/3)2;

where

Br(p, n,m) =



−1 + pnH3r−1, if 0 < r < p
3

(N − 1)(1− pnH3r−1−p)

3m+ 1
, if p

3
< r < 2p

3

(N − 1)(N − 2)(−1 + pnH3r−1−2p)

(3m+ 1)(3m+ 2)
, if 2p

3
< r < p.
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Now we split the sum on the left-hand side of (6.1) into three pieces according as

S1 =

bp/3c∑
r=1

(·), S2 =

b2p/3c∑
r=dp/3e

(·), and S3 =

p−1∑
r=d2p/3e

(·).

As regards S1,

S1 ≡p2
1

3

bp/3c∑
r=1

(
3r

r, r, r

)(
−1

r
− pN

3r2
+
pN(H3r −Hr)

r

)
3−3r.

If p
3
< r < 2p

3
then

(
3r
r,r,r

)
≡p 0 and 1 + 3pm(H3r−Hr) ≡p 1 + 3m with Br(p, n,m) ≡p (N−1)

(3m+1)
.

These imply that

S2 ≡p2
b2p/3c∑
r=dp/3e

(
3r

r, r, r

)
(1 + 3pm(H3r −Hr))(1 + pnHr)

(
1

3r
− pm

3r2

)
Br(p, n,m)3−3r

≡p2
b2p/3c∑
r=dp/3e

(
3r

r, r, r

)
(1 + 3m)

(
1

3r

)
(N − 1)

(3m+ 1)
3−3r

≡p2
(N − 1)

3

b2p/3c∑
r=dp/3e

(
3r

r, r, r

)
3−3r

r
.

Finally, we have that S3 ≡p2 0 because obviously
(

3r
r,r,r

)
≡p2 0 as long as 2p

3
< r < p.

Again
(

3r
r,r,r

)
≡p 0 if p

3
< r < 2p

3
and

(
3r
r,r,r

)
≡p2 0 if 2p

3
< r < p. So, from Lemma 5.6 we know

b2p/3c∑
r=1

(
3r

r, r, r

)
3−3r

r
≡p2

p−1∑
r=1

(
3r

r, r, r

)
3−3r

r
≡p2 −3qp(1/3) +

3p

2
qp(1/3)2,

p

bp/3c∑
r=1

(
3r

r, r, r

)
3−3r

r2
≡p2 p

p−1∑
r=1

(
3r

r, r, r

)
3−3r

r2
≡p2 −

9p

2
qp(1/3)2.

As before
(

3r
r,r,r

)
≡p2 0 for 2p

3
< r < p. As well as

(
3r
r,r,r

)
≡p 0 and pH3r − pHr ≡p 1 for

p
3
< r < 2p

3
. Therefore, by Lemma 5.6

0 ≡p2 p
p−1∑
r=1

(
3r

r, r, r

)
(H3r −Hr)3

−3r

r
≡p2 p

b2p/3c∑
r=1

(
3r

r, r, r

)
(H3r −Hr)3

−3r

r

≡p2 p
bp/3c∑
r=1

(
3r

r, r, r

)
(H3r −Hr)3

−3r

r
+

b2p/3c∑
r=dp/3e

(
3r

r, r, r

)
3−3r

r
.
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Putting all these together, we conclude that

S1 + S2 + S3 ≡p2
1

3

bp/3c∑
r=1

(
3r

r, r, r

)(
−1

r
− pN

3r2
+
pN(H3r −Hr)

r

)
3−3r

+
(N − 1)

3

b2p/3c∑
r=dp/3e

(
3r

r, r, r

)
3−3r

r
+ 0

≡p2 −
1

3

b2p/3c∑
r=1

(
3r

r, r, r

)
3−3r

r
− N

9

bp/3c∑
r=1

(
3r

r, r, r

)
3−3r

r2
+
N

3
· 0

≡p2 −
1

3

(
−3qp(1/3) +

3p

2
qp(1/3)2

)
− N

9

(
−9p

2
qp(1/3)2

)
≡p2 qp(1/3) +

p(N − 1)

2
qp(1/3)2,

which is exactly what we expect. The proof is complete. �

7. Conclusions and Remarks

In this final section, we extend the congruence on ai(n) (for i > 0), discussed in the earlier
sections, from modulo p2 to modulo p3. While stating our claim in its generality, we only
exhibit proof outlines for the case i = 1 as a prototypical example. We believe the curious
researcher would be able to account for the remaining cases.

Conjecture 7.1. For n, i ∈ N+ and a prime p > 2i,

ai(pn) ≡p3 (−1)i−1
a1(pn)

i2
(
2i−1
i−1

) ≡p3 (−1)i−1p2
(
n+2
2

)
a1(n)

i2
(
2i−1
i−1

) .

Proof. Ingredients for a1(pn) ≡p3 p2
(
n+2
2

)
a1(n).

(A) By partial fraction decomposition

ai(n) =
1

3i

n−1∑
k=0

(−1)n−k
(

3k

k

)(
2k

k

)(
n

3k

)(
n+ k

k

)(n−3k
i

)
3n−3k(

k+i
i

)
= (−1)ia0(n) +

i

3i

i∑
j=1

(−1)j−1
(
i− 1

j − 1

)(
n+ 3j

i

)
bj(n)

where for j ∈ N+,

bj(n) :=
n−1∑
k=0

(−1)n−k(n− 3k)

(
3k

k

)(
2k

k

)(
n

3k

)(
n+ k

k

)
3n−3k

k + j
.

Thus, a0(np) ≡p3 a0(n) implies

a1(np) = −a0(np) +
np+ 3

3
b1(np) ≡p3 −a0(n) +

np+ 3

3
b1(np)

≡p3 a1(n) +
np+ 3

3
b1(np)−

p+ 3

3
b1(p).
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(B) Hence, it suffices to show that

b1(np) ≡p3
3

np+ 3

(
p2
(
n+ 2

2

)
− 1

)
a1(n) +

n+ 3

np+ 3
b1(n),

or, since a1(n) = −a0(n) + (n+ 3)b1(n)/3,

(7.1) b1(np) ≡p3 p2
(
n+ 3

3

)
b1(n) +

(
1− pn

3
− p2(n+ 3)(7n+ 6)

18

)
a0(n).

(C) The above congruence is implied by the following

p−1∑
r=0

(−1)r
(

3pm+ 3r

pm+ r

)(
2pm+ 2r

pm+ r

)(
pn

3pm+ 3r

)(
p(n+m) + r

pm+ r

)
3−3r

pm+ r + 1
(7.2)

≡p3
(

p2

m+ 1

(
n+ 3

3

)
+ 1− pn

3
− p2(n+ 3)(7n+ 6)

18

)
·
(

3m

m

)(
2m

m

)(
n

3m

)(
n+m

m

)
3−N(p−1)

By summing over m, it is immediate to recover (7.1).

(D) In order to prove (7.2), we have the old machinery, 1
pm+r+1

≡p2 1
r+1
− mp

(r+1)2
, and

p−1∑
r=0

(
3r

r, r, r

)
3−3r

r + 1
=

9p

2

(
3p

p, p, p

)
3−3p ≡p2 p− 3p2qp(1/3),

p−1∑
r=0

(
3r

r, r, r

)
3−3r

(r + 1)2
=

9(9p+ 2)

4

(
3p

p, p, p

)
3−3p − 9

2
≡p −

7

2
.

(E) Finally, we can modify a previous proof as follows:

p−1∑
r=0

(
3r

r, r, r

)
(3H3r −Hr)3

−3r

r + 1
=

p−1∑
r=1

(1/3)r(2/3)r
(1)2r

· 1

r + 1
·
r−1∑
j=0

(
1

1/3 + j
+

1

2/3 + j

)

=

p−1∑
r=1

1

r + 1

r−1∑
k=0

(1/3)k(2/3)k
(1)2k

· 1

r − k

=

p−2∑
k=0

(1/3)k(2/3)k
(1)2k

p−1∑
r=k+1

1

(r + 1)(r − k)

=

p−2∑
k=0

(1/3)k(2/3)k
(1)2k

(
1

k + 1

p−1∑
r=k+1

(
1

r − k
− 1

r + 1

))

=

p−2∑
k=0

(1/3)k(2/3)k
(1)2k

· Hp−1−k −Hp +Hk+1

k + 1

≡p
p−1∑
k=0

(
3k

k, k, k

)
(Hk −Hp +Hk+1) 3−3k

k + 1
,
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which implies that
p−1∑
r=0

(
3r

r, r, r

)
(H3r −Hr)3

−3r

r + 1
≡p

1

3

p−1∑
k=0

(
3k

k, k, k

)
(−1/p+ 1/(k + 1)) 3−3k

k + 1

≡p
1

3

(
−1− 7

2

)
= −3

2
.

�

Remark 7.2. We showed that the conjecture a0(pn) ≡p3 a0(n) holds true. Although it is not
pursued here, the techniques established in this paper if combined with existing literature
on supercongruences (see references below) for binomials of the type

(
prn+k
ptm+j

)
, there is enough

reliable verity to believe that a0(p
rn) ≡p3r a0(pr−1n) should be within easy grasp.

Acknowledgements. The first-named author is grateful to A. Straub for bringing the
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