SUPERCONGRUENCES FOR
THE ALMKVIST-ZUDILIN NUMBERS

TEWODROS AMDEBERHAN AND ROBERTO TAURASO

ABSTRACT. Given a prime number p, the study of divisibility properties of a sequence ¢(n)
has two contending approaches: p-adic valuations and superconcongruences. The former
searches for the highest power of p dividing ¢(n), for each n; while the latter (essentially)
focuses on the maximal powers r and ¢ such that ¢(p"n) is congruent to ¢(p”~'n) modulo p’.
This is called supercongruence. In this paper, we prove a conjecture on supercongruences
for sequences that have come to be known as the Almkvist-Zudilin numbers. Some other
(naturally) related family of sequences will be considered in a similar vain.

1. INTRODUCTION

The Apéry numbers A(n) = >, _, (2)2("Zk)2 were valuable to R. Apéry in his celebrated
proof [1] that ¢(3) is an irrational number. Since then these numbers have been a subject of

much research. For example, they stand among a host of other sequences with the property
A(p'n) =y A(p" ')
now known as supercongruence — a term dubbed by F. Beukers [2].
At the heart of many of these congruences sits the classical example (pb) =3 (b) which is
pc c
I;) of Lucas. For a compendium of
references on the subject of Apéry-type sequences, see [9].

a stronger variant of the famous congruence (iﬁ) =, (

Let us begin by fixing notational conventions. Denote the set of positive integers by N*. For
m € NT, let =, represent congruence modulo m. Throughout, assume p > 5 is a prime.

In this paper, true to tradition, we aim to investigate similar type of supercongruences for
the following family of sequences. For integers ¢ > 0 and n > 1, define

e ()

k=0

In recent literature, ag(n) are referred to as the Almkvist-Zudilin numbers. Our motivation
for the present work here emanates from the following claim found in [6] (see also [3], [7]).

Conjecture 1.1. For a prime p and n € N*t, the Almkvist-Zudilin numbers satisfy
ap(pn) =ps ao(n).
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Our main results can be summed up as:

if p is a prime and n € NT, then ag(pn) =, ap(n) and a;(pn) =,2 0 for i > 0.
The organization of the paper is as follows. Section 2 lays down some preparatory results
to show the vanishing of a;(pn) modulo p?, for i > 0. Section 3 sees the completion of the
proof. Our principal approach in proving the main conjecture ag(pn) =, ao(n) relies on a
“machinery” we develop as a proof strategy which maybe described schematically as:

reduction + p-identities.

Sections 4 and 5 exhibit its elaborate execution. The reduction brings in a tighter claim and
it also offers an advantage in allowing to work with a single sum instead of a double sum.
In Section 6, we complete the proof for Conjecture 1.1. The paper concludes with Section 7
where we declare an improvement on the results from Section 3 which states a congruence
for the family of sequences a;(pn) modulo p3, when i > 0. Furthermore, in this last section,
the reader will find a proof outline guided by our “machinery”.

2. PRELIMINARY RESULTS

Fermat quotients are numbers of the form g,(z) = xp;# and they played a useful role in

the study of cyclotomic fields and Fermat’s Last Theorem, see [8]. The next three lemmas
are known and we give their proofs for the sake of completeness.

Lemma 2.1. Ifa #, 0 then for d € Z,

2.) la®) =52 dapla) + () (o)

Proof. Since by Fermat’s little theorem a?~* =, 1 then it follows that

(@) = (L @ = ) = @ = 1) ()@ - 1

0
Lemma 2.2. Let H, =37, % be the n-th harmonic number. Then, for n € NT, we have

(2.2) Xn:(—n’“ (Z) (” Z k)% — 20,

k=1

Proof. For an indeterminate y, a simple partial fraction decomposition proves the identity
(see [5, Lemma 3.1])

(23) i(—l)’f(Z) (") =5k ; v=d

k=0

Now, subtract % from both sides and take the limit as y — 0. The right-hand side takes the

form
1 [[-G =y =126 +v) "1

— lim
Y

n! y—0
The conclusion is clear. O




Lemma 2.3. Suppose p is a prime and 0 < k < p/3. Then,

PO ()

Proof. We observe that (7)("*) = (*3)("}"). If p=5 1, then |2] = 221 and hence

—1 1 k-1
kY ”T (5~ +k H
2k =

k—l
(=D*Bk—-1) —1)*(3k)!
= t1) = 2
y (37 33k(2/<;)'/<;!

Jj=1

Therefore, we gather that

LN el gk 2k k k k
(_1)k 3 3 + — (_1> + =, (3 ) — 3 3—3k.
k k k 2k 33k1k13 k,k,k
The case p =3 —1 runs analogously. 0

Corollary 2.4. For a prime p and an integer 0 < i < £, we have the congruences

i 33’6_%‘” 3 3*%:3(3)
k;k:k: e \kkk) R PO

k=1

p—1 _ lp/3] _
3k 33k Z 3k 33k
( ) ‘ Ep ( ) ‘ Ep O'
— k.k.k)k+1 — k.k,k)k+1

Proof. For the first assertion, we combine (2.2), Lemma 2.3 and the congruence ([4, p. 358])
Lp/3]

Z 3¢»(3)

H E -3 =, — P .

Le/3] p—3r " 2

The second congruence follows from (2.3) with y = ¢ and Lemma 2.3. O

3. MAIN RESULTS ON THE SEQUENCES a;(n) FOR i > (

Theorem 3.1. For a prime p and n,i € N* with i < £, we have a;(pn) =, 0.

Proof. Let k =pm +r for 0 <r <p—1. Note: 3k +1¢ = 3pm + 3r + i < pn. Write
B Lnfg Jon—pm-—r 3pm +3r +1i\ (2pm + 2r +1
N pm—+r pm—+r

. pn pn +pm +r Spn—Spm—fir—i'
3pm + 3r +1 pm+r

If t :=3r 41> p+ 1, it is easy to show that the following terms vanish modulo p?:

3pm +1t\ (2pm + 2r +1i pn B 3pm +t pn
pm 4T pm+r 3pm +t N pm+r.pm+r.pm+r+i)\3pm+t)
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Therefore, we may restrict to the remaining sum with 3r 4+ ¢ < p:

i Lnf L(pi:/SJ o= (3pm + 3r + z) <2pm + 2r + z)
—= = pm—+r pm—+r
. ( pn ) (pn +pm + 7") qpn—3pm—3r—i_
3pm + 3r + 1 pm+r
We need Lucas’s congruence (;’Zig) =, (9)(°) to arrive at

[n/3] [(p—1)/3] n e (3MN (3r 410\ [2m) (2r + i
i(pn) =p Z Z m r m r

. pn n-+m 3p'rl—3pm—37"—l
3pm + 3r + 1 m '

For 0 < j < p, we apply Gessel’s congruence (?) =, (_1)];1? (if p = 3r 4 4, in this case,
still the corresponding term properly absorbs into the sum below) so that

n B pn pn — 1 B n m—1)+p—1
3pm+3r+i) 3pm+3r+i\3pm+3r+i—1) 3pm+3r+i\3pm+3r+i—1

. —1
= _1 r+i—1 pn n
e (ST i\ 3m )
which leads to

n) n an/? | pzz:/gj yromer Im\ (3r+ai\ [(2m)\ (2r+i
=
p =p2 P m T m r

. ﬂ n—1 n+m 3pn—3pm—3r—i'
3r+1 3m m

Next, we use Fermat’s Little Theorem and decouple the double sum to obtain

[n/3]
X (3m\ [(2m\ [n—1 n+m
) n m+i—1lon—3m—1
om = 3 (G N 0 (1))
pz”:/:” 340\ [2r +4\ 379"
‘P r 3r+1

It suffices to verify the sum over r vanishes modulo p. To achieve this, apply partial fraction
decomposition and Corollary 2.4 (upgrading the sum to |p/3] is harmless here). Thus,

lp/3] . _ lp/3] i .
3k +1d\ 2k +1i\ 373k 3k ” ‘ |

= 3~ 3k L -1
Z( k )( i )3k+¢ Z(kkk) H( +) [Tt +)
k=0 — o i

i [p/3]
. 3k \ 3%
_;aj(l);(k,k,k)k+j Z

Jj=1

where «;(i) € Q are some constants. We have enough reason to conclude the proof. U



4. THE REDUCTION ON THE SEQUENCE ag(n)

Our proof of Conjecture 1.1 requires a slightly more delicate analysis than what has been
demonstrated in the previous sections for the sequences a;(n), where i > 0. As a first major
step forward, we state and prove the following somewhat stronger result. This will be crucial
in scaling down a double sum, which emerges (see proof below) as an expression for the
sequence ap(pn), to a single sum.

Theorem 4.1. The congruence

(4.1) p_1<_1)r 3pm + 3r\ [2pm + 2r pn p(n+m)+r .
' pm+r pm+r 3pm + 3r pm+r

r=1

)

G (1) 3pm + 3r\ [2pm + 2r pn p(n+m)+r _—
pm -+ pm + 1 3pm + 3r pm—+7T

r=0

_, 3m\ [(2m n n—+m g~ (n—3m)(p-1)
P \m m ) \3m m

implies ag(pn) =ps ag(n).

or

Proof. Let k = pm + r for 0 < r < p. Then, by using the new parameters,
n—1 p—1
_ _ 3pm + 3r\ [2pm + 2r
_ 3p(n 3m) —1)m —1)"
ao(pn) 7;) =1 ;( ) pm+r pm—+r
. pn p(n+m)+r —

3pm + 3r pm 4

Let’s isolate the case r = 0, then, from (pb) =3 (c) and the hypothesis we get

p(n— 3m n m n+m —(n—3m)
0 () G o) () )
m=0
n—1 Im
e e

m=0

MH

o(pn) =p

5. FURTHER PRELIMINARY RESULTS

In this section, we build a few valuable results aiming at the proof of Theorem 4.1 and hence
that of Conjecture 1.1.

Lemma 5.1. Ifa>b>0 and 0 < j < p then

o ()6 = (7))
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Moreover, for 0 <r < p,
(o) () (7))
o ()= () () () ()
(o )= Gr) (7)o (137) - 0(7))
) (G2 (G5 -on())

———U, where

3

(5.4)

Also, ( pn

somesr) =9 Tt
v=som e (o) G o) - () - )]
o [GE ) 6 -6
oo oo (o ) [ ) (000 )]
ran( ) [ 1) - ()]
O (DG ) (G

Proof. For (5.1), we have

() = () oo et () o (2)(2),

For (5.2), use Vandermonde-Chu’s identity and (5.1) so that
(p(n—i—m)—H“) _i (p(n+m))( r >
pm+r _j:O pm+J r—j
i n+m n+m\ <
—p2
P m - r—j

Jj=

REEINC




In a similar way, we prove (5.3) as follows:

<2pm—|—27") B zr: ( 2pm )( 2r )
pm+r _j:# pm+j)\r—J

- @g) (2:) +; (pfﬁ;) (rQ—Tj) 3

=

(") ()
= () ()00 507 )(0)

S B (E) (7))

(o) =2 () ()
- (35$>( Ve () () ) ()

=1 ,]:

() () () L) £ ()

Now, (5.4) is equal to

pl(Spm)(Srl)+(3pm)(3r>+QZr(Spm.)<3rl>
— \pm—J/)\r+) pm—p)\r+p S \pm =)\t

J J

p ) (pjfTJ (T‘ +J) (pjfmp) (TTP) i 22_5 (p(mg—pT) - j) (7" +:Z+ j)

j
=) (G2) - ()= () () GE)
p+r r+p m—1/\r+p
2r—p
3m D 3r
+(m—1 . .
o )<m—1>;(p—J>(r+p+J>
G (37 - ()-G2)) - ()G
=z m - - +
m 2r r p+r m—1)\p+r
e ) (G) - 6)
m— 1 2p+1r p+r
The proof of the last congruence in (5.5) is analogous and hence is omitted here. U

Proof. We provide an alternative proof of Lemma 5.1 by reviving certain results found in [10]
as equations (26) and (27), respectively. These are stated follows. If n = nip + ng and
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k = kip + ko where 0 < ng, kg < p then

o () )(0)
o () () [) e n) 4]

For (5.1) of the lemma, apply (5.6) with ny = a,ny =0,k = b, kg = j. So,

(ts) = ()G =G 6)

For (5.2), apply (5.7) with n; = n+m,ng =r = ko, ks = m. So,

() = () e () = (7 7) = (C0)]
pm—+r m r T r+Dp

To put this in the desired format consider applying (5.7) to (p:f’") =2 2 — (r;p) (with

ny = 1,n9=ky =1,k =0); to (:;Z) = (*_p;;f) =, -3+ 2(T:p) (with ny = =1, ng =1,k =

—2, ko = 0). After substitution and simplifications, the desired outcome is reached.

For (5.3), apply (5.7) with n; = 2m,ng = 2r,ky = m, ko = r. So,

(o )= G oeam (7) =om () =0 ()

Let’s reformulate this to get the result as stated in the lemma. To this end, employ (5.7)
to (pt%) = 2(2T) — (27:1’) (with ny = 1,ng = 2r,ky = 0,kg = 7); to (p”T) — (P+2r) _

=p? r r p+r =p?

2(2:) - 2(2’7”) - (27:;’) (with ny = k; = 1,n9 = 2r, kg = r). Routine substitution completes
the argument.

The congruence (5.4) demands a careful analysis. The setup begins by expressing 3r = ep+d
where 0 < d < p and € € {0,1,2} which correspond to 0 < 3r < p,p < 3r < 2p and
2p < 3r < 3p, respectively. Here, € = L%TJ

Let ny =3m +€,n9 = d, k; = m, kg = r and implement (5.7). So,

() = (7 o) o (77) = (5]

Next, engage (5.6) with (with ny = €,n9 = d, k1 = 0, ko = r to get

()= (77 een() ()

with ny =€+ 1,n9g =d, k1 =0, ko = r to get

(1) (7 (] (),

withny =e+1,n9g=d, k1 =1, ko = r to get

(3 (G msrsmern(] omern(ty 7)o )



After proper substitutions, the result becomes
3pm + 3r 3m + €\ (3r
pm—+r T
n 3m+6 L (p+3r\ [(3r 4 om p+3r\ (3 .
e+1 2r T r r
For (5.5), apply (5.6) w1th n=n—1ny=p—1,k =3m+eky=d—1. Follow this
through using ( ) = (—1)?. The outcome is:

pn . pn pn—1)+p—1
3pm+3r)  3pm+3r\p(3m+e)+d—1

n n—1 p—1 B
=3 ——— -1 (n—-1)]|.
P 3pm+3r(3m—|—e> {n(?)r—l—ep) AN )}

Although doable, we opt to leave this congruence in its present form instead of committing to

transform it into (5.5) because (5.8) will be more convenient for our subsequent calculations.
U

(5.8)

Corollary 5.2. For p > 3 a prime and an integer 0 < r < p, we have the congruence

2 2 3 3
3pm + 3r pm + 2r . m r 1+ 3pm(Hs, — H,)].
pm—+r pm—+r m,m,m T, T

Proof. This is a consequence of Lemma 5.1 and (5.7). However, we offer a more direct

approach. Slnce (pm+ k)™t =, £ (1—B), we obtain (pm + k)™ =, 5 (1 - %)3 =2

L (1—222) = L(k — 3pm). For notational simplicity, denote (%) = (¥) (2;) by (i’é) We

E k A Jsdd j
consider the expansion [[;_;(Ai +2) = 37 e;(A)z"™/ as our running theme, where ¢; is
the j-th elementary symmetric function in the parameters A\ = (A1,...,A,). In particular,
e, =1and e, 1(1,...,n) =nlH,. The claim then follows from
3r r
3pm + 3r 3pm . -3
= + 3pm m + k
(o) = () 115+ 3pm) Lo )
3pm \ 1 o .
= () L 110=sm)

. 3pm
= ((200) s GO L+ 3y, — 3yt

O
This fact is even more general as stated below but its proof is left to the interested reader.

Exercise 5.3. If A > 0,0 < r < p are integers and p > 3 a prime, then

Ar)! A A
Apm + Ar = M = m ") L+ Apm(Ha — H)].
pm4+r,...,pm+r (pm +7)! my---,m)\r, e

Corollary 5.4. For p > 3 a prime and an integer 0 < r < p, we have

(p(n +m) + ) _, (n - m) 1+ pf,]

pm—+r
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Proof. 1t is easy to check that (p ”:T) = 7%!]_[;:1(]7 +j) =p2 1+ pH,. The rest follows from
(5.2) of Lemma 5.1. O

Corollary 5.5. Let N =n—3m. Forp > 3 a prime and an integer O < r < p, it holds that

(

N(—1+pnHs._1), ifo<r<?
pn _ (p p'm (—1y n N) 1_an3T1p), fel<r<2
3pm+3r) * "\3r 7 32 3m dm+1

, if%<r<p.

(2
—1 4+ pnHs_1_9p)
3m+1 )(3m + 2)

Proof. We continue where we left off (5.8) with € = L%j That is,

n ) n—1 —1
b =0 o b (=) (n—1)].
3pm + 3r 3pm + 3r \3m + € 3r—1—ep

Combining this step and the easy facts ?)pm—lJrgr =2 + — 23, (p;l) =2 (—1)/[1 — pH,], we

reach the desired conclusion. O

Lemma 5.6. If p > 3 is a prime then

(5.9)

() e i+ Lo
(510) EZ( )3&¥% w1/
2

(o

Proof. By (2.1), q,(1/27) =,2 34,(1/3) + 3pg,(1/3)?. Therefore, by (5) in [11, Theorem 4],

= 379~ (1/3),(2/3), 1 _ p ,
; (7" > —)r P —qp(1/27) + 5@119(1/27)

3p
=52 —3q,(1/3) + Eqp(1/3)2.
In a similar way, by (6) in [11, Theorem 4],

(r " ) - 2 % 55 —50(1/20 =, 56 (1/3)

(5.11)

Hr _Hr —3r
) 3 )3 =, 0.

r,r, T
r,r,Tr r

Pﬂ

r=1

r=1

By (1) in [11, Theorem 1],

U3 W3r“1 LY e (/3(2/3) 1
2 §;<u3+j 2m+1>‘k0 Wk
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Hence (5.11) is implied by the following

> <r, r, > = rHr)33r _5%% : <1/3+] 2/31+j>

1= (1/3)k(2/3) 1
-SRI
N A/3(2/3) =1
_; (D7 Z,;l?“(r—k)
81l = 1/3 2/3) — (1 1
;T2+; )z (k: %1(7“—]5 7"))

o (1/3)(2/3)e 1

=p Z (12 z (Hp-1-1 — Hp—1 + Hy)
k=1 k
RN/ 3k \2H,37%
2\ k) K
k=1
becauserlk_kaandel_pzrifQ:p flj_pOasp%Q. O

6. PROOF OF CONJECTURE 1.1

In this section, we combine the results from the preceding sections to arrive at a proof for
Theorem 4.1 (restated here for the reader’s convenience) and therefore for Conjecture 1.1.

Theorem 6.1. For a prime p > 3 and m,n € NT, we have
(—1y 3pm + 3r\ [(2pm + 2r pn p(n+m)+r q-3r
— pm -+ pm + 1 3pm 4+ 3r pm—+rT

D))

Proof. Based on Corollaries 5.2, 5.4, 5.5 and the congruence (2.1), the assertion is equivalent
to

gy

p—1
3r 1 pm _3
6.1 1+3 Hs. — H,))(1 H)l——=— ) B.(p,n,m)37"
60 (o) man — E i) (5 55 ) Bl
_ p(N —1)
=p? qp(l/?’) + 5 Qp(1/3)2§
where
(—1 +pTLH3r_1, if0<7”<§
(N - 1)(1 _an3T—l— ) . 2
Br(p7n7m): 3m + 1 p7 1f§<7”<§p

(N =DV = 2)(=1 + pnts,_15)
\ (3m +1)(3m +2)

, if%<r<p.
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Now we split the sum on the left-hand side of (6.1) into three pieces according as

lp/3] [2p/3] p—1
Si=> (), S= > () and Sy= Y ()
r=1 r=[p/3] r=[2p/3]

As regards Sy,

lp/3]
1 3 1 N N (Hs, — H, _
o 1Y (Y (Lo )

3 . T, r  3r2 r
If 2 <7 < 22 then (T?’rfr) =, 0 and 1+ 3pm(Hs, — H,) =, 1+ 3m with B,(p,n,m) =, %
These imply that
ke 3r 1 pm
— —3r
Sp=p Y (T,, N r) (1+ 3pm(Hs, — H,))(1 + pni,) (g - @) B, (p,n,m)3
r=[p/3]
[2p/3]
3r 1\ (N=1) .,
=5 ( )(1+3 )( )—3
v I THT 3r) (3m—+1)
_ (V-1 “”fJ 3\ 37
T3 rorr) o or

r=[p/3]

Finally, we have that S3 =, 0 because obviously (T?T’:r) =,2 0 as long as %p <r <p.

Again (T‘TT) =,0if 2 <r <2 and (Tirr) =, 0if 2 <r < p. So, from Lemma 5.6 we know

[2p/3] —3r p—1 —3r
3r \3 3r \3 3p
E , ( > =p? <r > =p2 —3q,(1/3) + ?Qp(1/3)27

r,r,r) T r,r) T
Lp/3] —3r p —3r

3r \37°" 3r \37" 9p 9

pz (rrr) r2 =’ P <T7T,T) 2 P 2qp(1/3) ’

As before (T‘TT) =,2 0 for % < r < p. As well as (r?’r”r) =, 0 and pHs, — pH, =, 1 for

P<r< %p. Therefore, by Lemma 5.6

p—1 _ [2p/3] _
_ H3r - Hr>3 o 3r (H?;r - Hr)?) o
ZPQP;(rrr) r —pzpz (rrr) r

“”f 3\ (Hae = H)3™ in/‘” 3\ 3%
= P r,r,T r roer) o

r=[p/3]
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Putting all these together, we conclude that

Lp/3]
1 3 1 N  pN(H;. — H, i
S1+52+S3:2—E ( T)(___]?_+p (H )>33T

3 — \r,r,7r r 3r2 r
[2p/3] _
(N 1) 3\ 3%
- E 0
* 3 r,r,r) T +
r=[p/3]

= Zr < \r,r,r) T 9
1 3p
= 5 (3173 + 7qp<1/3>

o a(1/3) + p(NT_”qpu/g)?,

which is exactly what we expect. The proof is complete. 0

\/IIM%

7. CONCLUSIONS AND REMARKS

In this final section, we extend the congruence on a;(n) (for i > 0), discussed in the earlier
sections, from modulo p? to modulo p*. While stating our claim in its generality, we only
exhibit proof outlines for the case i = 1 as a prototypical example. We believe the curious
researcher would be able to account for the remaining cases.

Conjecture 7.1. Forn,i € NT and a prime p > 2i,

ai(pn) = (_1>i 1 al(pn) — (_1)2_ p (n )al(n)_

i (212 11) - i (2; 11>

Proof. Ingredients for a;(pn) =5 p*("1?)ai(n).
(A) By partial fraction decomposition

BRI
= (-1 +§ Z ' (;:D(m;sj)bj(n)

Jj=1

o))

Thus, ag(np) =3 ag(n) implies

np + 3 np + 3

3

bl (np) =p3 —ao(n) + bl (np)

by (np) — bi(p).

ai(np) = —ag(np) +
np+3

Ep3 aq (Tl) +
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(B) Hence, it suffices to show that

by (np) =5 —> (ﬁ(”?) —1) an(n) + 23 b ),

np+3 np+ 3
or, since a;(n) = —ag(n) + (n + 3)b1(n)/3,
(7.1) bi(np) =y P2 (” : 3) bi(n) + <1 SR pn 31)8<7” + 6)) ao(n).

(C) The above congruence is implied by the following

(72) 2 (—1y 3pm + 3r\ (2pm + 2r pn p(n+m)+r 373
' = pm+r pm+r 3pm + 3r pm+r pm+1r+1
_ p* [n+3 +1_pn_p2(n+3)(7n+6)
P Am+1 3 3 18

)

By summing over m, it is immediate to recover (7.1).

(D) In order to prove (7.2), we have the old machinery, - =p = and

P° Tyl (7“+1)2’

p—1 —3r
3r \ 3 9p [ 3p _3
= = 37 = 3 1/3
Z(T,T,T)T—i—l 2(p ) =p? p— pQP(/)

— y P, P

_1 3

pz 3\ 37" _90p+2) (3 Ny 9_ T
= \r,r,7 (r+1)2 4 D, D, P 27" 2

(E) Finally, we can modify a previous proof as follows:

S/ 3 \BHs — H)37¥ < (1/3),(2/3), 1 </ 1 1
( ) (D2 r+l ]Z(l/?w 2/3+j)

i
(]

T, T r+1 —
_ pzi 1 S (1/3)e(2/3) 1
i+l (1)2 r—k
_ Z (1/3)e(2/3)5 < 1
—~ i G, 0+ -k
_ Z (1/3)k(2/3)c [ 1 Z ( 1 )
pard (1)2 k‘+1T:k+1 r—k r+1
R (1/3)6(2/3) Hypoa o — Hy + Hips
p (1)2 k+1
_ S 3k )\ (Hi— Hy+ Hywy) 37
—r k k. k k+1 !
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which implies that

i( 3r )(ng—Hr)3—3r %H( 3k )(—1/p+1/(k+1))3_3k
1
3

=\, kE+1

O

Remark 7.2. We showed that the conjecture ag(pn) =,3 ag(n) holds true. Although it is not
pursued here, the techniques established in this paper if combined with existing literature

on supercongruences (see references below) for binomials of the type (5:::;), there is enough

reliable verity to believe that ag(p'n) =ps- ao(p" 'n) should be within easy grasp.
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