
GENERALIZED CUBIC PARTITIONS

TEWODROS AMDEBERHAN AND AJIT SINGH

Abstract. A cubic partition consists of partition pairs (λ, µ) such that
|λ| + |µ| = n where µ involves only even integers but no restriction is
placed on λ. This paper initiates the notion of generalized cubic parti-
tions and will prove a number of new congruences akin to the classical
Ramanujan-type. The tools emphasize three methods of proofs. The
paper concludes with a conjecture on the rarity of the aforementioned
Ramanujan-type congruences.

1. Introduction

Consider the set Gc(n) of all partitions of an integer n ≥ 1 such that each
even part comes in c different colors. We call these generalized cubic par-
titions. Denote the enumeration of Gc(n) by ac(n) under the convention
ac(0) := 1. One can associate an Euler-type generating function∑

n≥0

ac(n) qn =
∏
k≥1

1
(1 − qk)(1 − q2k)c−1 .(1.1)

Notice that a1(n) = p(n) the usual (unrestricted) partition of n, while a2(n)
enumerates the so-called cubic partitions of n. As examples for the latter,
a2(2) = #{2, 2, 11} = 3, a2(4) = #{4, 4, 31, 22, 22, 22, 211, 211, 1111} = 9.
Let us adopt the notation (a; q)∞ =

∏
k≥0(1 − aqk). Among Ramanujan’s

discoveries, the following identity (for the classical partition function)∑
n≥0

p(5n + 4) qn = 5
(q5; q5)5

∞

(q; q)6
∞

,

is regarded as his “Most Beautiful Identity” by both Hardy and MacMahon
(see [9, p. xxxv]). Based on an identity on Ramanujan’s cubic continued
fractions [1], Chan [4] introduced the notion of cubic partitions, denoted
a2(n) above, and succeeded in establishing the following elegant analogue∑

n≥0

a2(3n + 2) qn = 3
(q3; q3)3

∞(q6; q6)3
∞

(q; q)4
∞(q2; q2)4

∞

.

Date: April 9, 2024.
2020 Mathematics Subject Classification. 05A17, 11F03, 11P83.
Key words and phrases. cubic partitions, Ramanujan congruences, modular forms.

1



2 T. AMDEBERHAN AND A. SINGH

It is immediate [4] that a2(3n + 2) ≡ 0 (mod 3). Since then many authors
studied similar congruences for c2(n) (see [5], [6] and references therein).
Recall the celebrated Ramanujan congruences [9, p. 210, p. 230] for the
partition function

p(5n + 4) ≡ 0 (mod 5),
p(7n + 5) ≡ 0 (mod 7),(1.2)

p(11n + 6) ≡ 0 (mod 11).

By analogy, here are our main results.

Theorem 1.1. For all integers n ≥ 0, the following congruences hold true.
(I) a2(3n + 2) ≡ 0 (mod 3),
(II) a4(5n + 4) ≡ 0 (mod 5),
(II)′ a4(5n + 2) ≡ 0 (mod 5),
(III) a3(7n + 4) ≡ 0 (mod 7),
(IV) a5(11n + 10) ≡ 0 (mod 11).

This paper is organized as follows. Section 2 highlights the basic results
from the theory of modular forms to pave the way for Sections 4 and 5.
In Section 3 we present the first set of elementary proofs for most of our
results in Theorem 1.1. Section 4 contains another proof of Theorem 1.1 (I)
which is less elementary than the approach taken in Section 3. Among the
assertions in Theorem 1.1, the one pertaining to a congruence modulo 11
turns out to require the theory of modular forms be brought to bear. This is
precisely the content of Section 5. Finally, in Section 6, we summarize this
paper with one more application of our methods and an open problem.

2. background: modular forms

In this section, we need some definitions and basic facts on modular forms
that are instrumental in furnishing our proof of Theorem 1.1 (IV). For addi-
tional details, see for example [7, 8]. We first identify the matrix groups

SL2(Z) :=
{[

a b
c d

]
: a, b, c, d ∈ Z, ad − bc = 1

}
,

Γ∞ :=
{[

1 n
0 1

]
: n ∈ Z

}
,

Γ0(N) :=
{[

a b
c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) :=
{[

a b
c d

]
∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

}
,



GENERALIZED CUBIC PARTITIONS 3

and

Γ(N) :=
{[

a b
c d

]
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), and b ≡ c ≡ 0 (mod N)

}
,

where N is a positive integer. A subgroup Γ of the group SL2(Z) is called
a congruence subgroup if Γ(N) ⊆ Γ for some N. The smallest N such
that Γ(N) ⊆ Γ is called the level of Γ. For example, Γ0(N) and Γ1(N) are
congruence subgroups of level N.
Let H := {z ∈ C : Im(z) > 0} be the upper half of the complex plane. Then,
the following subgroup of the general linear group

GL+2 (R) =
{[

a b
c d

]
: a, b, c, d ∈ R and ad − bc > 0

}
acts on H by

[
a b
c d

]
z =

az + b
cz + d

. We identify∞ with
1
0

and define[
a b
c d

]
r
s
=

ar + bs
cr + ds

,

where
r
s
∈ Q ∪ {∞}. This gives an action of GL+2 (R) on the extended upper

half-plane H∗ = H ∪ Q ∪ {∞}. Suppose that Γ is a congruence subgroup of
SL2(Z). A cusp of Γ is an equivalence class in P1 = Q∪{∞} under the action
of Γ. The group GL+2 (R) also acts on functions f : H → C. In particular,

suppose that γ =
[
a b
c d

]
∈ GL+2 (R). If f (z) is a meromorphic function on H

and ℓ is an integer, then define the slash operator |ℓ by

( f |ℓγ)(z) := (det γ)ℓ/2(cz + d)−ℓ f (γz).

Definition 2.1. Let Γ be a congruence subgroup of level N. A holomorphic
function f : H → C is called a modular form with integer weight ℓ on Γ if
the following hold:

(1) We have

f
(
az + b
cz + d

)
= (cz + d)ℓ f (z)

for all z ∈ H and all
[
a b
c d

]
∈ Γ.

(2) If γ ∈ SL2(Z), then ( f |ℓγ)(z) has a Fourier expansion of the form

( f |ℓγ)(z) =
∑
n≥0

aγ(n)qn
N ,

where qN := e2πiz/N .
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For a positive integer ℓ, the complex vector space of modular forms of
weight ℓ with respect to a congruence subgroup Γ is denoted by Mℓ(Γ).

Definition 2.2. [8, Definition 1.15] If χ is a Dirichlet character modulo N,
then we say that a modular form f ∈ Mℓ(Γ1(N)) has Nebentypus character
χ if

f
(
az + b
cz + d

)
= χ(d)(cz + d)ℓ f (z)

for all z ∈ H and all
[
a b
c d

]
∈ Γ0(N). The space of such modular forms is

denoted by Mℓ(Γ0(N), χ).

In this paper, the relevant modular forms are those that arise from eta-
quotients. The Dedekind eta-function η(z) is defined by

η(z) := q1/24(q; q)∞ = q1/24
∞∏

n=1

(1 − qn),

where q := e2πiz and z ∈ H, the upper half-plane. A function f (z) is called
an eta-quotient if it is of the form

f (z) =
∏
δ|N

η(δz)rδ ,

where N is a positive integer and rδ is an integer. We now recall two valuable
theorems from [8, p. 18] which will be used to prove our results.

Theorem 2.3. [8, Theorem 1.64] If f (z) =
∏

δ|N η(δz)rδ is an eta-quotient
such that ℓ = 1

2

∑
δ|N rδ ∈ Z,∑

δ|N

δrδ ≡ 0 (mod 24)

and ∑
δ|N

N
δ

rδ ≡ 0 (mod 24),

then f (z) satisfies

f
(
az + b
cz + d

)
= χ(d)(cz + d)ℓ f (z)

for every
[
a b
c d

]
∈ Γ0(N). Here the character χ is defined by χ(•) :=

(
(−1)ℓ s
•

)
,

where s :=
∏

δ|N δ
rδ .
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Suppose that f is an eta-quotient satisfying the conditions of Theorem 2.3
and that the associated weight ℓ is a positive integer. If the function f (z)
is holomorphic at all of the cusps of Γ0(N), then f (z) ∈ Mℓ(Γ0(N), χ). The
next theorem gives a necessary condition for determining orders of an eta-
quotient at cusps.

Theorem 2.4. [8, Theorem 1.65] Let c, d and N be positive integers with
d | N and gcd(c, d) = 1. If f is an eta-quotient satisfying the conditions of
Theorem 2.3 for N, then the order of vanishing of f (z) at the cusp c

d is

N
24

∑
δ|N

gcd(d, δ)2rδ
gcd(d, N

d )dδ
.

We now remind ourselves a result of Sturm [10] which gives a criterion to
test whether two modular forms are congruent modulo a given prime.

Theorem 2.5. Let p be a prime number, and f (z) =
∑∞

n=n0
a(n)qn and g(z) =∑∞

n=n1
b(n)qn be modular forms of weight k for Γ0(N) of characters χ and ψ,

respectively, where n0, n1 ≥ 0. If either χ = ψ and

a(n) ≡ b(n) (mod p) for all n ≤
kN
12

∏
d prime; d|N

(
1 +

1
d

)
,

or χ , ψ and

a(n) ≡ b(n) (mod p) for all n ≤
kN2

12

∏
d prime; d|N

(
1 −

1
d2

)
,

then f (z) ≡ g(z) (mod p) (i.e., a(n) ≡ b(n) (mod p) for all n).

We now recall the definition of Hecke operators. Let m be a positive integer
and f (z) =

∑∞
n=0 a(n)qn ∈ Mℓ(Γ0(N), χ). Then the action of Hecke operator

Tm on f (z) is defined by

f (z) |Tm :=
∞∑

n=0

 ∑
d|gcd(n,m)

χ(d)dℓ−1a
(nm

d2

) qn.

In particular, if m = p is prime, we have

f (z) |Tp :=
∞∑

n=0

(
a(pn) + χ(p)pℓ−1a

(
n
p

))
qn.(2.1)

We take by convention that a(n/p) = 0 whenever p ∤ n. The next result
follows directly from (2.1).

Proposition 2.6. Let p be a prime, g(z) ∈ Z[[q]], h(z) ∈ Z[[qp]], and k > 1.
Then

(g(z)h(z)) |Tp ≡
(
g(z)|Tp · h(z/p)

)
(mod p).
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3. Proof of Theorem 1.1

In the current section, we exhibit a simpler proof for each of congruences
(I), (II), (II)′ and (III) from Theorem 1.1.
Let’s adopt some notations: f (q) :=

∏
k≥1(1 − qk) and g(q) :=

∏
k≥1(1 + qk).

Then, the generating function in (1.1) can be presented as

Fc(q) :=
1

f (q) f (q2)c−1 .

Proof of (I). Rewrite F2(q) and compute modulo 3 to get that

F2(q) =
f 2(q) f 2(q2)
f 3(q) f 3(q2)

≡
f 2(q) f 2(q2)
f (q3) f (q6)

=
f 3(q) g(q) f (q2)

f (q3) f (q6)

≡
f (q3) g(q) f (q2)

f (q3) f (q6)
=

g(q) f (q2)
f (q6)

(mod 3).

On the other hand, Jacobi’s triple product (see [2, p. 35, Entry 19]) may be
stated in the manner

(q; q)∞ (−z−1; q)∞ (−zq; q)∞ =
∑
n∈Z

q(n+1
2 ) zn.(3.1)

Choosing z = 1 leads to the identity g(q) f (q2) =
∑

n≥0 q(n+1
2 ) and hence

F2(q) ≡
∑

n≥0 q(n+1
2 )

f (q6)
(mod 3).(3.2)

Since
(

n+1
2

)
≡ 0 or 1 modulo 3, we infer that the coefficients of q3n+2 in the

expansion (3.2) all vanish. That means, a2(3n + 2) ≡ 0 (mod 3).
Proof of (II) and (II)′. Computing modulo 5 and invoking equation (3.1),
we obtain

F4(q) =
f 4(q) f 2(q2)
f 5(q) f 5(q2)

≡
f 4(q) f 2(q2)
f (q5) f (q10)

=
f 5(q) g(q) f (q2)

f (q5) f (q10)

≡
f (q5) g(q) f (q2)

f (q5) f (q10)
=

g(q) f (q2)
f (q10)

=

∑
n≥0 q(n+1

2 )

f (q10)
(mod 5).

Because
(

n+1
2

)
≡ 0, 1 or 3 modulo 5, we gather that the coefficients of q5n+4

and q5n+2, in F4(q), are all zeros. This proves (II) and (II)′.
Proof of (III). Mimicking the above two proofs, we proceed to find

F3(q) =
f 6(q) f 5(q2)
f 7(q) f 7(q2)

≡
f 6(q) f 5(q2)
f (q7) f (q14)

≡
g(q) f 4(q2)

f (q14)

=
f 3(q2) g(q) f (q2)

f (q14)
≡

f 3(q2) ·
∑

n≥0 q(n+1
2 )

f (q14)
(mod 7).
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Next, we employ Jacobi’s identity (3.1) to produce the relation [3, p. 14]

f 3(q2) =
∑
n≥0

(−1)n(2n + 1)q2(n+1
2 ),

and as a result there holds true that

F3(q) ≡
∑

n≥0(−1)n(2n + 1)qn(n+1) ·
∑

n≥0 q(n+1
2 )

f (q14)
(mod 7).

We focus on two congruences for the exponents in the numerator:

n(n + 1)
2

≡ 0, 1, 3, 6 (mod 7) and n(n + 1) ≡ 0, 2, 5, 6 (mod 7).

If we split up the congruence class then the sums can be written as∑
n≥0

(−1)n(2n + 1)qn(n+1) = T0 + T2 + T5 + T6 and∑
n≥0

q(n+1
2 ) = S 0 + S 1 + S 3 + S 6.

However, the coefficients in T5 arrive from 2n + 1 which are precisely zero
modulo 7 when n(n + 1) ≡ 5 (mod 7). Therefore, we end up with

F3(q) ≡
(T0 + T2 + T6)(S 0 + S 1 + S 3 + S 6)

f (q14)
(mod 7).

Direct calculation shows that no monomial of the type q7n+4 can appear in
the numerator, and this proves the congruence a3(7n+4) ≡ 0 (mod 7). □

4. A second proof for Theorem 1.1(i)

In this section, we offer yet another elementary proof of the first congruence
in Theorem 1.1. To this end, let’s start with a basic observation. If ξ = e

2πi
3

is a primitive 3rd root of unity then
2∏

s=0

(1 − qnξns) =

1 − q3n, if gcd(n, 3) = 1
(1 − qn)3, if 3 | n

(4.1)

which in turn implies that∏
n≥1

2∏
s=0

(1 − qnξns) =
f 4(q3)
f (q9)

or
1

f (q)
=

f (q9)
f 4(q3)

∏
n≥1

2∏
s=1

(1 − qnξns).

Lemma 4.1. It is true that

f (q) f (q2) =
(−q3; q3)∞ f 2(q9)

(−q9; q9)2
∞

− q f (q9) f (q18) − 2q2 f 2(q18) (−q9; q9)∞
(−q3; q3)∞

.



8 T. AMDEBERHAN AND A. SINGH

Proof. The Dedekind’s eta-function η(z) enables us to convert the task into
an equivalent formulation:

η(8z) η(16z) =
η(48z) η4(72z)
η(24z) η2(144z)

− η(72z) η(144z) − 2
η(24z) η4(144z)
η(48z) η2(72z)

:= G0(z) +G1(z) +G2(z).

We now use Theorems 2.3 and 2.4 to ensure that η(8z) η(16z) and each
G j(z) ∈ M1(Γ0(1152), (−2

•
)), for j ∈ {0, 1, 2}, are modular forms. Thus,

Sturm’s Theorem 2.5 can be brought to bear which shows that it suffices
to check equality of the declared identity holds for 192 coefficients on both
sides of the above eta equations. The latter claim we confirm with the help
of a symbolic software and thereby completing the proof. □

Lemma 4.2. Let E(q) := f 3(q) + 3q f 3(q9). Then, we have that

F2(q) =
f 3(q9)E(q2) + q f 3(q18) E(q) + 3q2 f 3(q9) f 3(q18)

f 4(q3) f 4(q6)

Proof. Lemma 4.1 is a trisection of U(q) := f (q) f (q2) according to the
congruences modulo 3 to write as U(q) = U0(q)+U1(q)+U2(q), where U j(q)
consists of monomials q3m+ j. More specifically, U1(q) = −q f (q9) f (q18),

U0(q) =
(−q3; q3)∞ f 2(q9)

(−q9; q9)2
∞

and U2(q) = −2q2 f 2(q18) (−q9; q9)∞
(−q3; q3)∞

.

Similarly, let F2(q) = 1
U(q) = P0(q)+ P1(q)+ P2(q). Upon multiplying these

two expansions and combining based on powers of q modulo 3, we arrive
at the system

U0P0 + U2P1 + U1P2 = 1
U1P0 + U0P1 + U2P2 = 0
U2P0 + U1P1 + U0P2 = 0.

By standard tools, we obtain that P j(q) = D j(q)
D(q) for j ∈ {0, 1, 2}, where

D0 = U2
0 − U1U2,D1 = U2

2 − U0U1,

D2 = det
(
U1 U0

U2 U1

)
= U2

1 − U0U2 and D(q) = det

U0 U2 U1

U1 U0 U2

U2 U1 U0

 .
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Let ξ = e
2πi
3 . The determinant D(q) involves a circulant matrix and hence its

value is the product of eigenvalues

D(q) =
2∏

s=0

(U0 + ξ
sU1 + ξ

2sU2) =
2∏

s=0

(U0(ξsq) + U1(ξsq) + U2(ξsq))

=

2∏
s=0

U(ξsq) =
2∏

s=0

f (ξsq) f (ξ2sq2) =
f 4(q3) f 4(q6)
f (q9) f (q18)

.

In the last step, we made use of the product formula from (4.1).
It is rather clear from the above-mentioned explicit formulas that we can
obtain U1(q) = −qU(q9) and U0(q)U2(q) + 2U2

1(q) = 0. These imply
D2(q) = U2

1 − U0U2 = 3U2
1 = 3q2 f 2(q9) f 2(q18) and hence, we obtain

P2(q) =
D2(q)
D(q)

= 3 q2 ·
f 3(q9) f 3(q18)
f 4(q3) f 4(q6)

.(4.2)

A similar argument and analysis produces

P0(q) =
f 3(q9)

f 4(q3) f 4(q6)
· E(q2) and P1(q) = q

f 3(q18)
f 4(q3) f 4(q6)

· E(q).

The proof is now complete. □

Proof of Theorem 1.1 (I). By (4.2) in the proof of Lemma 4.2, we infer that

P2(q) =
∑
n≥0

a2(3n + 2)q3n+2 = 3 q2 ·
f 3(q9) f 3(q18)
f 4(q3) f 4(q6)

which is ample evidence to help us conclude a2(3n + 2) ≡ 0 (mod 3). □

5. Proof for the congruence modulo 11

We are finally ready to supply the proof for Theorem 1.1 (IV).

Proof of Theorem 1.1 (IV). By (1.1), we have∑
n≥0

a5(n) qn =
∏
k≥1

1
(1 − qk)(1 − q2k)4 .(5.1)

Let

G(z) :=
η32(z)
η4(2z)

.

By Theorems 2.3 and 2.4, we find that G(z) is a modular forms of weight
14, level 4 and character χ0 = ( 2−4

•
). By (5.1), the Fourier expansions of our

form satisfy

G(z) =

 ∞∑
n=0

a5(n)qn+1

∏
k≥1

(1 − qk)33.
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Using Proposition 2.6, we calculate that

G(z) |T11 ≡

 ∞∑
n=0

a5(11n + 10)qn+1

∏
k≥1

(1 − qk)3 (mod 11).

Since the Hecke operator is an endomorphism on M14 (Γ0(4), χ0), we have
that G(z) |T11 ∈ M14 (Γ0(4), χ0). By Theorem 2.5, the Sturm bound for
this space of forms is 7. Hence, Theorem 2.5 confirms that G(z) |T11 ≡ 0
(mod 11). This completes the proof of the congruence. □

6. Conclusion

In this section, we bring in a slight variation of the cubic partitions and
apply the techniques from Section 4 as a further illustration. Finally, we
leave the reader with an open problem.
Consider the generating function for pairs of cubic partitions

h(q) :=
1

f 2(q) f 2(q2)
.

Lemma 6.1. We have that

f 2(q) f 2(q2) =
f 3(q2) (−q4; q4)2

∞ f (q8)
(−q8; q8)2

∞

− 2q f 3(q2) (−q8; q8)∞ f (q16).

Proof. The identity in question translates to the eta-quotient

η2(4z) η2(8z) =
η3(8z) η5(32z)
η2(64) η2(16z)

− 2
η3(8z) η2(64z)

η(32z)
.

Each of the three eta-quotients involved here is a modular form belonging
to M2(Γ0(64), (1

•
)). Hence, Sturm’s Theorem 2.5 applies with the bound 16

(that is as many coefficients we need to check for agreement). The proof
ends. □

Theorem 6.2. If f 2(q) f 2(q2) = V0(q)+V1(q) and h(q) = P0(q)+P1(q) then

P0(q) = V0(q) · h(q) h(−q) and P1(q) = −V1(q) · h(q) h(−q).

Proof. From the bisection given in Lemma 6.1, we reckon that

V0 =
f 3(q2) (−q4; q4)2

∞ f (q8)
(−q8; q8)2

∞

and V1 = −2q f 3(q2) (−q8; q8)∞ f (q16).

Next, solve the system of equations

V0P0 + V1P1 = 1
V1P0 + V0P1 = 0

for P0 and P1. Observing that det
(
V0 V1

V1 V0

)
= 1

h(q) h(−q) , the proof follows. □
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Iterating the relation h(q) = (V0(q) − V1(q))h(q)h(−q) of Theorem 6.2, we
arrive at the next result.

Corollary 6.1. For integers ℓ ≥ 0, we have

h(q) = [V2
0 (q) − V2

1 (q)]5·2ℓ−1 · (V0(q) − V1(q)) · [h(q)]5·2ℓ · [h(−q)]5·2ℓ .

To produce our next application, we need to recall Ramanujan’s two-variable
theta-function defined as

f (a, b) :=
∑
n∈Z

a
n(n+1)

2 b(n
2).

One special case would then be f (−q,−q2) = f (q) =
∏

k≥1(1 − qk), for
which there is a 5-dissection f (q) = A0(q) − qA1(q) − q2A2(q) where

A0(q) :=
f (q25) f (−q15,−q10)

f (−q20,−q5)
, A1(q) := f (q25), A2(q) :=

A2
1(q)

A0(q)
,

due to Ramanujan (for instance, see Berndt’s book [2, pp. 81-82]). Thus,

f 3(q) = (A0 − 3A1A2q5) − q (3A2
0A1 + A3

2q5) + 5q3A3
1

from which it is immediate that the 5-dissection of the product f 3(q) f 3(q2)
assumes the form B0(q) + qB1(q) + q2B2(q) + q3B3(q) + 25q4B4(q). As a
consequence, the coefficients of q5n+4, in f 3(q) f 3(q2), vanish modulo 25. In
particular, if h(q) =

∑
n≥0 b(n) qn then we recover the following congruence

[11, (3.7) in Thm. 3.2]

b(5n + 4) ≡ 0 (mod 5) for all n ≥ 0

because we may rewrite (applying the binomial theorem)

h(q) =
f 3(q) f 3(q2)
f 5(q) f 5(q2)

≡
f 3(q) f 3(q2)
f (q5) f (q10)

(mod 5).

Finally, in a true tradition of the famous Ramanujan’s congruences, we now
declare the following claim.

Conjecture 6.2. There are no Ramanujan-type congruences (1.2) for ac(n)
apart from those reducible to Ramanujan’s (1.2) or our Theorem 1.1.

Remark 6.3. The exemptions (values of c) in the above conjecture should
be understood as congruences, modulo a prime p, that appear in the form

Fc(q) ≡ F1(q)
∏
k≥1

1
(1 − q2p)r when p ∈ {5, 7, 11}, or

Fc(q) ≡ Fb(q)
∏
k≥1

1
(1 − q2p)s when (b, p) ∈ {(2, 3), (4, 5), (3, 7), (5, 11)},

for some integers r and s.



12 T. AMDEBERHAN AND A. SINGH

References

[1] G. Andrews, B. Berndt, Ramanujan’s Lost Notebook, Part I, Springer-Verlag, New
York (2005).

[2] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York (1991).
[3] B. C. Berndt, Number theory in the spirit of Ramanujan, Stud. Math. Libr., 34 Amer.

Math. Soc., Providence, RI (2006).
[4] H-C. Chan, Ramanujan’s cubic continued fraction and an analog of his “most beau-

tiful identity”, Int. J. Number Theory 6 (2010), no.3, 673–680.
[5] S. Chern, M. G. Dastidar, Congruences and recursions for the cubic partition, Ra-

manujan J. 44 (2017), no.3, 559–566.
[6] W. Chu, R. R. Zhou, Chan’s cubic analogue of Ramanujan’s “most beautiful iden-

tity” for p(5n + 4), Rend. Mat. Appl. (7) 36 (2015), no.1-2, 77–88.
[7] N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, 97,

New York (1991).
[8] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and

q-series, CBMS Regional Conference Series in Mathematics, 102, Amer. Math. Soc.,
Providence, RI (2004).

[9] S. Ramanujan, Collected Papers of Srinivasa Ramanujan, AMS Chelsea Publishing,
Providence (2000).

[10] J. Sturm, On the congruence of modular forms, Lecture Notes in Math., 1240,
Springer Lect. (1984), 275–280.

[11] H. Zhao, Z. Zhong, Ramanujan type congruences for a partition function, Electron.
J. Combin. 18 (2011), no.1, Paper 58, 9 pp.

Department ofMathematics, Tulane University, New Orleans, LA 70118, USA
Email address: tamdeber@tulane.edu

Dept. ofMathematics, University of Virginia, Charlottesville, VA 22904
Email address: ajit18@iitg.ac.in


