ZEROS OF HERMITE-TYPE POLYNOMIALS

Tewodros Amdeberhan

Let $f(z) \frac{d^{n}}{d z^{n}}(1 / f(z))=P_{n}(z)$ be a monic polynomial having n distinct real roots, for $n=0,1, \ldots$. Assume also that $f(\pm \infty)=\infty$. Note that $f(z)$ is an entire function of finite type.

Claim: For q and m nonnegative integers,

$$
\begin{equation*}
P(z)=\sum_{\gamma}\binom{q}{\gamma} \frac{m!}{(m-\gamma)!} z^{m-\gamma} P_{q-\gamma}(z), \tag{1}
\end{equation*}
$$

has $q+m$ distinct real roots if $q>m$, and $2 q$ distinct nonzero real roots if $q \leq m$.
Remark: This generalizes Problem 5681 of the AMM [P], where this was proposed for $P_{n}(z)=H_{n}(z)$, the Hermite polynomials.

Proof: After rewriting the sum in (1),

$$
P(z)=f(z) \frac{d^{q}}{d z^{q}}\left(z^{m} / f(z)\right),
$$

using $z^{m} / f(z) \rightarrow 0$ when $z \rightarrow \pm \infty$, Rolle's theorem and induction on q, the claim follows.

Reference:
 [P] P 5681, American Mathematical Monthly, (72) \# 6, 1969.

