ZEROS OF HERMITE-TYPE POLYNOMIALS

TEWODROS AMDEBERHAN

Let $f(z)\frac{d^n}{dz^n}(1/f(z)) = P_n(z)$ be a monic polynomial having n distinct real roots, for $n = 0, 1, \dots$ Assume also that $f(\pm \infty) = \infty$. Note that f(z) is an *entire function of finite type*.

Claim: For q and m nonnegative integers,

(1)
$$P(z) = \sum_{\gamma} {\binom{q}{\gamma}} \frac{m!}{(m-\gamma)!} z^{m-\gamma} P_{q-\gamma}(z),$$

has q + m distinct real roots if q > m, and 2q distinct nonzero real roots if $q \le m$.

Remark: This generalizes Problem 5681 of the AMM [P], where this was proposed for $P_n(z) = H_n(z)$, the Hermite polynomials.

Proof: After rewriting the sum in (1),

$$P(z) = f(z) \frac{d^q}{dz^q} (z^m / f(z)),$$

using $z^m/f(z) \to 0$ when $z \to \pm \infty$, Rolle's theorem and induction on q, the claim follows.

Reference:

 $[\mathbf{P}]$ P 5681, American Mathematical Monthly, (72) # 6, 1969.