THE 'UNCENTERED' MAXIMAL FUNCTION AND L^{p}-BOUNDEDNESS

Tewodros Amdeberhan

Department of Mathematics, Temple University, Philadelphia PA 19122
tewodros@euclid.math.temple.edu

Abstract

In this note, we prove that the 'uncentered' Maximal function is not a bounded operator from $L^{p}(d \mu)$ to $L^{p}(d \mu)$, when $d \mu$ is the Gaussian measure on R^{n}. In fact, it is not even weak-type (p, p) for any dimension n.

Let $\xi:=(x, y)$, where $x \in R^{n}$ and y is real. Now, introduce the "uncentered" weighted-Maximal function

$$
M_{\mu} f(\xi):=\sup _{B} \frac{1}{\mu(B)} \int_{B}|f| d \mu
$$

where the supremum runs over all euclidean balls B containing ξ, and the integral is taken with respect to the Gaussian measure

$$
d \mu(\xi):=e^{-|\xi|^{2} / 2} d \xi
$$

It has long been known (for an excellent exposition, see [S1] or [S2], and references therein) that if one replaces $d \mu$ by the Lebesgue measure $d m$, then M_{μ} is L^{p}-bounded, i.e.

$$
\left\|M_{\mu} f\right\|_{p} \leq c_{p}\|f\|_{p}, \quad p>1,
$$

and weakly bounded for $p=1$. Our aim here is to prove that such results fail miserably in the case of the Gaussian measure, and this will be the content of the

Theorem: M_{μ} is not weak-type (p, p), for any $p \geq 1$.
Proof: Take λ to be a unit mass at $(0, a+1)$, for $a>0$ large. Let

$$
E_{\alpha}:=\left\{\xi: M_{\mu} \lambda(\xi)>\alpha\right\} .
$$

Consider the finite cylinder

$$
A:=\{\xi:|x|<1, a<y<a+2\},
$$

and the unit ball $B_{s}:=B_{1}((s, a+1))$, with $s \in R^{n},|s|<1$. Notice that $(0, a+1) \in B_{s}$.

Let \wp be the paraboloid given by

$$
\wp:=\left\{\xi: y>a+\frac{|x-s|^{2}}{2}\right\},
$$

and let $G:=\wp \cap\{\xi:|x-s|<1\}$.
Then, since

$$
\int_{x}^{\infty} e^{-t^{2} / 2} d t \leq \frac{1}{x} e^{-x^{2} / 2}, \quad x \gg 1
$$

we have the following estimates

$$
\begin{aligned}
\mu\left(B_{s}\right) & =\int_{B_{s}} d \mu \leq \int_{G} d \mu \leq \int_{|x| \leq 1} \int_{a+\frac{|x|^{2}}{2}}^{\infty} e^{-y^{2} / 2} d y \\
& \leq \frac{c}{a} \int_{|x| \leq 1} e^{-\frac{1}{2}\left(a+\frac{|x|^{2}}{2}\right)^{2}} d x \\
& \leq \frac{c}{a} e^{-a^{2} / 2} \int_{|x| \leq 1} e^{-\frac{a|x|^{2}}{2}} d x \\
& \leq \frac{C_{n}}{a} \frac{1}{\sqrt{a^{n}}} e^{-a^{2} / 2}
\end{aligned}
$$

for some dimensional constant C_{n}.
This immediately implies that

$$
M_{\mu} \lambda \geq \frac{C_{n}}{a} \frac{1}{\sqrt{a^{n}}} e^{-a^{2} / 2}, \quad \text { in } \quad A=\{\xi:|x|<1, a<y<a+2\} .
$$

On the other hand, it is easy to see that

$$
\mu(A)=\int_{|x| \leq 1} \int_{a}^{a+2} e^{-|x|^{2} / 2} e^{-y^{2} / 2} d y d x \geq \frac{C_{n}}{a} \frac{1}{\sqrt{a^{n}}} e^{-a^{2} / 2}
$$

Now choosing $\alpha=C_{n} a \sqrt{a^{n}} e^{a^{2} / 2}$, we get a lower bound on the distribution function (w.r.t. μ) of λ,

$$
\mu\left(E_{\alpha}\right) \geq \mu(A) \geq \frac{C_{n}}{a} \frac{1}{\sqrt{a^{n}}} e^{-a^{2} / 2}
$$

Suppose M_{μ} is weak-type (p, p) for some $p \geq 1$, then from the above estimates we gather that

$$
\frac{C_{n}}{a} e^{-a^{2} / 2} \leq C(p, n)\left(\frac{1}{a} \frac{1}{\sqrt{a^{n}}} e^{-a^{2} / 2}\right)^{p},
$$

for some constant $C(p, n)$ depending only on p and n. The last estimate can be expressed as

$$
\left(a e^{a^{2} / 2}\right)^{p-1} \leq C_{1}(p, n) \frac{1}{\sqrt{a^{n p}}} .
$$

However, this inequality is absurd as soon as a is large enough! Whence the assertion of the theorem holds.

References

[S1] E. Stein, Singular Integrals and Differentiablity Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.
[S2] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

