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Abstract

We prove an explicit formula for the p-adic valuation of the Legendre polynomials
Pn(x) evaluated at a prime p, and generalize an old conjecture of the third author. We
also solve a problem proposed by Cigler in 2017.
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1 Introduction

The p-adic valuation is a key concept in number theory that quantifies the divisibility of a
an integer n by a prime number p. It is denoted νp(n) and defined as the largest nonnegative
integer k such that pk divides n. By convention we set νp(0) = +∞. More generally, for
a nonzero rational number m/n, we have νp(m/n) := νp(m) − νp(n). The p-adic valua-
tion is useful for understanding the arithmetic properties of integers, with applications to
Diophantine equations, congruences, the p-adic numbers, and local fields.

Determining the p-adic valuation of the elements of various combinatorial sequences is
an old, interesting, and often challenging problem. For example, in 1830 Legendre [14, p. 10]
gave a celebrated formula for νp(n!):

νp(n!) =
∑
i≥1

⌊
n

pi

⌋
. (1)

Although this sum is formally over infinitely many values of i, its terms are 0 for all sufficiently
large i. An alternative formulation is

νp(n!) =
n− sp(n)

p− 1
, (2)

where sp(n) denotes the sum of the base-p digits of n. Later, Kummer [13] gave a formula
for νp(

(
n
k

)
); namely, he expressed it as the number of carries in the base-p addition of k and

n− k.
Since then, the p-adic valuations of many other sequences have been studied. Among

them are the Fibonacci and tribonacci numbers studied by Lengyel [15] and by Marques and
Lengyel [16], respectively.

In some instances, the p-adic valuation of a sequence (c(n))n≥0 is p-regular, that is, the
p-kernel of the sequence (νp(c(n)))n≥0 produces a finitely generated module [2, 4]. In other
words, the set of subsequences

{(νp(c(pen+ i)))n≥0 : e ≥ 0, 0 ≤ i < pe}

is of finite rank over the rationals. For example, the sequence c(n) =
(
2n
n

)
is p-regular, since

from Eq. (2) it follows that the p-kernel of (νp(c(n)))n≥0 is spanned by the three sequences
(νp(c(n)))n≥0, (νp(c(pn+ p− 1)))n≥0, and the constant sequence 1.

Boros, Moll, and the third author studied the 2-regularity of the 2-adic valuation of
certain polynomials associated with definite integrals [8]. Bell [6] and Medina, Moll, and
Rowland [17] studied the case of polynomial c(n) more generally. To name a few other
papers, Shu and Yao [26] characterized analytic functions f : Zp → Cp without roots in
N such that (νp(f(n)))n≥0 is p-regular. Medina and Rowland [18] further studied the p-
regularity of the Fibonacci numbers, and Murru and Sanna [19] analyzed that of the more
general Lucas sequences.
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In other cases, the p-adic valuations exhibit various kinds of regularities without actually
being p-regular. For example, see [1, 5, 11].

Legendre polynomials have a long history of being studied in number theory; we can
mention, for example, their use in irrationality proofs [7] and in the Hasse invariant of certain
elliptic curves [9]. Their irreducibility is the subject of a famous conjecture of Stieltjes [27].
Understanding the divisibility of their values by primes, therefore, could provide additional
insight for these questions. In this paper, we study the p-adic valuations of the Legendre
polynomials Pn(x) evaluated at a prime number p, and show that they are p-regular. In the
next section, we provide some additional motivation for studying this question.

2 Motivation

Back in 1988, when the third author (JS) was an assistant editor of the problems section
of the American Mathematical Monthly, he received a submission from Nicholas Strauss
and Derek Hacon with a proof of an inequality about the 3-adic valuation of the sequence
d(n) :=

∑
0≤i<n

(
2i
i

)
. The sequence d(n) is present in the On-Line Encyclopedia of Integer

Sequences (OEIS) [20] as sequence A006134.
JS guessed that A(n) := (ν3(d(n))) might be a 3-regular sequence and used a computer

program to discover the following heuristic relations:

A(3n+ 2) = A(n) + 2

A(9n) = A(3n)

A(9n+ 1) = A(3n) + 1

A(9n+ 3) = A(3n)

A(9n+ 4) = A(3n+ 1) + 1

A(9n+ 6) = A(3n+ 1)

A(9n+ 7) = A(3n+ 1) + 1.

They led JS to conjecture that

ν3(d(n)) = ν3(

(
2n

n

)
) + 2ν3(n),

which he was later able to prove with the helpful advice of Jean-Paul Allouche. The original
problem proposal, modified to give the exact formula, eventually appeared as Problem 6625
in the American Mathematical Monthly in 1990 [28], and a completely different solution by
Don Zagier, based on 3-adic analysis, was published two years later [29]. The sequence
ν3(d(n)) is the sequence A082490 in the OEIS.

After this, JS was inspired to use the same computer program to explore whether the
p-adic valuations of other combinatorial sums might (conjecturally) have similar identities.
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This effort was largely unsuccessful, with the exception of the following sequence: Define

a(n) :=
∑

0≤i≤n

(
n

i

)(
n+ i

i

)
, (3)

known as central Delannoy numbers and listed as sequence A001850 in OEIS. Define b(n) :=
ν3(a(n)); this is sequence A358360 in the OEIS. Then the numerical evidence supported the
following conjecture.

Conjecture 1. The sequence (b(i))i≥0 satisfies the following identities:

b(i) =

{
b(⌊i/3⌋) + (⌊i/3⌋ mod 2), if i ≡ 0, 2 (mod 3);

b(⌊i/9⌋) + 1, if i ≡ 1 (mod 3).

This conjecture appeared in [3, p. 453], and JS frequently mentioned it in his talks
(e.g., [24]). This conjecture was proved only in 2023 by Shen [25].

In 2017, JS posted the conjecture and its generalization to arbitrary prime p as a query
on the MathOverflow website [23], which ultimately inspired the authors to form a team and
settle the generalized conjecture (Theorem 6 below) with a joint effort. Namely, we prove
explicit and recurrence formulae for νp(Pn(p)) for every prime p ≥ 3, from which Conjecture 1
follows as a partial case with p = 3 and a(n) = Pn(3).

As we will see in Theorem 8, our results also imply the identity νp(Mn(p)) = νp(Pn(p))
conjectured by Cigler [10] for the polynomials

Mn(x) :=
n∑

k=0

(
n

k

)2

(x− 1)k. (4)

Along the lines of these results, we also pose the following open question.

Conjecture 2. For every integer n ≥ 0, we have

ν3(
n∑

k=0

(
n

k

)3

2k) =

{
s3(

n−1
2
) + 1, if n ≡ −1 (mod 6);

s3(⌊n+1
2
⌋), otherwise.

3 Main results

In this section, we state the main results of the paper.

Theorem 3. Let p be a prime number and r be a rational number such that νp(r) ≥ 1. Then
for every integer n ≥ 0, we have

νp(Pn(r)) =


νp(

(
n

n/2

)
), if n is even and p ≥ 3;

νp(
(

n−1
(n−1)/2

)
) + νp(r) + νp(n), if n is odd and p ≥ 3;

ν2(
(

n
n/2

)
)− n, if n is even and p = 2;

ν2(
(

n−1
(n−1)/2

)
) + ν2(r) + 1− n, if n is odd and p = 2.

4

https://oeis.org/A001850
https://oeis.org/A358360


Equivalently,

νp(Pn(r)) = νp(
1

2n

(
n

⌊n/2⌋

)
) + (n mod 2)νp(r(n+ 1)).

Theorem 4. Let p ≥ 3 be a prime number. Then for every integer m ≥ 0, we have

νp(P2m(p)) = νp(

(
2m

m

)
);

νp(P2m+1(p)) = 1 + νp(2m+ 1) + νp(

(
2m

m

)
).

Moreover, for every integer n ≥ 0,

νp(Pn(p)) =
2sp(⌊n/2⌋)− sp(n) + (n mod 2)p

p− 1
.

Theorem 5. For every integer n ≥ 0, we have

ν2(Pn(2)) = (n mod 2)− ν2(n!).

Theorem 6. Let p ≥ 3 be a prime number and f(n) := νp(Pn(p)). Then for all integers
n ≥ 0 and 0 ≤ a < p, we have

f(pn+ a) =

{
f(n) + (n mod 2), if a is even;

f(n) + 1− (n mod 2), if a is odd.

For the special case p = 3, with the aid of Eq. (5) for x = 3, Theorem 6 implies
Conjecture 1 by setting i = 3n + a with 0 ≤ a < 3. The case of a ∈ {0, 2} is immediate,
while for a = 1, we get b(i) = b(n) + 1− (n mod 2). The case a = 1 then follows by writing
n = 3m + b and noticing that n mod 2 = m mod 2 when b ∈ {0, 2}, while (m mod 2) +
(n mod 2) = 1 when b = 1. We thus recover the recent result of Shen [25].

As a corollary of Theorems 5 and 6 we also get

Corollary 7. For every prime number p, the sequence (νp(Pn(p)))n≥0 is p-regular.

Theorem 8. Let Mn(x) be defined as in Eq. (4). Then for every integer n ≥ 0 and prime
p ≥ 3, we have

νp(Mn(p)) = νp(Pn(p)).

4 Background and preliminary results

There exist many formulae for Legendre polynomials Pn(x), including the following iden-
tity [12]:

Pn(x) =
∑

0≤k≤n

(
n

k

)(
n+ k

k

)(
x− 1

2

)k

, (5)
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which can also be expressed in the form of hypergeometric series [21, §93, p. 166, Eq. (2)].
The following two formulas for Legendre polynomials are due to Rodrigues [22]:

Pn(x) =
1

2n

⌊n/2⌋∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k; (6)

Pn(x) =
1

2n

n∑
k=0

(
n

k

)2

(x− 1)k(x+ 1)n−k. (7)

Let p be a prime. As before, let sp(n) denote the sum of the base-p digits of n. From
Eq. (2), for integers n ≥ k ≥ 0 we easily obtain

νp(

(
n

k

)
) = νp(

n!

k!(n− k)!
) =

sp(k) + sp(n− k)− sp(n)

p− 1
. (8)

Moreover, for n ≥ 0 and 0 ≤ a < p, we have

sp(np+ a) = sp(n) + a. (9)

The following lemma, together with Eq. (8), will be a key to expressing νp(Pn(p)) in
terms of sp.

Lemma 9. For every prime p and every integer m ≥ 0,

νp(2m+ 1) + νp(

(
2m

m

)
) = νp(m+ 1) + νp(

(
2m+ 1

m

)
) =

2sp(m)− sp(2m+ 1) + 1

p− 1
.

Proof. The first equality follows from the identity (2m+ 1)
(
2m
m

)
= (m+ 1)

(
2m+1
m

)
. To prove

the second equality, we consider two cases depending on whether p divides 2m+ 1.
When νp(2m+ 1) = 0, we have sp(2m+ 1) = sp(2m) + 1 and use Eq. (8) to get

νp(2m+ 1) + νp(

(
2m

m

)
) =

2sp(m)− sp(2m)

p− 1
=

2sp(m)− sp(2m+ 1) + 1

p− 1
.

When νp(2m+ 1) ≥ 1, we have νp(m+ 1) = 0 and thus sp(m+ 1) = sp(m) + 1, implying
that

νp(m+ 1) + νp(

(
2m+ 1

m

)
) =

sp(m) + sp(m+ 1)− sp(2m+ 1)

p− 1
=

2sp(m)− sp(2m+ 1) + 1

p− 1
.

In view of formula (6), let us define

Qn(x) := 2nPn(x) =

⌊n/2⌋∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k. (10)
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Lemma 10. Let p be a prime number and r be a rational number such that νp(r) ≥ 1. Then
for every integer m ≥ 0, we have

νp(Q2m(r)) = νp(

(
2m

m

)
).

Proof. Since Q0(r) = 1, the lemma statement is clearly true for m = 0. From now on, let
m ≥ 1. By the definition (10) of Qn(x), we have

Q2m(x) =
2m∑
i=0

aix
i,

where

ai :=

{
(−1)m−i/2

(
2m

m−i/2

)(
2m+i
2m

)
, if i is even;

0, if i is odd.

In particular, we have a0 = (−1)m
(
2m
m

)
, and so

νp(a0) = νp(

(
2m

m

)
). (11)

Now our goal is to show

νp(air
i) > νp(a0) for all even 2 ≤ i ≤ 2m. (12)

Let i = 2j. Equivalently to (12), we need to show that

νp(a2j/a0) ≥ −2j · νp(r) + 1 for all 1 ≤ j ≤ m.

Since νp(r) ≥ 1, it suffices to show that

νp(a2j/a0) ≥ −2j + 1 for all 1 ≤ j ≤ m. (13)

Expanding a2j/a0, and regrouping terms, we obtain

|a2j/a0| =
(

2m

m− j

)(
2m+ 2j

2m

)
·
(
2m

m

)−1

=
(2m)!

(m− j)!(m+ j)!
· (2m+ 2j)!

(2m)!(2j)!
· m!m!

(2m)!

=
(2m+ 2j)!m!

(2m)!(m+ j)!
· m!

(m− j)!
· 1

(2j)!

=

∏2j
ℓ=1(2m+ ℓ)∏j
ℓ=1(m+ ℓ)

· m!

(m− j)!
· 1

(2j)!
.
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It is easy to see that
∏j

ℓ=1(m+ ℓ) = 1
2j

∏j
ℓ=1(2m+ 2ℓ) divides

∏2j
ℓ=1(2m+ ℓ), implying that

a2j/a0 = b/(2j)! for some non-zero integer b. By Legendre’s formula (2) we have

νp((2j)!) =
2j − sp(2j)

p− 1
≤ 2j − 1.

Thus, νp(a2j/a0) = νp(b) − νp((2j)!) ≥ −2j + 1, and so inequalities (13) and (12) hold,
implying that νp(Q2m(r)) = νp(a0), which together with Eq. (11) completes the proof.

Lemma 11. Let p be a prime number, m ≥ 0 be an integer, and r be a rational number such
that νp(r) ≥ 1. When p ≥ 3, we have

νp(Q2m+1(r)) = νp(r) + νp(2m+ 1) + νp(

(
2m

m

)
),

and for p = 2,

ν2(Q2m+1(r)) = 1 + ν2(r) + ν2(

(
2m

m

)
).

Proof. The proof idea is similar to that of Lemma 10. Since Q1(r) = 2r, the statement of
the lemma is clearly true for m = 0. From now on, let m ≥ 1. By the definition (10), we
have

Q2m+1(x) =
2m+1∑
i=0

aix
i,

where

ai =

{
0, if i is even;

(−1)m−(i−1)/2
(

2m+1
m−(i−1)/2

)(
2m+1+i
2m+1

)
, if i is odd.

In particular, we have a1 = 2(2m+ 1)
(
2m
m

)
, and so

νp(a1r) =

{
νp(r) + νp(2m+ 1) + νp(

(
2m
m

)
), if p ≥ 3;

1 + νp(r) + νp(
(
2m
m

)
), if p = 2.

(14)

Now our goal is to show

νp(air
i) > νp(a1r) for all odd i, 3 ≤ i ≤ 2m+ 1. (15)

Let i = 2j + 1. Equivalently to (15), we need to show

νp(a2j+1/a1) ≥ −2j · νp(r) + 1 for all j, 1 ≤ j ≤ m.

Since νp(r) ≥ 1, it suffices to show that

νp(a2j+1/a1) ≥ −2j + 1 for all j, 1 ≤ j ≤ m. (16)
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Expanding a2j+1/a1, and regrouping terms, we obtain

|a2j+1/a1| =
(
2m+ 1

m− j

)(
2m+ 2j + 2

2m+ 1

)
·
(
2(2m+ 1)

(
2m

m

))−1

=
(2m+ 1)!

(m− j)!(m+ j + 1)!
· (2m+ 2j + 2)!

(2m+ 1)!(2j + 1)!
· 1

2(2m+ 1)
· m!m!

(2m)!

=
(2m+ 2j + 2)!m!

2(2m+ 1)!(m+ j + 1)!
· m!

(m− j)!
· 1

(2j + 1)!

=

∏2j+2
ℓ=1 (2m+ ℓ)

2
∏j+1

ℓ=1(m+ ℓ)
· m!

(m− j)!
· 1

(2j + 1)!
.

Since 2
∏j+1

ℓ=1(m + ℓ) = 1
2j

∏j+1
ℓ=1(2m + 2ℓ) divides

∏2j+2
ℓ=1 (2m + ℓ), it follows that a2j+1/a1 =

b/(2j + 1)! for some non-zero integer b. By Legendre’s formula (2), we have

νp((2j + 1)!) =
2j + 1− sp(2j + 1)

p− 1
≤ 2j − 1,

where we used that sp(2j+1) ≥ 1 and p−1 ≥ 2 when p ≥ 3, and s2(2j+1) ≥ 2 when p = 2.
Thus, νp(a2j+1/a1) = νp(b)− νp((2j +1)!) ≥ −2j +1, and so inequalities (16) and (15) hold,
implying that νp(Q2m+1(r)) = νp(a1r), which together with (14) completes the proof.

5 Proofs of the main results

Theorem 3 follows directly from Lemmas 10 and 11. It further implies Theorem 4 by setting
r = p and using Lemma 9.

We now prove Theorem 5.

Proof of Theorem 5. Using Eqs. (8), (9), and (2) for p = 2 and a = 0, we have

ν2(

(
2m

m

)
) = 2s2(m)− s2(2m) = s2(2m) = 2m− v2((2m)!).

Combining this with Theorem 3 for r = p = 2, we have

ν2(Pn(2)) =

{
−v2(n!) if n is even;

−v2((n− 1)!) + 1 if n is odd.

It remains to note that for an odd n, v2((n − 1)!) = v2(n!), which then allows to combine
the two cases as ν2(Pn(2)) = (n mod 2)− v2(n!).

Next, we tackle Theorem 6.
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Proof of Theorem 6. As the theorem statement stipulates, let p ≥ 3 be a prime number and
f(n) := νp(Pn(p)). To evaluate f(pn + a) for n ≥ 0 and 0 ≤ a < p, we distinguish between
four cases, according to the parities of n and a.

Case 1: both n = 2m and a = 2b are even. Using Theorem 4 and Eq. (9), we get

f(2(pm+ b)) =
2sp(pm+ b)− sp(2pm+ 2b)

p− 1
=

2(sp(m) + b)− (sp(2m) + 2b)

p− 1

=
2sp(m)− sp(2m)

p− 1
= f(2m). (17)

Case 2: n = 2m is even and a = 2b+ 1 is odd. Since νp(2pm+ 2b+ 1) = 0, Theorem 4 and
Eq. (17) yield

f(2(pm+ b) + 1) = 1 + νp(2pm+ 2b+ 1) + νp(

(
2(pm+ b)

pm+ b

)
)

= 1 + νp(

(
2(pm+ b)

pm+ b

)
) = 1 + f(2(pm+ b))

= 1 + f(2m).

Case 3: n = 2m+ 1 is odd and a = 2b is even. By Theorem 4 and Eq. (9), we have

f(p(2m+ 1) + 2b) =
2sp(pm+ b+ p−1

2
)− sp(p(2m+ 1) + 2b) + p

p− 1

= 1 +
2sp(m)− sp(2m+ 1) + p

p− 1
= 1 + f(2m+ 1).

Case 4: both n = 2m+1 and a = 2b+1 are odd. Since b < p−1
2
, by Theorem 4 and Eq. (9),

we have

f(p(2m+ 1) + 2b+ 1) =
2sp(pm+ b+ p+1

2
)− sp(p(2m+ 1) + 2b+ 1)

p− 1

=
2sp(m)− sp(2m+ 1) + p

p− 1
= f(2m+ 1).

Finally, we prove Theorem 8, thus resolving the question of Cigler.

Proof of Theorem 8. First, note that by substituting x/(2− x) in Eq. (7) and comparing it
with Eq. (4), we get

Mn(x) = (2− x)nPn(
x

2−x
). (18)

For a prime p ≥ 3, Eq. (18) implies

νp(Mn(p)) = νp(Pn(
p

2−p
)).

Now set r1 = p and r2 = p/(p− 2), and note that νp(r1) = νp(r2) = 1. Then by Theorem 3,
νp(Pn(r2)) = νp(Pn(r1)), implying that νp(Mn(p)) = νp(Pn(p)).
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