ON SUM OF DISTANCES ON A SPHERE

Tewodros Amdeberhan

Department of Mathematics, Temple University, Philadelphia PA 19122, USA tewodros@euclid.math.temple.edu

Abstract

An improved upper bound for the sum of distances between N points on a unit sphere is presented.

Let P_{1}, \ldots, P_{N} be points on the unit sphere S^{n-1} of the Euclidean space R^{n}. Define the distance

$$
S(N, n, \lambda)=\max \sum_{i<j}\left|P_{i}-P_{j}\right|^{\lambda}
$$

where the max is taken over all possible P_{1}, \ldots, P_{N}. This function has been investigated by several authors [1]-[5]. Denoting the surface area of S^{n-1} by $\sigma\left(S^{n-1}\right)$ and

$$
c(n, \lambda)=\frac{1}{2 \sigma\left(S^{n-1}\right)} \int_{S^{n-1}}\left|P_{0}-P\right|^{\lambda} \sigma(P)
$$

for any fixed point P_{0}, the following are the best known (to date) estimates for S .

1. The circle is nicely treated by Fejes Tóth [4] and

$$
\begin{equation*}
S(N, 2,1)=\mathrm{N} \cot \left(\frac{\pi}{2 N}\right)=\frac{2}{\pi} N^{2}-\frac{\pi}{6}+O\left(\frac{1}{N^{2}}\right) . \tag{1}
\end{equation*}
$$

2. The special case $n=3, \lambda=1$

$$
\begin{equation*}
S(N, 3,1)<\frac{2}{3} N^{2}-\frac{1}{2} \tag{2}
\end{equation*}
$$

was proved by R. Alexander [1].
3. For the higher dimensions and any $0 \leq \lambda \leq 1$, this is due to K. Stolarsky [5]

$$
\begin{equation*}
S(N, n, \lambda) \leq c(n, \lambda) N^{2}-\frac{1}{2} c(n, \lambda) \tag{3}
\end{equation*}
$$

which holds true at least "half of the time", i.e. for any given N , inequality (3) is valid either for N or $\mathrm{N}+1$.

In this note we present improved estimates for the special case $\lambda=1$, but any dimension n. Our method relies heavily on the following two lemmata found in [1].

Lemma 1: Let p_{1}, \ldots, p_{N} and q_{1}, \ldots, q_{N} be any two set of real numbers. Then

$$
\begin{equation*}
\sum_{i, j}\left|p_{i}-q_{j}\right| \geq \sum_{i<j}\left|p_{i}-p_{j}\right|+\sum_{i<j}\left|q_{i}-q_{j}\right|+\sum_{j=1}^{N} p\left(p_{i}\right), \tag{4}
\end{equation*}
$$

where $\rho\left(p_{i}\right)=\min _{j}\left|p_{i}-q_{j}\right|$.
Lemma 2: Let q_{1}, \ldots, q_{N} be numbers in the interval $[-1,1]$, and $\rho(x)=\min _{j}\left|x-q_{j}\right|$. Then

$$
\begin{equation*}
\int_{-1}^{1} \rho(x) d x \geq \frac{1}{N} . \tag{5}
\end{equation*}
$$

Our main result is

Theorem:

$$
\begin{equation*}
S(N, n, 1) \leq c(n, 1) N^{2}-\frac{1}{2} \tag{6}
\end{equation*}
$$

Proof: The variables τ, τ_{i} will denote elements of the special orthogonal group $S O(n)$ acting on S^{n-1} and integral on the τ 's will be a Harr integral. Assume its measure is normalized. Take N points on the sphere S^{n-1}, say P_{1}, \ldots, P_{N}. Then observe that since

$$
\int\left|P_{i}-\tau\left(P_{j}\right)\right| d \tau=\frac{1}{\sigma\left(S^{n-1}\right)} \int\left|P_{i}-P\right| d \sigma(P)
$$

it follows that

$$
\begin{equation*}
I:=\sum_{i, j} \int\left|P_{i}-\tau\left(P_{j}\right)\right| d \tau=2 c(n, 1) N^{2} \tag{7}
\end{equation*}
$$

Next, using the fact that for any $P_{0} \in S^{n-1}$

$$
\left|P_{i}-P_{j}\right|=b_{n} \int\left|\left(P_{i}-P_{j}\right) \cdot \tau\left(P_{0}\right)\right| d \tau
$$

and Lemma 1, we obtain

$$
\begin{aligned}
I & =b_{n} \iint \sum_{i, j}\left|\left(P_{i}-\tau_{1}\left(P_{j}\right)\right) \cdot \tau_{2}\left(P_{0}\right)\right| d \tau_{2} d \tau_{1} \\
& \geq b_{n} \iint\left\{\sum_{i<j}\left|\left(P_{i}-P_{j}\right) \cdot \tau_{2}\left(P_{0}\right)\right|+\sum_{i<j}\left|\left(\tau_{1}\left(P_{i}\right)-\tau_{1}\left(P_{j}\right)\right) \cdot \tau_{2}\left(P_{0}\right)\right|\right\} d \tau_{2} d \tau_{1} \\
& +b_{n} \iint \sum_{j=1}^{N} I I d \tau_{2} d \tau_{1} .
\end{aligned}
$$

Upon taking the supremum over the set of all N-points $P_{1}, P_{2}, \ldots, P_{n}$, we have the inequality

$$
\begin{equation*}
I \geq 2 S(N, n, 1)+b_{n} \iint \sum_{i=1}^{N} I I d \tau_{2} d \tau_{1} \tag{8}
\end{equation*}
$$

Finally, we turn to estimate the missing expression in (8):

$$
\begin{align*}
b_{n} \sum_{j=1}^{N} \int\left(\int I I d \tau_{1}\right) d \tau_{2} & =b_{n} \sum_{j=1}^{N} \int\left(\int \min _{i}\left|\left(P_{i}-\tau_{1}\left(P_{j}\right)\right) \cdot \tau_{2}\left(P_{0}\right)\right| d \tau_{1}\right) d \tau_{2} \tag{9}\\
& =b_{n} \sum_{j=1}^{N} \int \frac{1}{\sigma\left(S^{n-1}\right)}\left(\int \min _{i}\left|\left(P_{i}-Q\right) \cdot \tau_{2}\left(P_{0}\right)\right| d \sigma(Q)\right) d \tau_{2} \\
& =b_{n} \sum_{j=1}^{N} \int \frac{1}{\sigma\left(S^{n-1}\right)}\left(d_{n} \int_{-1}^{1} \min _{i}\left|p_{i}^{\prime}-x\right| d x\right) d \tau_{2} \\
& \geq 1
\end{align*}
$$

where the last inequality is justified using Lemma 2, and a simplification of the dimensional constants. The proof is complete after combining the results found in (7)-(9).

References

[1] R. Alexander, On the sum of distances between n points on a sphere, Acta Math. Acad. Sci. Hung. 23 (1972), 443-448.
[2] R. Alexander, K. Stolarsky, Extremal problems of distance geometry related to energy integrals, Tranc. Amer. Math. Soc. 193 (1974), 1-31.
[3] G. Björck, Distributions of positive mass which maximize a certain generalized energy integral, Ark. Mat. 3 (1955), 255-269.
[4] L. Fejes Tóth, On the sum of distances determined by a pointset, Acta Math. Acad. Sci. Hung. 7 (1956), 397-401.
[5] K. Stolarsky, Sums of distances between points on a sphere, Proc. Amer. Math. Soc. $\mathbf{3 5}$ \#2 (1972), 547-549.

