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Yesterday, 06 December 2014, held the Putnam Math Competition throughout the U.S.A. One of
the problems in the morning session is about a determinant evaluation.

Problem A2. Find a closed form for the determinant

det

(
1

min(i, j)

)n

i,j=1

.

Of course, a careful elementary row and column expansions would yield the value (−1)n−1 n
n!2 .

Herewith, we generalize and prove the result in a unified and simpler way.

Generalization. Suppose a, b ∈ N. We have

det

(
1

xmin(i+a,j+b)

)n

i,j=1

=


1

xmin(a+1,b+1)
if n = 1 and a 6= b

0 if n > 1 and a 6= b
1

xn+a

∏n−1
i=1

xi+a−xi+a+1

x2
i+a

if a = b.

Proof. Denoting the left-hand side by Mn(a, b). The proof can readily be executed (inductively)
by the Dodgson’s Condensation method in the form

Mn(a, b) =
Mn−1(a, b)Mn−1(a + 1, b + 1)−Mn−1(a + 1, b)Mn−1(a, b + 1)

Mn−2(a + 1, b + 1)
.

The reader is advised to consider the 3 different cases, separately. �

The following identity appeared in a paper by T. Mansour and Y. Sun (”Dyck paths and partial
Bell polynomials”) where it is stated for n = pk + ` where 0 ≤ ` ≤ k− 1. We generalize and provide
a proof with the WZ methodology.

Proposition. For any n, k, ` ∈ N, we have

min(n,p)∑
m=0

n + m`−mk

m + 1

(
n

m

)(
p

k

)
=

n(p(` + 1) + n− pk + 1)

(n + 1)(p + 1)

(
n + p

n

)
.

Proof. Divide the summand on the left side by the right-hand side to denote by F (n,m). Zeil-
berger’s algorithm provides the recurrence F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) where

G(n, k) = R(n, k)F (n, k) with the rational function R(n, k) = m(m+1)P (n,k)
Q(n,k) as a certificate given by

P (n, k) = k − ` + n + pn− nkp + n`p + n2 + 2`k − 2km− 2p`km + 2m` + nm`− nkm− `p + kp

− p`2 − pk2 + p`m− pkm + p`2m + pk2m + 2p`k + k2m + `2m− k2 − `2 − 2`km,

and Q(n, k) = (−p + m− 1)(−n−m` + km)(−n− p− 2 + kp + k − `p− `)(n + p + 1). �
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