GENERALIZING A PUTNAM 2014 QUESTION

T. Amdeberhan and S. B. Ekhad
07 December, 2014

Yesterday, 06 December 2014, held the Putnam Math Competition throughout the U.S.A. One of the problems in the morning session is about a determinant evaluation.

Problem A2. Find a closed form for the determinant

$$
\operatorname{det}\left(\frac{1}{\min (i, j)}\right)_{i, j=1}^{n}
$$

Of course, a careful elementary row and column expansions would yield the value $(-1)^{n-1} \frac{n}{n!^{2}}$. Herewith, we generalize and prove the result in a unified and simpler way.

Generalization. Suppose $a, b \in \mathbb{N}$. We have

$$
\operatorname{det}\left(\frac{1}{x_{\min (i+a, j+b)}}\right)_{i, j=1}^{n}=\left\{\begin{array}{cl}
\frac{1}{x_{\min (a+1, b+1)}} & \text { if } n=1 \text { and } a \neq b \\
0 & \text { if } n>1 \text { and } a \neq b \\
\frac{1}{x_{n+a}} \prod_{i=1}^{n-1} \frac{x_{i+a}-x_{i+a+1}}{x_{i+a}^{2}} & \text { if } a=b
\end{array}\right.
$$

Proof. Denoting the left-hand side by $M_{n}(a, b)$. The proof can readily be executed (inductively) by the Dodgson's Condensation method in the form

$$
M_{n}(a, b)=\frac{M_{n-1}(a, b) M_{n-1}(a+1, b+1)-M_{n-1}(a+1, b) M_{n-1}(a, b+1)}{M_{n-2}(a+1, b+1)}
$$

The reader is advised to consider the 3 different cases, separately.
The following identity appeared in a paper by T. Mansour and Y. Sun ("Dyck paths and partial Bell polynomials") where it is stated for $n=p k+\ell$ where $0 \leq \ell \leq k-1$. We generalize and provide a proof with the WZ methodology.
Proposition. For any $n, k, \ell \in \mathbb{N}$, we have

$$
\sum_{m=0}^{\min (n, p)} \frac{n+m \ell-m k}{m+1}\binom{n}{m}\binom{p}{k}=\frac{n(p(\ell+1)+n-p k+1)}{(n+1)(p+1)}\binom{n+p}{n}
$$

Proof. Divide the summand on the left side by the right-hand side to denote by $F(n, m)$. Zeilberger's algorithm provides the recurrence $F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k)$ where $G(n, k)=R(n, k) F(n, k)$ with the rational function $R(n, k)=\frac{m(m+1) P(n, k)}{Q(n, k)}$ as a certificate given by

$$
\begin{aligned}
P(n, k) & =k-\ell+n+p n-n k p+n \ell p+n^{2}+2 \ell k-2 k m-2 p \ell k m+2 m \ell+n m \ell-n k m-\ell p+k p \\
& -p \ell^{2}-p k^{2}+p \ell m-p k m+p \ell^{2} m+p k^{2} m+2 p \ell k+k^{2} m+\ell^{2} m-k^{2}-\ell^{2}-2 \ell k m
\end{aligned}
$$

and $Q(n, k)=(-p+m-1)(-n-m \ell+k m)(-n-p-2+k p+k-\ell p-\ell)(n+p+1)$.

