DERIVATIVES OF THETA FUNCTIONS AS TRACES OF PARTITION
EISENSTEIN SERIES

TEWODROS AMDEBERHAN, KEN ONO AND AJIT SINGH

ABSTRACT. In his “lost notebook”, Ramanujan used iterated derivatives of two theta func-
tions to define sequences of ¢-series {Usz:(q)} and {Var(¢q)} that he claimed to be quasimodular.
We give the first explicit proof of this claim by expressing them in terms of “partition Eisen-
stein series”, extensions of the classical Eisenstein series Eay(q), defined by
A= (1" 2m2 0 ™) En — Ex(q) = Ex(q)™ E4(q)™* -+ Ean(q)™.
For functions ¢ : P — C on partitions, the weight 2n partition Eisenstein trace is
Tro(¢q) = > _ (N Er(q).
AFn

For all ¢, we prove that Us:(q) = Tri(¢u; q) and Var(q) = Tri(dv; q), where ¢y and ¢y are
natural partition weights, giving the first explicit quasimodular formulas for these series.

1. INTRODUCTION AND STATEMENT OF RESULTS

In his “lost notebook”, Ramanujan considered the [12] page 369] two sequences of g-series:

(1.1)  Uslq) = 12641 3241y 4 5218 7216 4 B ano(—l)"(Qn + 1)2t+1q@
| 2t : N n(n
1—3¢+5¢—T¢5+--- > o~ 1)7(2n + l)q%
121‘, _ 52t _ 72t 2 + 112t 5 N Zoo (—1)”(6n n 1)21@%
( 2t 1—q_q2+q5+ o nm ,
Zn:—oo(_]') q 2

and he offered identities such as
U=1, Uy=E, U= %(SES —2Ey), Us= %(35E§’ — 42E,E, + 16Eg), . . .
Vo=1, Vo =FE,, V,=3E5—2F,, Vs = 1553 — 30E,E, + 16F, . ..
where Es(q), E4(q), and Eg(q) are the usual Eisenstein series

Ey:=1- 24201(71)(1”, E, =1+ 240203(n)q”, and Eg:=1-— 504205(71)(1",
n=1

n=1 n=1

and where o,(n) := 3_,, d’. He made the following claim:

“In general Uy and Vayy are of the form Z Kimn ESEZ”EQ, where { +2m +3n=1t.”
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Berndt, Chan, Liu, Yee, and Yesilyurt [5, [6] proved this claim using Ramanujan’s identities
[13]
E2 — E, EyE, — Eg EyEq — B3
12 7 3 ’ 2 ’
where D := qd%. However, their results are not explicit. Indeed, Andrews and Berndt (see

p. 364 of [3]) proclaim that “...it seems extremely difficult to find a general formula for all
KZ m,n-”

We offer a solution to the general problem of obtaining the first explicit formulas for Uy
and V5. We note that Ramanujan’s claim is that Uy, and V5, are weight 2t quasimodular
forms, as the ring of quasimodular forms is the polynomial ring (for example, see [10])

C[E27 E47 Eﬁ] = C[E2> E47 Eﬁa E87 ElOa s ]a

and so our goal is to obtain explicit formulas in terms of the classical sequence of Eisenstein
series (for example, see Chapter 1 of [I1])

(1.3)  D(Ep) = D(E,) = and D(Eg) =

(1.4) Eor(q) =1 — el Za%,l(n)q”,

where By is the 2kth Bernoulli number. We express Ramanujan’s g-series as explicit “traces
of partition Eisenstein series.”

As an important step towards this goal, we first derive generating functions for his series.
In terms of Dedekind’s eta-function 7(q) = g2 [1;2,(1—¢") and Jacobi-Kronecker quadratic
characters, we have the following result.

Theorem 1.1. As a power series in X, the following are true.
(1) If x—a(-) = (=), then we have

Z(—l)tUQt( ) - X ZX 4(n q8 sin(nX).

t>0 (zt - 1 neEL
(2) If x12(-) = (), then we have

Z(_1>tv2t( ) XQt ZX12 q24 COS(nX)

= (2t)!

Remark. Theorem [I.1]represents two special cases of Theorem 2.1} which pertains to arbitrary
theta functions. Using Theorem we obtain Theorem [3.3] that gives two further identities
for these particular generating functions as infinite products in trigonometric functions.

These generating functions shall offer the connection to traces of partition Eisenstein series.
To make this precise, we recall that a partition of n is any nonincreasing sequence of positive
integers A = (A1, Aa, ..., As) that sum to n, denoted A F n. Equivalently, we use the notation
A= (1"™,...,n™) F n, where m; is the multiplicity of j. For such A\, we define the weight
2n partition Fisenstein seried’

(1.5) A= (1m,2m2 . n™) Fn — E\(q) == Ex(q)™ Ey(q)™* - -+ Eon(q)™

%These F» should not be confused with the partition Eisenstein series introduced by Just and Schneider
[9], which are semi-modular instead of quasimodular.
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The Eisenstein series Foy(q) corresponds to the partition A = (k), as we have Ey1y(q) =
Eai(q)".

To define partition traces, suppose that ¢ : P — C is a function on partitions. For each
positive integer n, its partition Fisenstein trace is the weight 2n quasimodular form

(1.6) Tr.(¢1q) ==Y _ ¢(\)En(g

A-n

Such traces arise in recent work on MacMahon’s sums-of-divisors g-series (see Thm. 1.4 of

).

For partitions A = (1™,... ,n™) I n, we require the following functions:

(1.7) dr(\) = 4"(2n + 1) ﬁml ( D )')mk,

k=1

(1.8) Pv(A) ﬁml ( 3 12)/’19)%)

k=1
Ramanujan’s series are weighted traces of partition Eisenstein series of these functions.

Theorem 1.2. Ift is a positive integer, then the following are true.
(1) We have that Uy (q) = Tri(éu; q).
(2) We have that Vai(q) = Tri(pv; q).

Exzamples. Here we offer examples of Theorem [I.2]
(1) By direct calculation, we find for ¢t = 3 that

¢u((3") =16/9, ¢u((1',2")) = —42/9, and éu((1%)) = 35/9.
This reproduces Ramanujan’s identity
1
Tr3(¢u; q) = 5(16E6 — 42F5Ey + 35E3) = Us.

(2) By direct calculation, we find for ¢t = 4 that
oy ((4Y) = =272, ¢y (1, 3Y)) = 448, ¢y ((2?)) = 140, ¢y ((12,2Y)) = —420, and ¢y ((1*)) = 105.
Therefore, we have that

Try(pv; q) = —272F5 + 448y Fg + 140E% — 420E5E, + 105E; = V.
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(3) Similar calculations give expressions for the weight 14 quasimodular forms U4 and V4

1
Uy = ﬁ(25025]527 — 210210E5 E, + 420420 E5 B3 — 168168 E» E} + 400400 Ey Eg

— 960960 E2 By Eg + 192192E2 Fg + 366080 £, E2 — 720720E3 Es + 864864 F, 4 Fx

— 329472 F¢Es + 104832062 By — 419328 B, 1y — 1061376 5,9 + 552960 E14),
Via = 1351353 — 1891890 F5 E, + 63063003 Ef — 4204200 E, E; + 5045040, E

— 20180160E3 EyEg + 67267203 Eg + 10762752 E, Ef — 12252240F; Eg

+ 24504480 By B, Bl — 13069056 Fg Es + 23831808 5 B¢ — 15887872E,F)
— 32195072E5 Fyo 4 22368256 F1 4.

Then, using the identities

250 ., 441

E14=E§E67 By = 691 6+@

E}, E\=EEs, Es=E;
we get

1
Uy = ﬁ(—3648E§E6 — 17920 B, EZ + 19320E,E3 — 3003005 B}

+ 400400y Eg — 210210E5 Ey + 87360E; E4 Eg + 25025E7 ),
Via = 138048 B Eg — 885248 By E5 — 246792E, E; — 59459405 E3
+ 5045040 F; Eg — 1891890 E5 E, + 36516485 E4Eg + 135135E7.

Remark. The coefficients ¢y () are always integers. The first author and other collaborators
have found a combinatorial interpretation and a proof this fact, which will appear in a
forthcoming work.

In view of these results, it is natural to pose the following problem.

Problem. Determine and characterize further functions ¢ : P+~ C for which {Tr(¢;q)} is
a natural and rich family of weight 2t quasimodular forms.

To prove these results, we make use of the Jacobi Triple Product identity, special g-series,
exponential generating functions for Bernoulli numbers, and properties of Pdlya’s cycle index
polynomials. In Section [2] we derive a general result for g-series of the form and (see
Theorem [2.1), which gives Theorem as special cases. In Section |3| we prove Theorem
using these results and properties of Pélya’s cycle index polynomials.
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2. GENERATING FUNCTIONS FOR RAMANUJAN-TYPE g-SERIES

Theorem gives two special cases of general generating functions associated to formal
theta functions for Dirichlet characters. If ¥ modulo N is a Dirichlet character, then let

(2.1) O(x;q) = Y _ x(n)n™q",

where we let

0 if x is even,
(2.2) ay = L
1 if x is odd.

Then, in analogy with Ramanujan’s Us, and Va; (see (1.1)) and . we let

D'(O(x;9) _ Xns X(n)nz’f*‘“q”
O(x:q) O(x;q)

Lemma 2.1. Assuming the notation above, as a power series in X we have

(2.3) Rar(x:q) =

00 . Y 2t+1 oy
_1 . . L pln )
;_O( ) Rot(X; Q) ) 2@@ § x(n e

Remark. Theorem holds for periodic functions x : Z — C that are either even or odd.

Proof. By direct calculation, we have that
. 1 — . .
5 D x(m)g et = ; g n> 7 (x(n)e™X + (~1)> Iy (—n)e ™).
For all x, we have that (—1)™~!y(—n) = —x(n), and so this reduces to
1 - ne, _ay— n —zn .
5 Zx(n)q ot (e — e X) ZX n)g" n® ' sin(nX).
n=1

Using the Taylor series for sin(n.X), this gives (after change of summation)

i Z (n) nznaxfl einX i (n ay—1_n? Z t nX 2
2i £ X 1 @+ 1)l
X2t+1
= -D'(O(x:q)).
Thanks to (2.3)), we obtain the claimed generating function by dividing through by ©(x;¢). O

Proof of Theorem[1.1. To prove claim (1), we consider x_4(n) := (_74) , which is the only
odd character modulo 4. In this case we have a,_, = 1, and so Theorem gives

R ) ‘<2t+1 inX
. . 6
tEO 2t X 4,4 (Qt 1) 22(_) X 254 E X- 4 )
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Furthermore, Jacobi’s classical identity (for example, see p. 17 of [I1]) implies that

n(0°)’ = O(x-a1q) = Y_(=1)"(2n + )¢ V",
n=0
Therefore, we have that
o0 . X2t+1 .
_1 R s . in .

Claim (1) follows by letting ¢ — q%, replacing the complex exponential in terms of trigono-
metric functions, followed by taking the real part.
To prove claim (2), we note that Euler’s Pentagonal Number Theorem (see p. 17 of [11])

implies that
n2
= Z Xi2(n)q",
n=1

where x12(n) = (%) is the unique primitive character with conductor 12. Therefore, a, = 0,
and so Theorem [2.1] gives
& X2t+1 1 n?

(_1>tR2t<X12§ Q) : (2t i 1>! = 2in(q24) ZXH(?%)% . einX

nel

t=0

Claim (2) follows by letting ¢ — q21, then differentiating in X, followed by taking the real

part as in (1). O
3. PROOF OF THEOREM [I.2]

Here we prove Theorem [[.2 using the generating functions in Theorem[I.1] We apply Pélya’s
cycle index polynomials and the exponential generating function for Bernoulli numbers.

3.1. Bernoulli numbers. Here we recall a convenient generating function for Bernoulli
numbers and we refer the reader to [8, 1.518.1]. If sinc(X) := sin X/ X, then we have

1 (—4)*Bar 4
(3:1) sinc(X) P (_Z @R R k) '

k>1

3.2. Pélya’s cycle index polynomials. We require Pdlya’s cycle index polynomials in
the case of symmetric groups (for example, see [14]). Namely, recall that given a partition
A= (A, Agqy) Ftor (1™, ..., t"™) F t, we have that the number of permutations in &,
of cycle type Ais zy := 1™ ---t™my!---my!. The cycle index polynomial for the symmetric
group &; is given by

L)

(3.2) Z(S) —ZZAH“ _ank (xk>

At At k=1

We require the following well known generating function in t-aspect.
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Lemma 3.1 (Example 5.2.10 of [I4]). As a power series in y, the generating function for
the cycle index polynomials satisfies

s e -on(5t)

>0 k>1
FExample. Here are the first few examples of Polya’s cycle index polynomials:
1 1
2(61) = T, Z(Gg) = 5(1’% -+ ZL‘Q), 2(63) = g(l’? + 31’11’2 + 21’3)
3.3. Some power series identities. We begin with formulas for the infinite series factors
of the generating functions in Theorem [I.1}

Lemma 3.2. As a power series in X, the following are true.

(1) We have that

1
1 n2 | | |
q28 ) inél +q % sin(nX) =sin X - H(l — (1 = 2cos(2X)¢’ + q2j>.

nez j=1

(2) We have that

1

qg = n?
5 Z X12 - ¢ 2% cos(nX)
nez

= cos X [[(1 - ")(1+ 2c08(2X)q" + g)(1 - 2cos(4X )"~ + g2

n>1

Proof. Both claims follow from the Jacobi Triple Product Identity (see Th. 2.8 of [2])

(3.3) S (g = [[ —d) (1 — @)1 — 2=,

nez j=1

To prove (1), we make the substitutions 2isin X = ¢ (1 — ¢=2%) and z = ¢2e2¥ to obtain

1 n2in _ } o o
5 ( 1)nq 2+ €(2n+1)1X sin X (1 _ qj)(l _ QJGQZX)(:[ _ qje—QZX).
] I |

nez j>1

To obtain claim (1), we note the following simple reformulation

1 n24n . qié n2 .
1z (2n+1)iX _ . a5 inX
g 2T e TP IR AL
neL nez

and then take the real part of both sides.
We now turn to claim (2). Thanks to [7, (1.1)], we obtain

S (s — ety T = ¢ (1 — 2¢*) (1 _ an_z> (1—22¢"2) (1 _ q4n_2) :

z 22
nez n>1

By replacing ¢ — q%, 2z — —22, factoring out 1+ 272 and multiplying through by z, we get
6n+1 —6n—1
+ z

n 2n—1
yn nGnD) 2 B _ 2 q 4 2n—1 9
S s (105 amte (1- 257,

nezZ n>1
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After letting z = ¢, we pair up conjugate terms to get

Z(—l)”qnwg“) cos(6n +1)X

nez
= cos X T (1 = ¢")(1 + 2c08(2X)q" + ¢*")(1 — 2cos(4X g™ +¢"~2),
n>1
The left hand side of the expression above equals the infinite sum in Lemma (2). O

To prove Theorem [I.2] we also require the following power series identities that give
reformulations of the generating functions for Uy and V.

Theorem 3.3. The following identities are true.
(1) As power series in X, we have

: X A(sin® X )¢/
tzzo(_l) Uai(q) - m =sin X - ]1;[1 [1 + W} .

(2) As power series in X, we have

—1)° 'X—zt:cos : _M 4(sin® 2X) g%~
e 1 e e |

>0 i>1
Proof. We first prove claim (1). By combining Theorem u 1) and Lemma [3.2) (1), we obtain

XZt“ —2cos(2X)¢ + ¢¥)
t _
E (—1)"Us(q) - 2t ) =sin X - | | 1—g) :
>0

A straightforward algebraic manipulation with —2cos(2X) = —2 + 4sin® X yields
X2t 4(sin® X )¢’
t —sin X - e i
;(_1) Uale): o 1 [1 ooy } '

Now we turn to claim (2). By combining Theorem (2) and Lemma [3.2| (2), we obtain

2t

Z(—l)tVQt(CI) ()2(25) =cos X H (1+2cos(2X)qg" + ¢**)(1 — 2cos(4X)g> + ¢ ?)

t>0 n>1
4(sin® X) ¢’ 4(sin? 2X ) g% !
=cos X [ [(1+¢")2(1 —¢*1)2 [1 - |1+ - .
11 0 e 17
The proof now follows from the simple identity
H( ta )_Hl_q%—l'
k=1 k=1
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3.4. Proof of Theorem For each positive odd integer j, we consider the Lambert series

qum Bji1 Bj1
3.4 S.i(q) = = J — J E; )

This expression in terms of the EJH( ) follows from . The proof of Theorem [1.2] boils

down to deriving expressions for the power series in Theorem E in terms of the S;(q).

Proof of Theorem[1.9. We first prove claim (1) regarding Ramanujan’s Uy, series. The key
fact underlying the proof is the following power series identity.

(3.5) 3 (1) U X e _QZS%—_I(Q)(_U@V

' 2 o+ 1)) P )] :
>0

Thanks to Theorem (1), this identity will follow from

(3.6) exp ( 22 SQ’" i (—4X?)" ) 1T [1 + %} .

r>1 j>1

To establish (3.6]), we compute the following double-sum in two different ways. First, we use
the Taylor expansion of cos(y) and then interchange the order of summation to get

kj
q" cos(2kX) (—4X?) o1 i
) L2 J
Z 2 Do (2r)! Z >
k1 r>0 k>1 j>1

By combining the geometric series and the Taylor series for log(1 — Y) with 1 , we obtain

k2r71 k

kj o 2\r

q" cos(2kX) (—4X7) q Sar—1( 9
R S —1 —4X

Lo Lo e O ey O

Gk>1 r>1

where (¢)o = [[,~;(1 — ¢") is the g-Pochhammer symbol.
On the other hand, using 2 cosf = € + e~ and Taylor expansion of log(1 —Y), we find
that

k;j QzX —21X
¢ cos(2kX) 1
2 TaXk (Z o )
= i>1 \k>1 k=1
1 j 2j
= Z]Og [1—2(cos2X)g’ + ¢¥].
2=

After straightforward algebraic manipulation, we get

b9 TN LI S

Jk>1 Jj=1

Identity (3.6]) follows by comparing (3.7) and (3.8)), and in turn confirms (3.5]).
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We now investigate the exponential series in (3.5). Thanks to (3.4), followed by an
application of (3.1]), we obtain

exp( 22 Szk ! )X%)

. (_4)kBQ 2k By - Ear(q) 20k
= exp (‘Z; (2]{;)(21{:)];)( ) " oXp (; (gk)(QII:;)! (—4X7) )
TS <k221 ];(Qk)k! k ) '

We recognize this last expression in the context of Pélya’s cycle index polynomials. Namely,
Lemma [3.1] gives the identity (here A = (1™ ...t"™ F t))

oo (D) =3 (ST () ) v

k>1 >0 \ A\t k=1

which we apply with V), = %ﬁﬁ@ and w = —4X?2. This gives

Z(_l)tU%(Q)(éXt—_{:)! =sin X - exp ( QZ S% 1 4X2>k>

t>0 k>1

— sin X - sz Z(Zﬂmk (BQ’“ %Zg ))mk> (—4X?)"

t>0 At k=1

By comparing the coefficients of X?*1 we find that

¢ Unlg) Bor - Eai(q)\™
= oS o ()

At k=1

which in turn, thanks to (1.7)), proves Theorem (1)
We now turn to claim (2) regarding Ramanujan’s V5, whose proof is analogous to the proof
of (1). The main difference follows from the need for the generalized Lambert series

1 kflk,Qrfl k

(3.9) As_1(q) = Z = )1 4 i Sar-1(q) — 4"Sar1(¢?).
k>1

The expression in Sg,._; is straightforward. For the sake of brevity, we note that calculations
analogous to the proof of (3.6) gives the identity

4(sin® X)g" Agr 1 (q)(—4X3?)"
g {1 ICEDE ] - (22 (2r)! ) |

r>1




DERIVATIVES OF THETA FUNCTIONS AS TRACES OF PARTITION EISENSTEIN SERIES 11

as well as
4(sin? 2X ) ¢! B W—QXW . w -1
g [1 + (1—g2n1)2 ] = 1 [1 + 1— )2 ] g [1 + 1= ) 1
SZr—l( )(—16X2)T S2r—1( 2) _16X2)r
= exp (—2; C](2r)! ) exp (2; Q(Qi)! ) .

Therefore, combining these two expressions with (3.9)), Theorem (2) gives

S -1 Vale)

:COSX-eXp< 22 Szr il 4(2X)%)" )exp (2282(2_—7})(!@(—4X2)T> :

r>1

As in the proof of (1), we recognize generating functions for Pélya’s cycle index polynomials.
Namely, by applying (3.1) and Lemma [3.1] we obtain

DX e X (Z 4By - E(a) <—4X2>k>

= 2 sin(2X) L2 (2h)] k
LR g (Z By Bl <—4§2>k>

= exp (; (4" - 1”(322;)‘ E%((;) (—42(2)’“>
S (B () o

By comparing the coefficients of X*, we deduce that

: (4% — 1)Bay, - Eg(9)\™
Varlg) =4 (20): ZHmk< (2k)(28)] ) !

At k=1

which thanks to ([1.8) completes the proof of Theorem (2)
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