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Abstract. A conjecture from the second author’s paper [Linear Algebra Appl.,
332–334 (2001) 519-531] concerning a family of polynomials is proved and
strengthened. A consequence of this is that for any n > 4 there is an n × n
matrix that is not similar to a Toeplitz matrix, which was proved before for
odd n and n = 6, 8, 10.
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1. Introduction

In the paper [4] D.S. Mackey, N. Mackey and S. Petrovic posed and studied the
inverse Jordan structure problem for complex Toeplitz matrices. They showed,
in particular, that every n × n complex nonderogatory matrix is similar to an
upper Hessenberg Toeplitz matrix, with ones on the subdiagonal. Such a choice
guarantees uniqueness of the unit upper Hessenberg Toeplitz matrix. This result
was recently extended by Willmer [6], who showed that a block companion matrix
is similar to a unique block unit Hessenberg matrix.

The authors [4] also investigated the problem of what happens if the non-
derogatority condition is dropped and asked the question, “Is every complex matrix
similar to a Toeplitz matrix?” This poses the inverse Jordan structure problem for
Toeplitz matrices - which Jordan forms are achievable by Toeplitz matrices. Then,
[4] gave an affirmative answer to this question for matrices of order n ≤ 4 and
conjectured that this might be true for all n. It is worth noting that the inverse
eigenvalue question for real symmetric n× n Toeplitz matrices was posed in 1983
by Delsarte and Genin [1] and resolved by them for n ≤ 4; the general case was
settled only recently by Landau [3]. Landau‘s non-constructive proof uses topolog-
ical degree theory to show that any list of n real numbers can be realized as the
spectrum of an n× n real symmetric Toeplitz matrix.



2 Tewodros Amdeberhan and Georg Heinig

In [2] the second author of the present note showed that there are matrices
that are not similar to a Toeplitz matrix. Examples for such matrices are

m⊕
j=1

(S2 ⊕ c) and
m−2⊕
j=1

(S2 ⊕ S3)

for all m > 1 and c 6= 0. Here Sk denotes the k× k matrix of the forward shift, i.e.

S2 =
[

0 0
1 0

]
, S3 =

 0 0 0
1 0 0
0 1 0

 ,

and ⊕ stands for the direct sum. Note that the order of the first set of these
matrices is 2m + 1 and the second matrix is nilpotent. That means that for any
odd integer n > 4 there is an n×n matrix that is not similar to a Toeplitz matrix.

For even n the problem is more complicated. Candidates for matrices that
are not similar to a Toeplitz matrix are

m−1⊕
j=1

(S2 ⊕ 0⊕ c) and
m−2⊕
j=1

(S2 ⊕ S3 ⊕ 0) , (1.1)

where c 6= 0 and m > 2. It was proved in [2] that these matrices are really not
similar to a Toeplitz for m = 3, 4, 5, that means for matrices of order 6, 8 and
10. For the general case the problem was reduced to the property of a class of
polynomials defined as follows:

p0(t) = p1(t) = 1 , p2(t) = t , pj(t) = −1
2

j−1∑
k=1

pk(t)pj−k(t) (j > 2) . (1.2)

It was shown that the matrices (1.1) are not similar to a Toeplitz matrix if the
following is true.

Condition 1.1. ([2], p.528). For m > 3, the system of m− 2 equations

pm+2(t) = pm+3(t) = · · · = p2m−1(t) = 0

has only the trivial solution t = 0.

In the present note we show that this condition is always satisfied. Even more,
the following is shown, which is the main result of the paper.

Theorem 1.2. For m > 1, pm+1(t) = pm(t) = 0 has only the trivial solution t = 0.

A consequence of this theorem is the following.

Corollary 1.3. For any m > 4 there is an m ×m matrix that is not similar to a
Toeplitz matrix.
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2. On a family of polynomials

First we compute the generating function of the family of polynomials {pj(t)}
defined by (1.2), which is

p(z, t) =
∞∑

j=0

pj(t)zj .

Lemma 2.1. The generating function p(z, t) is given by

p(z, t) =
(
1 + 2z + z2(2t+ 1)

)1/2
. (2.1)

Proof. According to the definition of pj(t) we have∑
i+k=j

pi(t)pk(t) = 0

for j > 2. That means that the coefficients of zj in the expansion of (p(z, t))2

in powers of z vanish if j > 2. Hence p(z, t)2 is a quadratic polynomial in z, i.e.
p(z, t) = A(t) + B(t)z + C(t)z2. Taking the definition of pj(t) for j = 0, 1, 2 into
account we obtain

A(t) = 1, B(t) = 2, C(t) = 2t+ 1 ,

which completes the proof. �

Expanding p(z, t) in powers of z we obtain the following explicit representa-
tion of pj(t)1:

pj(t) =
bj/2c∑
k=0

2j−2k

(
1/2
j − k

)(
j − k
k

)
(2t+ 1)k , (2.2)

where bj/2c is the integer part of j/2.
The key for proving Theorem 1.2 is the following lemma.

Lemma 2.2. The polynomials pj(t) (j = 0, 1, . . . ) satisfy the 3-term recursion

(j + 2)pj+2(t) + (2j + 1)pj+1(t) + (j − 1)(2t+ 1)pj(t) = 0. (2.3)

Proof. Let h(z, t) denote the generating function of the polynomial family {pj(t)}
defined by (2.3) with initial conditions p0(t) = p1(t) = 1. We show that h(z, t) =
p(z, t). Let h′ denote the partial derivative of h(z, t) by z and h = h(z, t).

1A typo in [2] p.528 is corrected here. The expression is never used to affect the results of [2].
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We have
∞∑

j=0

(j + 2)pj+2z
j+1 = h′ − 1 ,

∞∑
j=0

(2j + 1)pj+1z
j+1 = 2zh′ − h+ 1 ,

∞∑
j=0

(j − 1)pjz
j+1 = z2h′ − zh .

Summing up we obtain the ordinary differential equation

(1 + 2z + (2t+ 1)z2)h′ − (1 + (2t+ 1)z)h = 0 .

As it is easily checked, the generating function p(z, t) also satisfies this equation.
Since p(0, t) = h(0, t), we conclude that p(z, t) = h(z, t). �

An alternative way to prove the lemma is to employ the explicit expression
(2.2) for pj(t). This appears in the Appendix section.

Proof of Theorem 1.2. The theorem can be proved now by induction in a standard
fashion. The base case, m = 2, is evident since p2 = t = p3 = 0 iff t = 0. Assume
the theorem is valid for m > 1, then we claim the same is true for m+ 1. Suppose
not! i.e. pm+2(τ) = pm+1(τ) = 0 for some τ 6= 0. Then Lemma 2.2 implies that
τ = − 1

2 . Once again, make application of the recurrence (2.3) but this time re-
index m by m− 1 to get

(m+ 1)pm+1(τ) + (2m− 1)pm(τ) + (m− 2)(2τ + 1)pm−2(τ) = 0. (2.4)

So, pm(− 1
2 ) = 0. Hence both pm+1 and pm vanish at − 1

2 . This contradiction to
the induction step proves the theorem. �

Let us finally mention two consequences of our result. The following is im-
mediate from Theorem 1.2 where variables are switched w = b

2az and the value
t = 4ac

b2 − 1 is selected. The case b = 0 is treated separately. It is important that
t 6= 0.

Corollary 2.3. Let f(w) = (a + bw + cw2)
1
2 , where a 6= 0 and b2 − 4ac 6= 0, and

f(w) =
∑∞

k=0 fkz
k be its Maclaurin expansion. Then for all j, fj and fj+1 cannot

both vanish.

The following is an equivalent formulation of Condition 1.1.

Corollary 2.4. For n > 4 there is no polynomial P (t) of degree n such that P (t)2 =
q(t) + t2n−1r(t) for quadratic polynomials q(t) and r(t), except for the trivial cases
P (t) = a+ bt and P (t) = atn−1 + btn.

Proof. Compare proof of Lemma 6.1 in [2] where the polynomials pj(t) take the
place of uk. Then, convert uk via uk/u

k
1 . �
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3. Appendix

We show a scheme on how to arrive at the recursion

(j + 2)pj+2(t) + (2j + 1)pj+1(t) + (j − 1)(2t+ 1)pj(t) = 0 (3.1)

for the explicit expression

pj(t) =
bj/2c∑
k=0

2j−2k

(
1/2
j − k

)(
j − k
k

)
(2t+ 1)k

of the sequence {pj(t)}j . The idea utilizes the so-called Wilf-Zeilberger (WZ)
method of proof [5].

Let F (j, k) := 2j
(

1/2
j−k

)(
j−k

k

)
(2t+ 1)k, and G(j, k) := −2 (j−1)(2j−2k−1)k

(j+1−2k)(j+2−2k)F (j, k).

Then one can check, preferably using a symbolic software, that

(j+2)F (j+2, k)+(2j+1)F (j+1, k)+(j−1)(2t+1)F (j, k) = G(j, k+1)−G(j, k).

Telescoping: Sum over all −∞ < k <∞ and observe that
∞∑

k=−∞

F (j, k) =
bj/2c∑
k=0

F (j, k) = pj(t) while
∞∑

k=−∞

G(j, k + 1) =
∞∑

k=−∞

G(j, k),

since G(j, k) has compact support. Then assertion (3.1) follows.



6 Tewodros Amdeberhan and Georg Heinig

Tewodros Amdeberhan
Mathematics, Tulane University
New Orleans, LA 70118, USA
e-mail: tamdeber@tulane.edu

Georg Heinig


