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Abstract. A criteria to verify logconvexity of sequences is presented.
Iterating this criteria produces infinitely logconvex sequences. As an
application, several classical examples of sequences arising in Combina-
torics and Special Functions. The paper concludes with a conjecture
regarding coefficients of chromatic polynomials.

1. Introduction

Questions about the ordering of a sequence of non-negative real numbers
a = {ak}k, for 0 ≤ k ≤ n, have appeared in the literature since Newton.
He established that if P (x) is a polynomial, all of whose zeros are real and
negative, then the sequence of its coefficients a = {ak}k is logconcave;
that is, a2k − ak−1ak+1 ≥ 0 for 1 ≤ k ≤ n − 1. A weaker condition on
sequences is that of unimodality: that is, there is an index r such that
a0 ≤ a1 ≤ · · · ≤ ar ≥ ar+1 ≥ · · · ≥ an. An elementary argument shows that
a logconcave sequence must be unimodal. A sequence a = {ak}k is called
logconvex if a2k − ak−1ak+1 ≤ 0 for 1 ≤ k ≤ n− 1.

These concepts can be expressed in terms of the operator a 7→ L(a) defined
by L(a)k = a2k − ak−1ak+1. In this notation, the sequence a = {ak}k is
logconcave if it satisfies L(a)k ≥ 0. Similarly, the sequence is logconvex

if L(a)k ≤ 0. Iteration of L leads to the notion of `-logconcave sequences,
defined by the property that the sequences Lj(a) are all nonpositve for
1 ≤ j ≤ ` and a is infinitely logconvex if it is `-logconvex for every
` ∈ N. The definitions of `-logconcave and infinitely logconcave are
similar.

The results presented here originate with the sequence of coefficients
{di(n)}i of the polynomial

(1.1) Pn(a) =

n∑
i=0

di(n)ai,
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defined by

(1.2) di(n) = 2−2n
n∑
k=i

2k
(

2n− 2k

n− k

)(
n+ k

n

)(
k

i

)
.

This polynomial appears in the evaluation of a definite integral. More details
are presented in Section 5.

The goal of the present work is to develop a criteria which verifies the
logconvexity of a variety of classical sequences. We record an elementary
observation of independent interest.

Lemma 1.1. A positive sequence a = {ak}k is logconvex if and only if
a−1 = {1/ak}k is logconcave.

Proof. Simply observe that

(1.3) L
(

1

ak

)
=

1

ak−1ak+1
− 1

a2k
=

L(a)k
ak−1a

2
kak+1

.

�

Remark. This does not extend to k-logconcavity for k ≥ 2. For instance,
the sequence {1, 14 ,

1
8 ,

1
16 ,

1
31} is 2-logconvex but the sequence of reciprocals

is not 2-logconcave.

2. The criteria

In this section we establish the basic criteria used to establish infinite
logconvexity of sequences.

Proposition 2.1. Let a = {ak}k, with ak =

∫
X
fk(x) dµ(x) for a certain

positive function f on a measure space (X,µ). Then a = {ak}k is infinitely
logconvex.

Proof. It suffices to prove that L(a)k ≥ 0. The general statement follows by
iteration of the argument. The initial step is a consequence of

L(a)k = ak−1ak+1 − a2k

=

∫
X×X

fk−1(x)fk+1(y)dµ(x)dµ(y)−
∫
X×X

fk(x)fk(y)dµ(x)dµ(y)

=
1

2

∫
X×X

fk(x)fk(y)

(
f(x)

f(y)
+
f(y)

f(x)
− 2

)
dµ(x)dµ(y)

=
1

2

∫
X×X

fk−1(x)fk−1(y)(f(x)− f(y))2 dµ(x)dµ(y).

To iterate this argument, observe that La also satisfies the hypothesis of
this proposition. �
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3. Examples of combinatorial sequences

This section presents a list of examples of logconvex sequences using
Proposition 2.1.

Example 3.1. The central binomial coefficients
{(

2k
k

)}
k

are infinitely log-
convex.

Proof. This follows directly from Wallis’ formula written in the form

(3.1)

(
2k

k

)
=

2

π

∫ π/2

0
(2 sinx)2k dx.

�

Example 3.2. The Catalan numbers Ck = 1
k+1

(
2k
k

)
are infinitely logconvex.

Proof. Use the integral representation

(3.2) Ck =
2

π

∫ π/2

0

∫ 1

0

(
4t sin2 x

)k
dx dt.

�

Example 3.3. The generating function of the Catalan numbers Ck is

(3.3) G(x) =
2

1 +
√

1− 4x
=

∞∑
k=0

Ckx
k.

Feng Qi et al [arXiv:2005.13515v1 [mathCO] 26 May 2020] generalized
the Catalan numbers and considered the function

(3.4) Ga,b(x) =
1

a+
√
b− x

=
∞∑
k=0

Ck(a, b)xk.

The coefficients Ck(a, b) admit the integral representation

(3.5) Ck(a, b) =
2

π

∫ ∞
0

s2 ds

(a2 + s2)(b+ s2)n+1
.

Proposition 2.1 shows that, for fixed a and b, the sequence {Ck(a, b)}k is
infinitely logconvex.

Example 3.4. Let {Fk}k be the sequence of Fibonacci numbers. Then
{F2k/k} is infinitely logconvex.

Proof. This follows from the integral representation

(3.6)
F2k

k
=

1

2

∫ π

0

(
3

2
+

√
5

3
cosx

)k−1
dµ(x) with dµ(x) = sinx dx.

�
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Example 3.5. The reciprocals of the binomial coefficients arow = {
(
n
k

)−1}k
form an infinitely logconcave sequence. The same holds for the sequence

acol = {
(
n
k

)−1}n.

Proof. Fix n and consider the expression ak =
(
n
k

)−1
. Proposition 2.1 and

(3.7) ak =

∫ 1

0

(
x

1− x

)k
dµ(k) with dµ(x) = (n+ 1)(1− x)n dx

yield the infinite logconvexity of arow = {ak}k.
The second assertion follows from the representation

(3.8)

(
n

k

)−1
=

∫ 1

0
(n+ 1)(1− x)n dη(x) with dη(x) =

(
x

1− x

)k
dx.

�

Example 3.6. The derangement sequence dk is defined as the number of
permutations in Sk without fixed points. The representation of the even-
indexed subsequence

(3.9) d2k =

∫ ∞
0

(x− 1)2k dµ(x) with dµ(x) = e−xdx

shows that {d2k}k is infinitely logconvex.

Example 3.7. A permutation π = π1π2 . . . πn in the symmetric group Sn

is called alternating if its entries alternately rise or descend. The Euler

number En counts the number of alternating permutations in Sn. The
integral representation

(3.10) E2k =
2

π

∫ ∞
0

(
2 log x

π

)2k

dµ(x) with dµ(x) =
dx

1 + x2

shows that {E2k}k is infinitely logconvex.

Example 3.8. The large Schröder numbers Sk count the number of
paths on a k × k grid from the southwest corner (0, 0) to the northeast
corner (k, k) using only single steps north, northeast or east that do not rise
above the southwest-northeast diagonal. Proposition 2.1 and the integral
representation

(3.11) Sk =
1

2π

∫ 3+2
√
2

3−2
√
2

1

xk+2
dµ(x) with dµ(x) =

√
−x2 + 6x− 1 dx

show that {Sk}k is infinitely logconvex.

Example 3.9. The Motzkin numbersMk count the number of lattice paths
from (0, 0) to (k, k), consisting of steps (0, 2), (2, 0) and (1, 1) subject to
never rising above the diagonal y = x. The integral representation

(3.12) M2k =
2

π

∫ π

0
(1 + 2 cosx)2k dµ(x) with dµ(x) = sin2 x dx
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shows that the even-indexed Motzkin sequence {M2k}k is infinitely logcon-
vex.

Example 3.10. Let hk be the number of lattice paths from (0, 0) to (2k, 0)
with steps (1, 1), (1,−1) and (2, 0), never falling below the x-axis and with
no peaks at odd level. These numbers also count the number of sets of all
tree-like polyhexes with k+ 1 hexagons. This is sequence A002212 in OEIS.
The integral representation

(3.13) hk =
1

2π

∫ 5

1
xk−1dµ(x) with dµ(x) =

√
(x− 1)(5− x) dx

and Proposition 2.1 show that {hk}k is infinitely logconvex.

Example 3.11. Let wk be the number of walks on a cubic lattice with
k steps, starting and finishing on the xy-plane conditioned to never going
below it. This is sequence A005572 in OEIS. These numbers have the integral
representation

(3.14) wk =
1

2π

∫ 6

2
xkdµ(x) with dµ(x) =

√
4− (4− x)2.

The usual argument shows that {hk}k is infinitely logconvex.

Example 3.12. The central Delanoy numbers (Dk) enumerate the num-
ber of king walks on a k × k grid, from the (0, 0) corner to the upper right
corner (k, k). The integral representation

(3.15) Dk =
1

π

∫ 3+2
√
2

3−2
√
2

1

xk+1
dµ(x) with dµ(x) =

dx√
−x2 + 6x− 1

shows that {Dk}k is infinitely logconvex.

Example 3.13. The Narayana numbers N(n, k) count the number of lat-
tice paths from (0, 0) to (2n, 0), with k peaks, not straying below the x-axis
and using northeast and southeast steps. The infinite logconvexity of the
reciprocals of N(n, k) follows from the integral representation

(3.16)
1

N(n, k)
=

∫ 1

0

∫ 1

0

(
x

1− x

)k ( y

1− y

)k−1
dµ(x, y)

where dµ(x, y) = n(n+ 1)2(1− x)n(1− y)n dx dy.

4. A variety of examples coming from special functions

This section presents a selection of sequences related to classical special
functions.

Example 4.1. The sequence of factorials {k!}k is infinitely logconvex.

Proof. Apply the representation

(4.1) k! =

∫ ∞
0

xk dµ(x) with dµ(x) = e−xdx.
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�

Example 4.2. The classical Eulerian gamma and beta functions are de-
fined by integral representations

(4.2) Γ(a) =

∫ ∞
0

ta−1e−t dt

and

(4.3) B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt.

Specialization of these formulae and Proposition 2.1 give infinitely logconvex
sequences. Example 4.1 corresponds to the special value Γ(k + 1) = k!.
Another infinitely logconvex sequence arising in this manner is {ak}k, with

(4.4) ak =
(2k)!

22kk!
=

1√
π

Γ
(
k + 1

2

)
.

Naturally, the specialization of (4.3) gives a double-indexed logconvex se-
quence (symmetric in m and n)

(4.5) B(n,m) =
Γ(n)Γ(m)

Γ(n+m)
=

(n− 1)!(m− 1)!

(n+m− 1)!
.

Clearly, many other examples can be produced in this manner.

Example 4.3. The integral representation of the Riemann zeta function

(4.6) ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1 dx

ex − 1

gives, for k ∈ N,

(4.7) Γ(k)ζ(k) =

∫ ∞
0

xkdµ(x) with dµ(x) =
dx

x(ex − 1)
.

Proposition 2.1 shows that the sequence {Γ(k)ζ(k)}k is infinitely logconvex.

Example 4.4. The values of the Riemann zeta function at even integers
is given in terms of the Bernoulli numbers B2k defined by the generating
function

(4.8) cothx =
1

x

∞∑
k=0

B2k

(2k)!
(2x)2k.

The aformentioned relation is

(4.9) B2k =
(−1)k+12(2k)!

(2π)2k
ζ(2k).

The integral representation (4.6) yields

(4.10)
B4k+2

4k + 2
=

∫ ∞
0

2
( x

2π

)4k+2
dµ(x) with dµ(x) =

dx

x(ex − 1)
.

From here it follows that the sequence
{

1
4k+2B4k+2

}
k

is infinitely logconvex.
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The final example of this section emerges from a multi-dimensional inte-
gral:

Example 4.5. Fix d ∈ N. Then the sequence

{
1

(k + 1)d

}
k

is infinitely

logconvex.

Proof. Apply the representation

(4.11)
1

(k + 1)d
=

∫ 1

0
· · ·
∫ 1

0
(x1x2 · · ·xd)k dµ(x)

with dµ(x) = dx1dx2 · · · dxd. �

5. The motivating example

As mentioned in the Introduction, the sequence that lead the authors to
the present work results from the evaluation of the quartic integral

(5.1) N0,4(a;n) =

∫ ∞
0

dx

(x4 + 2ax2 + 1)n+1
.

The main result of [4] is that the expression

(5.2) Pn(a) =
1

π
2n+3/2(a+ 1)n+1/2N0,4(a;n)

is a polynomial in a, of degree n, with the coefficient of ai given by

(5.3) di(n) =

n∑
k=i

2k−2n
(

2n− 2k

n− k

)(
n+ k

k

)(
k

i

)
.

Properties of these coefficients are reviewed in [10]. In particular, for fixed n,
the sequence (di(n))i was shown to be unimodal in [1, 3, 5]. Its logconcavity
was established in [9] and its 2-logconcavity appeared in [7]. The question
about the infinite logconcavity of {di(n)}i remains open. The next statement
follows from Proposition 2.1:

Proposition 5.1. For fixed r ∈ N, the sequence {Pn(r)}n is infinitely log-
convex.

Proof. Proposition 2.1 and the integral representation

(5.4) Pn(r) =
23/2
√
r + 1

π

∫ ∞
0

(
2(r + 1)

x4 + 2rx2 + 1

)n
dµ(x)

with dµ(x) =
dx

x4 + 2rx2 + 1
, yield the result. �



8 TEWODROS AMDEBERHAN AND VICTOR H. MOLL

6. Chromatic polynomials

This last section discusses properties of chromatic polynomials of graphs.
Recall that given an undirected graph G and x distinct colors, the number
of proper colorings (adjacent vertices having distinct colors) is a polynomial
in x, called the chromatic polynomial of G and denoted by κG(x).

Examples of chromatic polynomials include

• If G is a graph with n vertices and no edges, then κG(x) = xn;
• If G is a tree with n vertices, then κG(x) = x(x− 1)n−1;
• If G is the complete graph with n vertices, then

κG(x) = x(x− 1) · · · (x− n+ 1).

In these examples, the chromatic polynomials have only real roots. The
logconcavity of the coefficients follows from a work of P. Bränden [6].

Other examples of chromatic polynomials include

• For a cycle G with n vertices, κG(x) = (x− 1)n + (−1)n(x− 1);
• If G is the bipartite graph Kn,m, then

κG(x) =
m∑
j=0

S(m, j)(x)j(x− j)n,

where S(m, k) is the Stirling number of the second kind and
(x)k = x(x− 1) · · · (x− k + 1) is the falling factorial.
• If G is the cyclic ladder graph with 2n vertices, then

(6.1) κG(x) = (x2− 3x+ 3)n− (1−x)n+1− (1−x)(3−x)n + (x2− 3x+ 1).

• If G is the signed book graph B(m,n), then

(6.2) κG(x) = (x− 1)mx−n ((x− 1)m + (−1)m)n .

These examples, as well as many more from the long list given by Birkhoff
and Lewis [2], have been tested to be infinitely logconcave.

J. Huh [8] proved:

Theorem 6.1. The absolute values of the coefficients of a chromatic poly-
nomial κG(x) are logconcave.

The authors will analyze chromatic polynomials by the methods presented
here. In the meantime, based on some experimental evidence, we invite the
reader to:

Conjecture 6.2. The absolute values of any chromatic polynomial are in-
finitely logconcave.
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