INFINITE LOGCONVEXITY

TEWODROS AMDEBERHAN AND VICTOR H. MOLL

ABSTRACT. A criteria to verify logconvexity of sequences is presented.
Tterating this criteria produces infinitely logconvex sequences. As an
application, several classical examples of sequences arising in Combina-
torics and Special Functions. The paper concludes with a conjecture
regarding coefficients of chromatic polynomials.

1. INTRODUCTION

Questions about the ordering of a sequence of non-negative real numbers
a = {ag}k, for 0 < k < n, have appeared in the literature since Newton.
He established that if P(z) is a polynomial, all of whose zeros are real and
negative, then the sequence of its coefficients a = {ay}x is logconcave;
that is, a% —ap_1agr1 > 0 for 1 < k < n—1. A weaker condition on
sequences is that of unimodality: that is, there is an index r such that
ag<a; <---<ap>app1 > -+ > ap. An elementary argument shows that
a logconcave sequence must be unimodal. A sequence a = {ay} is called
logconvex if ai —ap—10p+1 <0for 1 <k <n-—1.

These concepts can be expressed in terms of the operator a — L(a) defined
by L(a)r = a? — ag—1ak4+1. In this notation, the sequence a = {ay}x is
logconcave if it satisfies £(a); > 0. Similarly, the sequence is logconvex
if £L(a)r < 0. Iteration of £ leads to the notion of {-logconcave sequences,
defined by the property that the sequences L£7(a) are all nonpositve for
1 <7 </ and a is infinitely logconvex if it is ¢-logconvex for every
¢ € N. The definitions of ¢-logconcave and infinitely logconcave are
similar.

The results presented here originate with the sequence of coefficients
{d;(n)}; of the polynomial

(1.1) P,(a) = Zdi(n)ai,
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defined by

a1

This polynomial appears in the evaluation of a definite integral. More details
are presented in Section 5.

The goal of the present work is to develop a criteria which verifies the
logconvexity of a variety of classical sequences. We record an elementary
observation of independent interest.

Lemma 1.1. A positive sequence a = {ay } is logconvez if and only if

a~! = {1/ax}x is logconcave.

Proof. Simply observe that
1 1 1 L(a)g
(13) c<>:—2=2.
ag Ap—10k+1 ay Ap—10,0F+1
O

Remark. This does not extend to k-logconcavity for k£ > 2. For instance,
the sequence {1, i, %, 1—16, %} is 2-logconvex but the sequence of reciprocals
is not 2-logconcave.

2. THE CRITERIA
In this section we establish the basic criteria used to establish infinite
logconvexity of sequences.
Proposition 2.1. Let a = {ay}x, with a;, = / ¥ (x) du(z) for a certain

X
positive function f on a measure space (X, ). Then a = {ay}x is infinitely
logconvez.

Proof. 1t suffices to prove that £(a); > 0. The general statement follows by
iteration of the argument. The initial step is a consequence of

L(a)r = ap-1ap41—ap
- / @) £ () d) dpCy) — / () £ () dula)dp(y)
XxX XxX
_ 1 k() gy (L2 f) .
- 3] rws <y>< Ko 1Y )dm \p(y)
1

= 5 [ @P W0 - 1) dul)duty).
XxX

To iterate this argument, observe that La also satisfies the hypothesis of
this proposition. O
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3. EXAMPLES OF COMBINATORIAL SEQUENCES

This section presents a list of examples of logconvex sequences using
Proposition 2.1.
Example 3.1. The central binomial coefficients {(2:) }k are infinitely log-
convex.

Proof. This follows directly from Wallis’ formula written in the form
26\ 2 [™/?
(3.1) <k> = F/O (2sinz)? da.

Example 3.2. The Catalan numbers C}, = k%q (Qkk) are infinitely logconvex.

O

Proof. Use the integral representation
9 w/2 1

(3.2) Cr = / / (4t sin* a:)k de dt.
T Jo 0

Example 3.3. The generating function of the Catalan numbers CY is

(3.3) G(z) = = m chx

Feng Qi et al [arXiv:2005.13515v1 [mathCO] 26 May 2020] generalized
the Catalan numbers and considered the function

(3.4) Gop(x) = o m ch a,b)x

The coefficients Cg(a, b) admit the integral representation

2 [ s2ds
(35) Crla,b) = 7r/0 (a® + s2)(b+ s2)ntl’

Proposition 2.1 shows that, for fixed a and b, the sequence {Cg(a,b)}s is
infinitely logconvex.

Example 3.4. Let {F}}r be the sequence of Fibonacci numbers. Then
{F3k/k} is infinitely logconvex.

Proof. This follows from the integral representation

k-1
F 1 /7
(3.6) %k = 2/0 (2 + \25 cos x> du(x)  with du(z) = sinz dz.

O
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Example 3.5. The reciprocals of the binomial coefficients ayoy = {(2)71};{
form an infinitely logconcave sequence. The same holds for the sequence

Qcol = {(Z) 71}11-

Proof. Fix n and consider the expression aj = (2)71. Proposition 2.1 and

1 x k
(3.7) ay = /0 (1 — x) du(k) with du(z) = (n+1)(1 —x)" dz

yield the infinite logconvexity of ayoy = {ak }k-
The second assertion follows from the representation

(3.8) <Z> e /Ol(n +1)(1—a)"dn(z) with dn(z) = (

" k
) dzx.
1—2x
O

Example 3.6. The derangement sequence dj is defined as the number of
permutations in & without fixed points. The representation of the even-
indexed subsequence

(3.9) doy, = /Ooo(x — D% du(z) with du(z) = e “da

shows that {da }x is infinitely logconvex.

Example 3.7. A permutation m = myms...m, in the symmetric group &,
is called alternating if its entries alternately rise or descend. The Euler
number F, counts the number of alternating permutations in &,. The
integral representation

2 [ (2loga)*" d
(3.10) By, = / ( ng) du(z) with du(z) = i
T Jo

T 1+ 22
shows that {Esy}y is infinitely logconvex.

Example 3.8. The large Schrdder numbers Sj count the number of
paths on a k x k grid from the southwest corner (0,0) to the northeast
corner (k, k) using only single steps north, northeast or east that do not rise
above the southwest-northeast diagonal. Proposition 2.1 and the integral
representation

1 32ve g ‘ :
(3.11) Sk = o /32\/5 s du(x) with du(x) =+ —22+ 6z — 1dx

show that {Sk} is infinitely logconvex.

Example 3.9. The Motzkin numbers M} count the number of lattice paths
from (0,0) to (k,k), consisting of steps (0,2), (2,0) and (1,1) subject to
never rising above the diagonal y = x. The integral representation

2 s
(3.12) My, = / (1+2cos2)® du(z) with du(x) = sin® z dzx
T Jo
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shows that the even-indexed Motzkin sequence {May } is infinitely logcon-
vex.

Example 3.10. Let hy be the number of lattice paths from (0,0) to (2k,0)
with steps (1,1), (1,—1) and (2,0), never falling below the z-axis and with
no peaks at odd level. These numbers also count the number of sets of all
tree-like polyhexes with k + 1 hexagons. This is sequence A002212 in OEIS.
The integral representation

1

5
(3.13) hi, = 7 2*rdpu(x)  with du(z) = /(z — 1)(5 — z) dz
TJ1

and Proposition 2.1 show that {hy} is infinitely logconvex.

Example 3.11. Let wg be the number of walks on a cubic lattice with
k steps, starting and finishing on the zy-plane conditioned to never going
below it. This is sequence A005572 in OEIS. These numbers have the integral

representation

1 6

/ ¥du(z)  with du(z) = /4 — (4 —z)2.
2 2

The usual argument shows that {hy} is infinitely logconvex.

(3.14) wg =

Example 3.12. The central Delanoy numbers (Dj) enumerate the num-
ber of king walks on a k x k grid, from the (0,0) corner to the upper right
corner (k, k). The integral representation

132 da
3.15 D:/ ——du(z) with du(z) =
(3.15) K iy T () W) = T———y Fa—
shows that { Dy} is infinitely logconvex.

Example 3.13. The Narayana numbers N(n, k) count the number of lat-
tice paths from (0,0) to (2n,0), with k peaks, not straying below the z-axis
and using northeast and southeast steps. The infinite logconvexity of the
reciprocals of N (n k) follows from the integral representation

(3.16) nk //(1_I> (13 )kldu(w,y)

where du(z,y) = n(n + 1)2(1 — 2)"(1 — y)" dz dy.

4. A VARIETY OF EXAMPLES COMING FROM SPECIAL FUNCTIONS

This section presents a selection of sequences related to classical special
functions.

Example 4.1. The sequence of factorials {k!} is infinitely logconvex.

Proof. Apply the representation

(4.1) k!:/ 2 dp(x)  with  du(z) = e *da.
0
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O

Example 4.2. The classical Eulerian gamma and beta functions are de-
fined by integral representations

(4.2) I'(a) = /000 t7 et dt

and
(4.3) Bm¢y=/ﬂw%1—o“%w
0

Specialization of these formulae and Proposition 2.1 give infinitely logconvex
sequences. Example 4.1 corresponds to the special value I'(k + 1) = kl.
Another infinitely logconvex sequence arising in this manner is {ag }, with

2k)! 1
- ;219 ;1! - ﬁr(
Naturally, the specialization of (4.3) gives a double-indexed logconvex se-
quence (symmetric in m and n)
L(n)L'(m)  (n—1){(m—1)!
I'(n+m) (n+m—1)! °

Clearly, many other examples can be produced in this manner.

(4.4) ajf

k+3)-

(4.5) B(n,m) =

Example 4.3. The integral representation of the Riemann zeta function

ool.s—l T
(4.6) O A

et —1

gives, for k € N,
(4.7) rw«@:/mﬁ@@)wmmmﬁzab.
0 z(e* —1)

Proposition 2.1 shows that the sequence {I'(k)((k)} is infinitely logconvex.

Example 4.4. The values of the Riemann zeta function at even integers
is given in terms of the Bernoulli numbers By defined by the generating
function

oo

o 1 Boy, 2k
(4.8) cothax = . kzo (Zk)!(Zx) .

The aformentioned relation is
(—1)F+12(2k)!

4. By = —————((2k).
(4.9 = 2 o
The integral representation (4.6) yields

Bygo / (T VA2 . dx
110) 2= a(2) th dp(z) = — .
@10 5= ), e, pl) - with dp(e) = ——;

From here it follows that the sequence {WIHBMH}](; is infinitely logconvex.
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The final example of this section emerges from a multi-dimensional inte-
gral:

Example 4.5. Fix d € N. Then the sequence { is infinitely

wl,

logconvex.

Proof. Apply the representation

4.11
(411) g A AT
with du(x) = dx1dxsy - - - dxy. O

5. THE MOTIVATING EXAMPLE

As mentioned in the Introduction, the sequence that lead the authors to
the present work results from the evaluation of the quartic integral

dx
xt + 2az2 + 1)t

(5.1) Noa(a;n) = /000 (

The main result of [4] is that the expression

(5.2) Pala) = 292 (a + 1)/ N, (a3 )

is a polynomial in a, of degree n, with the coefficient of a’ given by

b g ()

k=i

Properties of these coefficients are reviewed in [10]. In particular, for fixed n,
the sequence (d;(n)); was shown to be unimodal in [1, 3, 5]. Its logconcavity
was established in [9] and its 2-logconcavity appeared in [7]. The question
about the infinite logconcavity of {d;(n)}; remains open. The next statement
follows from Proposition 2.1:

Proposition 5.1. For fized r € N, the sequence {P,(r)}, is infinitely log-
convet.

Proof. Proposition 2.1 and the integral representation

3/2\/7“ r "
T el e T
dx

with du(@) = 5= e

, yield the result. (]
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6. CHROMATIC POLYNOMIALS

This last section discusses properties of chromatic polynomials of graphs.
Recall that given an undirected graph G and « distinct colors, the number
of proper colorings (adjacent vertices having distinct colors) is a polynomial
in z, called the chromatic polynomial of G and denoted by kg (x).

Examples of chromatic polynomials include

e If G is a graph with n vertices and no edges, then kg (z) = ™;
e If G is a tree with n vertices, then kg(z) = z(z — 1) 1;
e If G is the complete graph with n vertices, then
kg(z)=x(x—1)---(x —n+1).
In these examples, the chromatic polynomials have only real roots. The
logconcavity of the coefficients follows from a work of P. Branden [6].
Other examples of chromatic polynomials include
e For a cycle G with n vertices, kg(z) = (x — )" + (—=1)"(x — 1);
e If G is the bipartite graph K, ,,, then

ro(a) = 3 S(m, j)(@);@ — §)",
j=0

where S(m, k) is the Stirling number of the second kind and
() =z(x—1)--- (x — k + 1) is the falling factorial.
e If G is the cyclic ladder graph with 2n vertices, then
(6.1) kg(z) = (2> =3z +3)"—(1—2)"™ —(1—2)(3—2)" + (2* — 3z + 1).
e If G is the signed book graph B(m,n), then
(6.2) kg(z)=(x—1)"z7" ((x =)™+ (=1)™)".

These examples, as well as many more from the long list given by Birkhoff
and Lewis [2], have been tested to be infinitely logconcave.

J. Huh [8] proved:

Theorem 6.1. The absolute values of the coefficients of a chromatic poly-
nomial kg(x) are logconcave.

The authors will analyze chromatic polynomials by the methods presented
here. In the meantime, based on some experimental evidence, we invite the
reader to:

Conjecture 6.2. The absolute values of any chromatic polynomial are in-
finitely logconcave.
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