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Abstract

In this paper, we investigate the arithmetic properties of the difference between the num-
ber of partitions of a positive integer n with even crank and those with odd crank, denoted
C(n) = ce(n) — co(n). Inspired by Ramanujan’s classical congruences for the partition function
p(n), we establish a Ramanujan-type congruence for C'(n), proving that C(5n +4) = 0 (mod 5).
n _ (695

T ($9
context, and provide multiple combinatorial interpretations for the sequence a(n). We then offer

a complete characterization of the values a(n) mod 2™ for m = 1,2, 3,4, highlighting their con-
nection to generalized pentagonal numbers. Using computational methods and modular forms, we
also derive new identities and congruences, including a(7n+2) =0 (mod 7), expanding the scope
of partition congruences in arithmetic progressions. These results build upon classical techniques
and recent computational advances, revealing deep combinatorial and modular structure within
partition functions.

Further, we study the generating function Y>> ja(n)q , which arises naturally in this
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1 Introduction

A partition of a positive integer n is any non-increasing sequence of positive integers whose sum is n
[And98]. Let p(n) denote the number of partitions of n with the usual convention that p(0) = 1 and
p(n) = 0 when n is not a non-negative integer. In 1919, Ramanujan [Ram19] announced three elegant
congruences satisfied by the partition function p(n). These results reveal a remarkable arithmetic
regularity, showing that for every non-negative integer k, the partition function p(k) vanishes modulo
5, 7, and 11 when k is of the forms 5n + 4, 7n 4 5, and 11n + 6, respectively, i.e.,

p(bn+4) =0 (mod 5)
p(7n+5)=0 (mod 7)
p(1ln+6) =0 (mod 11).

In order to explain the last two congruences combinatorially, Dyson [Dys44] introduced the rank
of a partition. The rank of a partition is defined to be its largest part minus the number of its parts.
In 1988, Andrews and Garvan [AGS88] defined the crank of an integer partition as follows. The
crank of a partition is the largest part of the partition if there are no ones as parts and otherwise is
the number of parts larger than the number of ones minus the number of ones. More precisely, for a

partition A = [A1, Ag, ..., Ax] let £(\) denote the largest part of A, w(\) denote the number of 1’s in A,
and p(\) denote the number of parts of A larger than w()). The crank c¢()) is given by

(A if w(A) =
o [, it w(y) =0,
w(A) —w(N), ifw(A) >0.
Definition 1. Let n be a non-negative integer. We define:
1. ce(n) is the number of partitions of n with even crank.

2. ¢co(n) is the number of partitions of n with odd crank.

3. C(n) := ce(n) — co(n).



From [And18], with a small corection, we have the identity:

= 0 (49
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where the standard g-Pochhammer symbol (a; q)o is given by:

o0

(@;9)o0 = [T (1 — ag™).

n=0

We assume that ¢ is a complex number with |¢| < 1.
As stated in [Ber06, Theorem 2.3.4], Ramanujan’s first congruence can be derived from the elegant
identity:

o0
(@°:4°)5
p(bn+4)¢" =5 ——==
27 ) (39)%

Inspired by this result, we observe the following analogous identity.

Theorem 1. For |¢| < 1, we have
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Lemma 1. Let ¢(q) :==[[72 (1 —q") = (¢;9)c. We have the quintisection expansions
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- q4 ¢2(q5 )7
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+5¢° 6°(¢*°).

Proof. We revive an identity due to Ramanujan (for instance, see Berndt’s book [Ber91, pp. 81-82]),

$(6*) (%:6%) (0" 6%)oe 05y 2 ¢(g 25)( $4°%) oo (q 2%: %) oo
(@ 0%) o0 (0 %) q9(q”) = (@5 0%) o0 (09 %)

from which both (a) and (b) follow after grouping terms according to the powers of ¢ modulo 5. O

P(q) =

As a corollary of Theorem 1, we derive the following Ramanujan type congruences modulo 5.

Corollary 2. For any non-negative integer n, we have:
(a) C(5n+4) =0 (mod 5);
(b) ce(bn+4) =0 (mod 5);
(c) co(dbn+4) =0 (mod 5).

In this context, we observe the following identity.



Theorem 3. For |q| < 1, we have that

(%023, (%) (60)s0 ("% ¢)2

q prnd
(45 0)s0 (¢°;0°)3, (4%:¢%) % (¢°;¢°)3

In this paper, we will examine the arithmetic properties of the sequence a(n), defined as the
reciprocal of the infinite product arising from the generating function of c.(n) — ¢,(n):

- G )
;a(mq (69w

The generous nature of this generating function allows us to remark multiple combinatorial interpre-
tations for a(n):

e Considering Euler’s identity

1
(¢ @)oo = ——5—
* ()
we easily deduce that a(n) is the number of partitions of n in which each odd part is decorated
using 3 different colors. For example a(3) = 16, because the partitions in question are:

(33)7 (32)7 (31), (2713)7 (2712)7 (2711)7 (13713713)7 (13»]—3a12)a (13713711)7
(13,12,12), (13,12,11), (13,11,11), (12,12,12), (12,12,11), (12,11,11), (11, 14,11).

)

e Let v5(n) be the highest power of 2 dividing n. Based on the formulas

11 1_1qn =JI [Ja+a") =[]@+q7)=C,

n=1 n=1m=0 n=1

we deduce that

(—4:9)% 3+va(n)
= (14 gm)>m=m,
(4 9o 1
Thus a(n) is the number of colored partitions of n into distinct parts in which each part k
is decorated using v,(23k) different colors. For example a(3) = 16, because the partitions in
question are:

n=1

(33)7 (32)7 (31)7 (24713)7 (24712)7 (24a11)3 (23313)7 (23712)7 (23a11)7
(22,13), (22,12), (22,11), (21,13), (21,12), (21,11), (12,12, 11).
e The product structure (¢;¢)3! - (—¢; )%, can be understood as the product of two kinds of
partitions:
- (¢;¢)3: This factor corresponds to choosing a standard partition.
- (—q;9)%: This factor introduces the coloring mechanism on partitions into distinct parts,
where each part is decorated using 2 different colors.

Thus a(n) is the number of partitions of n in which the first 2 occurrences of their parts receive
any (but distinct) of the 2 colors. For example a(3) = 16, because the partitions in question are:

(3), (1), (32), (2,1), (2,11), (2,12), (21,1), (21,11), (21,12),
(22,1), (22,11), (22,12), (1,1,1), (11,1,1), (12,1,1), (12,14,1).

We define the sequence (wg)r>0 to be the generalized pentagonal numbers, given by the formula:

1 {k—‘ F)k-i-l—‘
W = % )
212 2

where [2] denotes the ceiling function, which rounds 2 up to the nearest integer. We remark that

n(3n+1 n(3n —1
Wop = 7( ) and Won—1 = ( )
2 2
The following results provide a complete characterization of the congruences modulo 2™ of the sequence

a(n) for m € {1,2,3,4}.



Theorem 4. Let n be a non-negative integer.
(a) If m € {1,2,3,4}, then a(n) =0 (mod 2™) <= n ¢ {wr|k > 0}.
(b) If m € {1,2,3,4}, then a(w,) =1 (mod 2™) <= n ={-1,0} (mod 2™).
(c) If m € {2,3,4}, then a(w,) =3 (mod 2™) <= n={-2,1} (mod 2™).
(d) If m € {3,4}, then

(d1) a(w,) =5 (mod 2™) «— n={-m—1,m} (mod 2™);
(d2) a(w,) =7 (mod 2™) <= n={-3,2} (mod 2™).

/—\

(e) alwn) =9 (mod 2%) = n={-8,7} (mod 2%).
(f) a(w,) =11 (mod 2Y) <= n={-7,6} (mod 2%).
(9) alwn) =13 (mod 21) <= n={-4,3} (mod 2%).
(h) a(wn) =15 (mod 2Y) <= n={—6,5} (mod 24).

Corollary 5. Let n be a non-negative integer. If m € {1,2,3,4}, then

a(wpiom) = a(wy)  (mod 2™).

Using Mathematica package RaduRK developed by Nicolas Smoot [Smo21], we found the following
generating function for a(7n + 2).

Theorem 6. For |q| < 1, we have:

. 1024 f3 fif o 1344 f9 fli o 102430 A1) 5 T2° f1 fly 4
E (Tn+2)q 7( 20 7 q + 31 q 24 13 T 4
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where f2 = (q% q°)%
As a corollary of this theorem, we derive the following Ramanujan type congruence modulo 7.
Corollary 7. For any non-negative integer n, we have:
a(tn+2)=0 (mod 7).
We remark the following identity.

Theorem 8. For |q| < 1, it holds that

(%" (@54 - (q7;q47)% I (g% ¢')7, _
()% (' ') o (@ 90)4% (45 0)3, (4%56%) 00 (475473,

In the following sections, we present rigorous proofs and supporting results for our theorems. Sec-
tion 2 establishes Theorem 1 using classical g-series identities and quintisection expansions. In Section
3, we derive and analyze Theorem 3, a modular identity crucial for simplifying the generating function
of the crank parity difference. Section 4 explores the arithmetic properties and combinatorial signifi-
cance of the sequence a(n), which emerges naturally in this context. Section 5 proves Theorem 6 via
an algorithmic approach grounded in the theory of modular functions, using the RaduRK package in
Mathematica to implement Radu’s Ramanujan-Kolberg algorithm. In Section 6, we establish Theo-
rem 8 by examining the behavior of eta-quotients at cusps, leveraging classical modular form theory
and Atkin-Lehner involutions. Finally, Section 7 discusses several applications of Theorem 1.



2 Proof of Theorem 1

We split the following relevant sum via 5-section (i.e., based on powers of ¢ modulo 5)

o

Z (—1)"q"Bm /2 = g(q) = eg + €1 + €2 + €3 + €4,
*(¢°) = go+ g1 + g2 + g3 + 94,
oo
Z(—l)"(Qn +1)q" "2 = ¢3(q) = ho + by + ho + hs + ha,
n=0

> 3
> u(n)g" = (ZSQ((;Q)) =Py + P+ P+ P+ Py
n=0

First of all note that by definition of e; we have e5 = e4 = 0 (because n(3n + 1)/2 is never equal to 3
or 4 modulo 5). Similarly n(n + 1)/2 is never equal to £2 modulo 5 and hence hy = hy = 0.

3
Multiplying ff(;}) and ¢?(¢?), in the above equations, and combining terms according to powers of ¢

modulo 5 we get the following set of equations
90Po + gaP1 + g3Pa + g2 P3s + g1 Py = ho
9180 + goPr + gaPo + g3 P3 + g2 Py = by
92Po+ g1P1 + goP2 + gaPs + 93Py =0
93P0 + g2 P1 + g1 P2 + go 3 + g4 Py = hs3
94FPo + g3Pr + g2 P2 + g1 P3 + go Py = 0
Our goal to is calculate Py which is given by Py = D4/D where Dy and D are determinants given by

go 9a 93 G2 G go 94 93 92 ho
91 9o 94 g3 92 g1 90 914 g3 M
D=lg2 g1 90 91 g3 and Di=1l92 91 go g2 O
93 g2 91 Go Y4 g3 92 91 Go h3
94 g3 92 g1 9o 91 g3 92 ¢1 O

The evaluation of determinant D is aided by the fact that it is the determinant of a circulant matriz,
call it A. The determinant of a square matrix is the product of its eigenvalues and it is easy to find
the eigenvalues of a circulant matrix. If w is a 5" root of unity (including 1) then

go +wg1 + w?ge + wgs +whgs

5th

is an eigenvalue of A. Thus if w is a primitive root of unity then

A = go +w'gr + gy +wgs +wgs
gives all the eigenvalues of A for t =0, 1,2,3,4. The determinant D is therefore given by

4
D= H(QO +wgr +w¥gs + gz +wh) = H Z
= =0 5=0

From the definition of g5 = gs(q) we can easily see that w“gs(q) = gs(w'q) and hence

t=0 s=0 t=0 s=0
4 oo co 4
_ H H(l w2ntq2n)2 _ H H(l 2tnq2n)2
t=0n=1 n=1t=0
— (1 qlon) H (1 q2n)10
n#Z0 (mod 5) n=0 (mod 5)
¢'"(¢")
- B(g?0)2 (1)



From the above calculations, we can see that

- D P(q™°)?
S5n+d _ e
;::Ou(ﬁm +4)q =P, = 5 = Dy - 20"

The matriz determinant lemma [DZ07] states that if A is a matrix, v is a vector (v its transpose)
and z is any indeterminate, then

Z o7 =vTadj(A)v — z|A|.

Based on this fact, we compute
g1 90 94 93 91 93 94 9o
N I
g4 93 g2 G 94 91 92 93

gogz — g% gi190 — 9492 9194 — 93 g1
—[919293] {9190 — 9492 9392 — g% goga — G193 | | 92| + g4 |4
9194 — 98 9094 — 9195 9093 — 93 | |93

where |A| = gogags + 2909194 — 9 — 9193 — 9293
In view of this, the determinant D4 can be given in the form

Dy = ho - 6(g0, 91,92, 93, 94) + h1 - 6(91, 92, 93, G4, go) + hs - (g3, 94, 9o, 91, g2)-

Finally, the evaluation of the determinant D4 runs through the explicit expressions for g5 and h, as
given by Lemma 1, in combination with routine simplifications, which leads to the desired result.

3 Proof of Theorem 3

Recall the Dedekind eta function n(q) := g [Tis (1 - q"). We prove the equivalent form
n(g)n(q

n(g*)?* -n(qg'®) _
n(g) -n(g®)°>  n(g®)-n(g®)°

presented as an identity between eta-quotients, in My(I'g(10)), a weight 0 level 10 modular form. Both
expressions on the left-hand side have a simple pole at the cusp % (under the image of the Atkin-Lehner
involution Wy [AL70]) and no other poles. This means there must be a linear combination of them
which is constant, so just checking the constant and the vanishing of one other coefficient is enough.

10) 10)5

Also, if you act by Ws, those eta-quotients become hauptmodin for the congruence group I'g(10) listed
by Conway and Norton [CN79], which must differ only by a constant.

4 Proof of Theorem 4

To establish our theorem, we turn to two foundational results: Euler’s pentagonal number theorem

(@:9)00 = D _ (1) HD/2 gon
n=0

and a classical theta identity attributed to Gauss

(Q7q)00 _ . _1\n n2
Cads _1+2n;o( Hmg™. (2)

These identities form the backbone of our approach to proving the theorem.



Case m = 1. Given that

(g:0) )
(M) <1+2Z ) =1 (mod 2).

n=0oo

we proceed as follows:

> almd" qqqc)l) (=4@)ec = (=¢39)  (mod 2) = (¢;¢)c  (mod 2)

= Z 1)n /2 gen (mod 2).

n=0

Case m = 2. Expanding the inverse of (2) modulo 4, we find

(_Q; q>oo - 2
~ R =12 —1"q”—1+2 q" (mod 4).
(¢ @) ;( Z )

Thus, we conclude that

(€D _ (69) (mod 4)

(Do (Do

Now, we consider:

- n_ 69w
Z%a(n)q T (-4 0
(D0 - (=€)
(-4 @) (mod 4)
(¢:9)o  (mod 4).

n

This reasoning shows that

Z a(n) = Z(_l)n(n-i-l)/2 qen (mod 4)7
n=0 n=0

concluding the proof.

Case m = 3. Expanding the inverse of (2) modulo 8, we obtain

((q,q) =1- 2;:1 "q"2 + (2;(—1)" q"2> (mod 8)

=1-2 Z(—l)" " —1—429‘(2"2 (mod 8)
n=1
(o)

51—22(—1)"q +4Z )2 (mod 8).
n=1

This allows us to express

(@D _y (@0 (@0
G CED o 1Y



Then

S a(n) gt = TLD= (g
n=0 o

(45 9)
(0% 6%) oo (=4 oo _ o
=2 ED=Ca 0> (i), (mods)
=2(0%¢") o (—4:¢%)o — (@)oo (mod 8)
2
- E §: (@) (mod 8)

=2(-¢ 9o — (9 (mod 8).

In other words, we have shown that

oo o}

> an)gt =Y (~1)r D2 (2 (1)

n=0 n=0

thereby concluding the proof.

Case m = 4. To summarize, we have:

-2
(—493% _
(qq) <1+2Z ) = 1+4Z

Modulo 16, this simplifies to

(7_1—42 <Z_:

(9%

_ 1) q“n

00 2

(mod 8),

2
)" ) (mod 16)

_3 2069 <((q;q)oo _1>2 (mod 16)

(=49 ~;9) oo

P CY) -
=2- s (mod 16).

Next, we consider

(9%

Substituting, we find
o0

(4:9)3
n=0
Considering [Fin88, eq. (32.6)]), this yields

o0 oo

Za(n) =2 Z (_1)n qn(?m—l)/2 + Z (67’L

n=0 n=—oo n=—oo

(_1)77,) qn(anl)/Z

I
=
S
|
[t
+
)

Thus, we conclude

o0 oo

> an)g" =) (2 (=) D2 (1) (3n 4 1) +

n=0 n=0

This completes the proof.

Za(n) 7" =2(¢;q)00 — ﬁ

Za "—qicl)-(q;Q)oo-

(mod 16).

1)¢"Gn=1/2 (mod 16)

(mod 16).



5 Proof of Theorem 6

Currently, this type of identity can be proven using computer algebra systems that implement Radu’s
Ramanujan-Kolberg algorithm [Rad15]. We make use of the Mathematica package RaduRK, developed
by Nicolas Smoot [Smo21], which is known for its ease of use. The RaduRK package depends on 4ti2,
a software suite designed to address algebraic, geometric, and combinatorial problems involving linear
spaces. To use the package, we follow the installation instructions outlined in [Smo21] and activate it
within a Mathematica session using the following command:

<<RaduRK*

It is essential to define the values of the two primary global variables, ¢ and ¢, before executing the
program:
{SetVari[q],SetVar2[t]}

The algorithmic verification of our identity is accomplished through the following procedure call:

RK[14,2,{-3,2},7,2]

Smoot’s package presents the proof in the following format:

N: 14
{M, (rs)sm}: {2.{-3,2}}
m: 7

Pm,r(j): {2}

()22 (q"54")L,

f1(9) a® (% ¢%)8 (¢* ¢ )8
. (6% 0% (473477
0® (¢ @)oo (¢*%5 ¢*) T,
AB: i (0%6°)% (@5a7)%  4(¢% %) (a7:97)5 )
"B (GO (a8 (6 9) (¢ )T

{pg(t):g € AB}: | {7168 — 19264¢ — 84561 4 1288t + 7t*, —7168 — 2240t + 392t }

Common Factor: 7

As outlined in [AP22], the output can be interpreted as follows:

e The first parameter in the procedure call RK[14,2,{-3,2},7,2] sets N = 14, thereby defining
the space of modular functions that the program will utilize:

M(To(N)) := the algebra of modular functions for T'o(N).

For detailed definitions of concepts like I'o(N) and M (T'g(V)), as well as a thorough explanation
of Radu’s Ramanujan-Kolberg algorithm, please consult [PR16].

e The assignment {M, (r5)sp} = {2,(—3,2)} is derived from the second and third entries of the
procedure call RK[14,2,{-3,2},7,2]. This specifies M = 2 and (rs)s2 = (r1,72) = (-3,2),
such that

(@*:4%)%

(¢:q9)3,

NE

a(n)¢" = [[(¢’;¢")% =

slM

I
=)

n

In the output expression P, ,(j) the abbreviation 7 := (rs)s s is used; i.e., here r = (=3, 2).



e The final two parameters in the procedure call RK[14,2,{-3,2},7,2] correspond to the assign-
ments m = 7 and j = 2, highlighting our emphasis on the generating function:

i a(mn+j)q i (Tn+2)q
n=0 n=0

The parameters m and j are utilized in the output expression P, ,(j); in this case, it is repre-
sented as Pr,.(2), with r = (-3, 2).

e The output P, (j) = Pr (—32)(2) = {2} indicates the existence of an infinite product:

f1(g) = (02 (474",
N R A PIERPAED I
such that -
fi(q) Z a(fn +2)q" € M(To(N)), with N =14.
n=0

e The output

_ (%) (q7'q7)7
¢* (43 9)o (4" 4",
aB = {1, (0% 0°)% (@505 4(0%1¢%)w (q7;q7)<7>o}
TP (% (@ a)E @ (6 9) (a5 ¢M)]
{py(t) : g € AB} = {7168 — 19264t — 8456t + 1288t + 7t*, —7168 — 2240t + 392¢>}  (3)

)

provides a solution to the following objective: find a modular function ¢ € M(I'o(N)) and
polynomials p,(t) such that

A a(fn+2)q" = > py(t) - g. (4)
n=0 geAB

Generally, the elements of the finite set AB form a C[t]-module basis of M (T'y(NV)), resp. of a
large subspace of M(To(N)). The elements g belonging to the set AB are C-linear combinations
of modular functions in M (T¢(N)) which are representable in infinite product form such as f1(q)
and t. In our case, the program delivers (3), which means

i
S 2
— 7168 — 19261 20T _ 456 <fz’f77)2 +1288 (f2f77>3 L7 <f2f77>4
q2f1f174 q2f1f174 q2f1f174 q2f1f174

s 4f2f77> e fo f ( fo f )2
(Flm ik ( e e T o) )

a(Tn 4+ 2) ¢"

This yields our identity on rearrangement.

6 Proof of Theorem 8

We prove the equivalent form

n(®)"-nld") . nlg (g
n(q)™ - n(g*) ! n(g)* +777(Q)3-77(q2)-77(q7)3

in My(T'9(14)), which is a weight 0 level 14 modular form of an identity between eta-quotients. For
background on such calculations see [Ono04, p. 18]. Write the above identity as f1 + fa + f3 = 1.

7\4 14)7

=1

10



For each eta quotient, f, we associate a 4-tuple (a, b, ¢, d) giving the order of vanishing at each cusp,
ordered by the Atkin-Lehner involutions (Wi, Wy, Wy, Wy4) [AL70]. The f; gives (0,0,2,—2), the
f2 gives (1,2,—1,—2), and f3 gives (3,0,—1,—2). Of course we can also associate a 4-tuple to the
constant function 1: (0,0,0,0) Since these functions have no other poles, there is a non-trivial linear
combination g with orders at least (1,0,0,—1). Here we could use a combination of fo and f3 to get
something with no pole under W7, and then a multiple of f; to reduce the order of pole under W14 to
at least —1, and then subtract a constant to get vanishing at infinity. This function g is either 0, or
g| W1 4is a hauptmodl (a meromorphic weight 0 functions with a single pole at infinity). However, the
modular curve X((14) has genus 1, so it cannot have a haputmodul. Thus g is 0.

This argument shows that there is a non-trivial relation between the functions. Obviously 1, fo and f3
are independent by g-expansion, and so f; can be found in terms of them by comparing the coefficients
up to ¢3. We arrived at the conclusion.

7 Applications of Theorem 1

7.1 Euler’s pentagonal number theorem

This section is devoted to listing a number of applications to Theorem 1. To minimize unduly replica-
tions, we only offer proofs to selected representatives of our results.
Denote Ay = k(kTH) Considering the theta series [Cool7, Eq. (0.44), p. 16]

o0

(G = Y (1) g,

n=—oo

we derive the following corollaries.

Corollary 9. Let n be a non-negative integer.

(a) If n =0 (mod 2), then ) C(5n+4 —5w,) =1 (mod 2) <= n € {20w,|j > 0}.
kez

(b) If n =0 (mod 8), then ) C(5n+4 —25w;) =1 (mod 2) <= n € {8A;|j > 0}.
keZ

(c) If n =4 (mod 8), then > C(5n+4 —25w,) =1 (mod 2) <= n € {40A; +4|j > 0}.
keZ

Corollary 10. Let n be a non-negative integer.

(a) If n =1 (mod 2), then >, C(5n +4 — 25w;) =0 (mod 2).
kEZ

(b) If n =6 (mod 8), then > C(5n+4 — 25wy) =0 (mod 2).
kEZ

(¢) Ifn=>5 (mod 8), then + 3 (—1)*C(5n + 4 — 25w;,) = 0 (mod 5).
kezZ

(d) If n# 0 (mod 5), then + 3 (—1)*C(50n + 24 — 50w;) = 0 (mod 5).
kEZ

(¢) If n #2 (mod 5), then £ > (—1)*C(50n + 49 — 50wy,) = 0 (mod 5).
k€EZ

Proof. Corollary 10 (a). We consider the sequence A(n) defined by

E A =2
n=0 (n)q fé

11



It is clear that

o (=1)F
An)= > C (5(n — bwy) +4). (5)

We need to show that A(2n+ 1) =0 (mod 2). Using the Mathematica package RaduRK with
RK[20,10,{2,-4,2,2},2,1],

we derive the following identity:

- f2 15 fao 12 12 f5 3 fa 2 5o
A2n+1)q¢" = -2 +2gq +2q .
A = R e 2T AR A
The claim follows. O
Corollary 11. Let n be a non-negative integer.
(a) > a(2n—w) =1 (mod 2) < n € {w;|j > 0}.
keZ
(b) > a(2n+1—2w,) =0 (mod 2) <= n € {A;[j >0}.
kEZ
(c) > a(2n —>bwk) =1 (mod 2) <= n € {A;|j > 0}.
keZ
(d) > a2n+1—5w;) =1 (mod 2) <= n e {5A;]|j >0}.
kEZ

Corollary 12. Let n be a non-negative integer.

(a) kgo(—l)ka(Qn +1—w;) =0 (mod 2).

(b) > a(Bn+1—2w;) =0 (mod 3).

k€EZ

(c) > a(B3n+2—2w;) =0 (mod 6).
kez

(d) > a(2n+1—3wg) =0 (mod 3).
kEZ

Proof. Corollary 11 (a) and Corollary 12 (a). We consider the sequence A(n) defined by

o0 2
S Ayt = L2
n=0

1

It is clear that

An)= > (—DFa(n—ws).
k=—oc0
The proof follows if we consider that
3 3 12 s f3
= = -2 and = mod 2).
BTRER VR Frg = el

Corollary 11 (b) and Corollary 12 (b)-(c). We consider the sequence A(n) defined by
3

Z A(n)¢" = —23
n=0

1

12



It is clear that

k=—o00
The proof follows if we consider that:
f3_ 13 S 0
5= (mod2), Z A(Bn+1)q
i N o

=3

[ 13
L fe’

> A@Bn+2)¢" =6
n=0

Corollary 12 (d). We consider the sequence A(n) defined by

> A(n)
n=0

It is evident now that

The proof follows if we consider that

Bl _ RS

qn

_ B s
i

B

+3q

fff6f122.

f3

Corollary 11 (c)-(d). We consider the sequence A(n) defined by

Therefore,

The proof follows if we consider that

5 _ 12

I3 f2

We conclude the argument.

7.2 Jacobi’s identity

flO

:f22f5
i

(mod 2).

Considering the Jacobi identity [Cool7, Eq. (0.46), p. 17]

o0

(G9)% =D _(-1)"(2n+1) ",

n=0

we derive the following identity.

Corollary 13. Let n be a non-negative integer.

(a) If n={1,3} (mod 5), then + > (=1)*(2k + 1) C(5n+4 — 5A;) =0 (mod 5).

k>0

(b) If n = {2,3} (mod 5), then > (—1)* (2k + 1) C(5n + 4 — 10A},) = 0.

k>0

(c) If n 20 (mod 5), then > C(5n+4 —10A;) =0 (mod 2).

k>0

(d) If n=1 (mod 2), then > C(5n+4 —25A;) =0 (mod 2).

k>0

13

1313 18
il




Proof. (b)-(c). We consider the sequence A(n) defined by

= n_ T1 s fio
e - R4t

It is clear that

| =

,Z F(2k+1)C (5n +4 — 5k(k +1)).

k
We need to show that A(5n +£2) = 0, and A(5n + 1) = 0 (mod 2). The proof follows easily if we
consider

2 2
s 2¢(4",¢°°,¢"%4)oe — 24" (¢°, 4", 0°% ™) o
f2 fso
(d). We consider the sequence A(n) defined by
= n_ T1 15 fi
ZA(TL)C] _ J1 54 10
= f2
It is clear that
25k(k + 1
M2k +1) C(5n+4—5(2+)).

= Cﬂ\»—t
Mg

=0
=0 (mod 2). On the other hand, we have
A2n+1)=B(2n+1) (mod 2),

We need to show that A(2n + 1

where the sequence B(n) defined by
o0
> Bn)g" =1 f3.
n=0

The proof follows easily if we consider the identities:

o fs L ffis N o S B
fi=jp 207, od Si=gmodeTa

We conclude the argument. O

Corollary 14. Let n be a non-negative integer.

(a) S (=D)F(2k+1)a(2n+1— Ay) =0.
k>0

(b) kz>:o a(d4n — Ag) =1 (mod 2) <= n € {w;|j > 0}.

(c) kgoa(4n+2 —A;) =0 (mod 2).

(d) If n # 1 (mod 5) then Y a(bn+2 —2A,) =0 (mod 2).
k>0

Proof. (a)-(c). We consider the sequence ) defined by

Afn
240

oo

An) =Y (-D)F 2k +1)a(n - Ay).

k=0

It is clear that

The proof follows considering that

f3 =

f4f16_ 2f4f32 n flfi’ — m
77 2q o and T = f1 (mod 2).

We conclude the argument. O

14



7.3 Gauss theta series
Considering the theta series identity [Cool7, Eq. (0.41), p. 16]
(¢;9)? 2
oo _ -1 nqn ,
(4% ¢%) o _E: =)

we derive the following corollary.

Corollary 15. Let n be a non-negative integer.

i (-1)kC(5n+4 —5k?) =0 (mod 5).

k=—o0

(a) If n =4 (mod 5), then

(S

(b) Ifn=4 (mod 5), then & f: (-1)*C(5n+4 — 10k?) =0 (mod 5).

k=—o00

Considering the theta series identity [Cool7, Eq. (0.45), p. 16]

2, 42)2 i A
o0
_ q>r
q) n=0 ,
we derive the following corollary.

Corollary 16. Let n be a non-negative integer.

(a) If n = {6,8} (mod 10), then ioj C(5n+4 - 5Ak) =0 (mod 2).
k=0

(b) If n =1 (mod 2), then io: C(5n+4—25Ak> =0 (mod 2).
k=0

Proof. (b). We consider the sequence A(n) defined by

> 2 r4
5w - 21

¢ (3(n584) +1).

=0
We need to show that A(2n+1) =0 (Inod 2) whose proof follows easily if we consider that
o,

It is clear that

Mg

1
5

21 g

We conclude the argument.

7.4 Ramanujan theta functions

Considering the theta identity [Cool7, Eq. (0.47), p. 17, with ¢ replaced by —q]

oo

(¢*; 0% n n?42n
(¢;q)2 = Z (=1) (3n+1)q3 2
’ o0

n=—oo

we derive the following corollary.

Corollary 17. Ifn = {1,3} (mod 5), then > (—=1)*(3k+1)C (5n+ 4 — 5k(3k +2)) = 0.

k=—o0

15



Proof. We consider the sequence A(n) defined by
(oo}
> AM) gt = fa f5 1o
n=0

It is clear that

Aln) = = i (—1)* Bk +1)C (5(n — k(3k +2)) +4).
k=—oc0

The proof follows if we consider that
fo fi0 = (6°°, 6%, 4% ¢”°)% = fro foo - ¢* = (%4, ¢°% ¢™")2% - " or
fifs =(@"%,0", 6% ¢°)2% — f5 fos - ¢ — (2,6, %% )% - ¢

The proof is complete.

Considering the theta identity [Cool7, Eq. (0.48), p. 17]

o0

AT
= o

n=—oo

we derive the following corollary.

Corollary 18. Let n be a non-negative integer.

(a) If n={2,3} (mod 5), then & io: (1-k)C(5n+4 —5wi) =0 (mod 5).

k=—o0
(b) Ifn =9 (mod 10), then : kf; (1—k)C (5n+ 4 — 25w;,) = 0 (mod 5).

Proof. (b). We consider the sequence A(n) defined by

n_ J1fS
E A =
n=0 (n) ! f24

It is clear that

A(n) :% i (1—6]4;)C(5(n—5wk> +4).

k=—oc0

We need to show that A(10n 4+ 9) =0 (mod 10). Using the Mathematica package RaduRK with
RK[20,10,{2,-4,6,0},10,9]
allows to derive the following identity:

12 (17f58f;*o LOUTHSE  GHMSEE fh STOS ST A oo

> A0 +9)¢" = -10

o AN RN RN
BTL43 f30 3, 4 . 110960 73 f2 f5, 5 331248 f35 f§y
o TR, T T
_ 346100 £3° S fon o, 422490 /3 fa) 5 453450 fi° ST foi o
ffogs 1 RN T Ve
AT1600 f1% f38 1o 367500 f11 f5 faT 1 1736450 f11faS 1,
Sl O 2 N ¥
5000 f§ f2 3 13 1630000 f1° f38 4 162500 /2 f2 f35 15
Thramg s fFE
466875 f9 f35 1 46875 f2 f3 1, 100000 f7 f39 18+46875f§'6l 20)
f3 fig fifa fiS I3 [ fif8

This concludes the proof.
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