A CONDENSED CONDENSATION PROOF OF A DETERMINANT EVALUATION CONJECTURED BY Greg KUPERBERG AND Jim PROPP

Tewodros $A M D E B E R H A N^{1}$ and Shalosh B. EKHAD ${ }^{1}$

Greg Kuperberg and Jim Propp [P] have conjectured the following determinant identity:

$$
\operatorname{det}\left[\binom{i+j}{i}\binom{2 n-i-j}{n-i}_{0 \leq i, j \leq n}\right]=\frac{(2 n+1)!^{n+1}}{(2 n+1)!!}
$$

where $a!!:=0!\cdot 1!\cdot 2!\cdots a!$, and $a!:=1 \cdot 2 \cdots a$.
This is the special case ($m=n, a=b=0$) of

$$
\begin{gathered}
\operatorname{det}\left[\binom{i+j+a+b}{i+a}\binom{2 n-i-j-a-b}{n-i-a}_{0 \leq i, j \leq m}\right]= \\
\frac{(a+b)!(2 n+1)!^{m+1}(2 n-m)!!m!!(m+a+b)!!(2 n-m-a-b)!!a!!!!(n-m-a-1)!!(n-m-b-1)!!}{a!b!(2 n+1)!!(n-a)!!(n-b)!!(m+a)!!(m+b)!!(a+b)!!(2 n-2 m-a-b-1)!!}
\end{gathered}
$$

(Rabbit)
which follows immediately from Dodgson's[D] rule for evaluating determinants: (For any $n \times n$ matrix A, let $A_{r}(k, l)$ be the $r \times r$ connected submatrix whose upper leftmost corner is the entry $a_{k, l}$,)

$$
\begin{equation*}
\operatorname{det} A=\frac{\operatorname{det} A_{n-1}(1,1) \operatorname{det} A_{n-1}(2,2)-\operatorname{det} A_{n-1}(1,2) \operatorname{det} A_{n-1}(2,1)}{\operatorname{det} A_{n-2}(2,2)} . \tag{Lewis}
\end{equation*}
$$

Indeed, let the left and right sides of (Rabbit) be $L_{m}(a, b)$ and $R_{m}(a, b)$ respectively. Dodgson's rule immediately implies that the recurrence:

$$
X_{m}(a, b)=\frac{X_{m-1}(a, b) X_{m-1}(a+1, b+1)-X_{m-1}(a+1, b) X_{m-1}(a, b+1)}{X_{m-2}(a+1, b+1)}
$$

holds with $X=L$. Since $L_{m}(a, b)=R_{m}(a, b)$ for $m=0,1$ (check!), and the recurrence also holds with $X=R$ (check! ${ }^{2}$), it follows by induction that $L_{m}(a, b)=R_{m}(a, b)$ for all m. \square.

The present proof is in the spirit of [Z1]. Another proof can be found in [A1]. The same method yields a q-analog of (Rabbit), that can be found in [A2]. A beautiful combinatorial proof of (Lewis) can be found in [Z2]. An alternative proof of (Rabbit) is given in [K].

[^0]
References

[A1] T. Amdeberhan, A WZ proof of a determinant evaluation conjectured by Kuperberg and Propp, exclusively published in Amdeberhan's Home Page http://www.math.temple.edu/~tewodros.
[A2] T. Amdeberhan, A q-generalization of a determinant evaluation conjectured by Kuperberg and Propp, exclusively published in Amdeberhan's Home Page http://www.math.temple.edu/~tewodros.
[D] C.L. Dodgson, Condensation of Determinants, Proceedings of the Royal Society of London 15 (1866), 150-155.
[K] C. Krattenthaler, E-mail message to T. Amdeberhan, dated 9 Aug. 1996, $19: 22: 27+0100$ (MET). By kind permission of Krattenthaler, it can be gleaned at the first author's Home Page http://www.math.temple.edu/~tewodros.
[P] J. Propp, E-mail message to D. Zeilberger, dated 1 July 1996, 15:47:56 (EDT). By kind permission of Propp, it can be gleaned at the first author's Home Page http://www.math.temple.edu/~tewodros.
[Z1] D. Zeilberger, Reverend Charles to the aid of Major Percy and Fields Medalist Enrico, Amer. Math. Monthly 103(1996), 501-502.
[Z2] D. Zeilberger, Dodgson's determinant-evaluation rule proved by Two-Timing Men and Women, to appear in the Elec. J. of Combinatorics [Wilf Festschrifft volume]. It can be downloaded from Zeilberger's Home Page: http://www.math.temple.edu/~zeilberg.

Version of Sept. 4, 1996. First version: Aug. 2, 1996.

[^0]: 1
 Department of Mathematics, Temple University, Philadelphia, PA 19122, USA. E-mail: [tewodros,ekhad] omath.temple.edu; WWW: http://www.math.temple.edu/~[tewodros,ekhad].
 2
 Divide both sides by the left, then use $r!!/(r-1)!!=r!$ whenever possible, and then $r!/(r-1)!=r$ whenever possible, reducing it to a completely routine polynomial identity. The small Maple package rabbit obtainable from our Home Pages, performs these steps mechanically.

